1
|
Fang H, Li P, Zhu S, Bi R. Genetic factors underlying Mandibular prognathism: insights from recent human and animal studies. Mamm Genome 2025; 36:293-305. [PMID: 39607497 DOI: 10.1007/s00335-024-10084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
This review aims to provide an updated overview of the genetic etiology of mandibular prognathism (MP), focusing on recent research efforts, to summarize the findings from human studies utilizing genome-wide association studies (GWAS), candidate gene analyses, whole exome sequencing (WES) and single-nucleotide polymorphisms (SNPs) in relation to MP. Additionally, insights from animal studies are incorporated to understand the molecular mechanisms underlying mandibular development and the pathogenesis of MP. A comprehensive literature search was conducted to identify relevant studies on the genetic basis of MP. Human studies employing GWAS, candidate gene analyses, and SNPs investigations were reviewed. Animal studies, including European seabass, zebrafish, transgenic mouse and miniature horse were also examined to provide additional insights into mandibular development and MP's pathogenesis using GWAS, WES, transgenic techniques, morpholino antisense oligos and homozygote. Human studies have identified multiple loci and genes potentially associated with MP through GWAS, candidate gene analyses, and SNP investigations. Animal models have contributed valuable information about the molecular mechanisms involved in mandibular development and the development of MP. Recent research efforts have enhanced our understanding of the genetic etiology of MP. Integration of genetic studies with functional analyses has shed light on key signaling pathways and gene regulatory networks implicated in MP.
Collapse
Affiliation(s)
- Han Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Zhang Y, Ma J, Bao X, Hu M, Wei X. The role of retinoic acid receptor-related orphan receptors in skeletal diseases. Front Endocrinol (Lausanne) 2023; 14:1302736. [PMID: 38027103 PMCID: PMC10664752 DOI: 10.3389/fendo.2023.1302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Bone homeostasis, depending on the balance between bone formation and bone resorption, is responsible for maintaining the proper structure and function of the skeletal system. As an important group of transcription factors, retinoic acid receptor-related orphan receptors (RORs) have been reported to play important roles in bone homeostasis by regulating the transcription of target genes in skeletal cells. On the other hand, the dysregulation of RORs often leads to various skeletal diseases such as osteoporosis, rheumatoid arthritis (RA), and osteoarthritis (OA). Herein, we summarized the roles and mechanisms of RORs in skeletal diseases, aiming to provide evidence for potential therapeutic strategies.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Jun Ma
- Department of Oral Anatomy and Physiology, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xingfu Bao
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| | - Xiaoxi Wei
- Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Liang T, Chen T, Qiu J, Gao W, Qiu X, Zhu Y, Wang X, Chen Y, Zhou H, Deng Z, Li P, Xu C, Peng Y, Liang A, Su P, Gao B, Huang D. Inhibition of nuclear receptor RORα attenuates cartilage damage in osteoarthritis by modulating IL-6/STAT3 pathway. Cell Death Dis 2021; 12:886. [PMID: 34584074 PMCID: PMC8478978 DOI: 10.1038/s41419-021-04170-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is characterized by cartilage destruction, chronic inflammation, and local pain. Evidence showed that retinoic acid receptor-related orphan receptor-α (RORα) is crucial in cartilage development and OA pathogenesis. Here, we investigated the role and molecular mechanism of RORα, an important member of the nuclear receptor family, in regulating the development of OA pathologic features. Investigation into clinical cartilage specimens showed that RORα expression level is positively correlated with the severity of OA and cartilage damage. In an in vivo OA model induced by anterior crucial ligament transaction, intra-articular injection of si-Rora adenovirus reversed the cartilage damage. The expression of cartilage matrix components type II collagen and aggrecan were elevated upon RORα blockade. RNA-seq data suggested that the IL-6/STAT3 pathway is significantly downregulated, manifesting the reduced expression level of both IL-6 and phosphorylated STAT3. RORα exerted its effect on IL-6/STAT3 signaling in two different ways, including interaction with STAT3 and IL-6 promoter. Taken together, our findings indicated the pivotal role of the RORα/IL-6/STAT3 axis in OA progression and confirmed that RORα blockade improved the matrix catabolism in OA chondrocytes. These results may provide a potential treatment target in OA therapy.
Collapse
MESH Headings
- Aged
- Animals
- Base Sequence
- Benzamides/chemistry
- Benzamides/pharmacology
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Disease Models, Animal
- Down-Regulation/drug effects
- Female
- Fluorocarbons/chemistry
- Fluorocarbons/pharmacology
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Mice, Inbred C57BL
- Models, Biological
- Nuclear Receptor Subfamily 1, Group F, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Phosphorylation/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- STAT3 Transcription Factor/metabolism
- Severity of Illness Index
- Signal Transduction
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Thiophenes/chemistry
- Thiophenes/pharmacology
- Mice
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xudong Wang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caixia Xu
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqiang Su
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Liang T, Qiu J, Li S, Deng Z, Qiu X, Hu W, Li P, Chen T, Liang Z, Zhou H, Gao B, Huang D, Liang A, Gao W. Inverse Agonist of Retinoid-Related Orphan Receptor-Alpha Prevents Apoptosis and Degeneration in Nucleus Pulposus Cells via Upregulation of YAP. Mediators Inflamm 2021; 2021:9954909. [PMID: 34366712 PMCID: PMC8337132 DOI: 10.1155/2021/9954909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhancheng Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| |
Collapse
|
5
|
Luo Q, Ji S, Li Z, Huang T, Fan S, Xi Q. Effects of ultrasound therapy on the synovial fluid proteome in a rabbit surgery-induced model of knee osteoarthritis. Biomed Eng Online 2019; 18:18. [PMID: 30795769 PMCID: PMC6387552 DOI: 10.1186/s12938-019-0637-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ultrasound (US) therapy may improve osteoarthritis symptoms. We investigated the effects of US on the synovial fluid (SF) proteome in a rabbit knee osteoarthritis (KOA) model to explore its therapeutic mechanisms. Methods Sixteen healthy 6-month-old New Zealand white rabbits (eight male, eight female), weighing 2.5–3.0 kg, were randomly divided into groups A and B with eight rabbits per group. Both groups were subjected to right anterior cruciate ligament transaction. Six weeks after surgery, we treated the operated knee joint of group A rabbits with US and of group B rabbits with sham US for 2 weeks. The proteomes of knee joint SF from groups A and B rabbits were then analyzed using a label-free mass spectrometry (MS) quantification method. Results We identified 19 protein sequences annotated by 361 Gene Ontology (GO) items. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database of rabbit protein sequences, we then annotated the KO numbers of homologous/similar proteins to 32 relevant KEGG pathways. We extracted 10 significantly differentially expressed proteins among the 32 relevant KEGG messages/metabolism pathways. The proteins whose levels were decreased were apolipoprotein A-I (AopA-1), transferrin (TF), carboxypeptidase B2 (CBP2), arylesterase/paraoxonase (PON), fibrinogen alpha chain, and alpha-2-macroglobulin (A2M). The proteins whose levels were increased were molecular chaperone HtpG/heat shock proteins (htpG, HSP90A), decorin (DCN), pyruvate kinase (PK, pyk), and fatty acid-binding protein 4/adipocyte (FABP4, aP2). Conclusions US therapy can alter protein levels in SF, which can decrease AopA-1, TF, CBP2, PON, fibrinogen alpha chain and A2M protein levels, and increase HtpG/HSP90A, DCN, PK/PKY, and FABP4/aP2 protein levels in SF of KOA, suggesting that the therapeutic mechanisms of US therapy on KOA may occur through changes in the SF proteome.
Collapse
Affiliation(s)
- Qinglu Luo
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Shuangquan Ji
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China
| | - Zhimi Li
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China
| | - Tao Huang
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China
| | - Siqin Fan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Qin Xi
- The Fifth Affiliated Hospital of Guangzhou Medicine University, No. 621, GangWan Road, HuangPu District, Guangzhou, 510700, Guangdong Province, China.
| |
Collapse
|
6
|
Tan Z, Niu B, Tsang KY, Melhado IG, Ohba S, He X, Huang Y, Wang C, McMahon AP, Jauch R, Chan D, Zhang MQ, Cheah KSE. Synergistic co-regulation and competition by a SOX9-GLI-FOXA phasic transcriptional network coordinate chondrocyte differentiation transitions. PLoS Genet 2018; 14:e1007346. [PMID: 29659575 PMCID: PMC5919691 DOI: 10.1371/journal.pgen.1007346] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
The growth plate mediates bone growth where SOX9 and GLI factors control chondrocyte proliferation, differentiation and entry into hypertrophy. FOXA factors regulate hypertrophic chondrocyte maturation. How these factors integrate into a Gene Regulatory Network (GRN) controlling these differentiation transitions is incompletely understood. We adopted a genome-wide whole tissue approach to establish a Growth Plate Differential Gene Expression Library (GP-DGEL) for fractionated proliferating, pre-hypertrophic, early and late hypertrophic chondrocytes, as an overarching resource for discovery of pathways and disease candidates. De novo motif discovery revealed the enrichment of SOX9 and GLI binding sites in the genes preferentially expressed in proliferating and prehypertrophic chondrocytes, suggesting the potential cooperation between SOX9 and GLI proteins. We integrated the analyses of the transcriptome, SOX9, GLI1 and GLI3 ChIP-seq datasets, with functional validation by transactivation assays and mouse mutants. We identified new SOX9 targets and showed SOX9-GLI directly and cooperatively regulate many genes such as Trps1, Sox9, Sox5, Sox6, Col2a1, Ptch1, Gli1 and Gli2. Further, FOXA2 competes with SOX9 for the transactivation of target genes. The data support a model of SOX9-GLI-FOXA phasic GRN in chondrocyte development. Together, SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon hypertrophy, FOXA competes with SOX9, and control toward terminal differentiation passes to FOXA, RUNX, AP1 and MEF2 factors. In the development of the mammalian growth plate, while several transcription factors are individually well known for their key roles in regulating phases of chondrocyte differentiation, there is little information on how they interact and cooperate with each other. We took an unbiased genome wide approach to identify the transcription factors and signaling pathways that play dominant roles in the chondrocyte differentiation cascade. We developed a searchable library of differentially expressed genes, GP-DGEL, which has fine spatial resolution and global transcriptomic coverage for discovery of processes, pathways and disease candidates. Our work identifies a novel regulatory mechanism that integrates the action of three transcription factors, SOX9, GLI and FOXA. SOX9-GLI auto-regulate and cooperate to activate and repress genes in proliferating chondrocytes. Upon entry into prehypertrophy, FOXA competes with SOX9, and control of hypertrophy passes to FOXA, RUNX, AP1 and MEF2 factors.
Collapse
Affiliation(s)
- Zhijia Tan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ben Niu
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Yeung Tsang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Ian G. Melhado
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Shinsuke Ohba
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Yongheng Huang
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Cheng Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Ralf Jauch
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Dallas, Texas, United States of America
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, China
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail:
| |
Collapse
|
7
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
8
|
Ali SA, Al-Jazrawe M, Ma H, Whetstone H, Poon R, Farr S, Naples M, Adeli K, Alman BA. Regulation of Cholesterol Homeostasis by Hedgehog Signaling in Osteoarthritic Cartilage. Arthritis Rheumatol 2016; 68:127-37. [PMID: 26315393 PMCID: PMC4690757 DOI: 10.1002/art.39337] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022]
Abstract
Objective With no effective therapies to attenuate cartilage degeneration in osteoarthritis (OA), the result is pain and disability. Activation of hedgehog (HH) signaling causes changes related to the progression of OA, with higher levels of Gli‐mediated transcriptional activation associated with increased disease severity. To elucidate the mechanism through which this occurs, this study sought to identify genes regulated by HH signaling in human OA chondrocytes. Methods Using human OA cartilage samples, microarray analyses were performed to detect changes in gene expression when the HH pathway was modulated. Results were analyzed for differentially expressed genes, grouped into functional networks, and validated in independent samples. To investigate the effects of chondrocyte‐specific sterol accumulation, we generated mice lacking Insig1 and Insig2, which are major negative regulators of cholesterol homeostasis, under Col2a1 regulatory elements. Results HH signaling was found to regulate genes that govern cholesterol homeostasis, and this led to alterations in cholesterol accumulation in chondrocytes. A higher level of Gli‐mediated transcription resulted in accumulation of intracellular cholesterol. In genetically modified mice, chondrocyte‐specific cholesterol accumulation was associated with an OA phenotype. Reducing cholesterol accumulation attenuated the severity of OA in mice in vivo and decreased the expression of proteases in human OA cartilage in vitro. Conclusion HH signaling regulates cholesterol homeostasis in chondrocytes, and intracellular cholesterol accumulation contributes to the severity of OA. Our findings have therapeutic implications, since reduction of HH signaling reversed cholesterol accumulation and statin treatment attenuated cartilage degeneration.
Collapse
Affiliation(s)
- Shabana Amanda Ali
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mushriq Al-Jazrawe
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Henry Ma
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Raymond Poon
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Farr
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark Naples
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Staines KA, Zhu D, Farquharson C, MacRae VE. Identification of novel regulators of osteoblast matrix mineralization by time series transcriptional profiling. J Bone Miner Metab 2014; 32:240-51. [PMID: 23925391 DOI: 10.1007/s00774-013-0493-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Bone mineralization is a carefully orchestrated process, regulated by a number of promoters and inhibitors that function to ensure effective hydroxyapatite formation. Here we sought to identify new regulators of this process through a time series microarray analysis of mineralising primary osteoblast cultures over a 27 day culture period. To our knowledge this is the first microarray study investigating murine calvarial osteoblasts cultured under conditions that permit both physiological extracellular matrix mineralization through the formation of discrete nodules and the terminal differentiation of osteoblasts into osteocytes. RT-qPCR was used to validate and expand the microarray findings. We demonstrate the significant up-regulation of >6,000 genes during the osteoblast mineralization process, the highest-ranked differentially expressed genes of which were those dominated by members of the PPAR-γ signalling pathway, namely Adipoq, Cd36 and Fabp4. Furthermore, we show that the inhibition of this signalling pathway promotes matrix mineralisation in these primary osteoblast cultures. We also identify Cilp, Phex, Trb3, Sox11, and Psat1 as novel regulators of matrix mineralization. Further studies examining the precise function of the identified genes and their interactions will advance our understanding of the mechanisms underpinning biomineralization.
Collapse
Affiliation(s)
- Katherine Ann Staines
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK,
| | | | | | | |
Collapse
|
10
|
Villalvilla A, Gómez R, Largo R, Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci 2013; 14:20793-808. [PMID: 24135873 PMCID: PMC3821643 DOI: 10.3390/ijms141020793] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-915-504-800; Fax: +34-915-442-636
| | - Rodolfo Gómez
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; E-Mail:
| | - Raquel Largo
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| | - Gabriel Herrero-Beaumont
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| |
Collapse
|
11
|
Carter CJ. The Fox and the Rabbits-Environmental Variables and Population Genetics (1) Replication Problems in Association Studies and the Untapped Power of GWAS (2) Vitamin A Deficiency, Herpes Simplex Reactivation and Other Causes of Alzheimer's Disease. ISRN NEUROLOGY 2011; 2011:394678. [PMID: 22389816 PMCID: PMC3263564 DOI: 10.5402/2011/394678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
Classical population genetics shows that varying permutations of genes and risk factors permit or disallow the effects of causative agents, depending on circumstance. For example, genes and environment determine whether a fox kills black or white rabbits on snow or black ash covered islands. Risk promoting effects are different on each island, but obscured by meta-analysis or GWAS data from both islands, unless partitioned by different contributory factors. In Alzheimer's disease, the foxes appear to be herpes, borrelia or chlamydial infection, hypercholesterolemia, hyperhomocysteinaemia, diabetes, cerebral hypoperfusion, oestrogen depletion, or vitamin A deficiency, all of which promote beta-amyloid deposition in animal models—without the aid of gene variants. All relate to risk factors and subsets of susceptibility genes, which condition their effects. All are less prevalent in convents, where nuns appear less susceptible to the ravages of ageing. Antagonism of the antimicrobial properties of beta-amyloid by Abeta autoantibodies in the ageing population, likely generated by antibodies raised to beta-amyloid/pathogen protein homologues, may play a role in this scenario. These agents are treatable by diet and drugs, vitamin supplementation, pathogen detection and elimination, and autoantibody removal, although again, the beneficial effects of individual treatments may be tempered by genes and environment.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Flat 4, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 0LG, UK
| |
Collapse
|
12
|
Kang HS, Okamoto K, Takeda Y, Beak JY, Gerrish K, Bortner CD, DeGraff LM, Wada T, Xie W, Jetten AM. Transcriptional profiling reveals a role for RORalpha in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol Genomics 2011; 43:818-28. [PMID: 21540300 DOI: 10.1152/physiolgenomics.00206.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Retinoid-related orphan receptor (ROR)α4 is the major RORα isoform expressed in adipose tissues and liver. In this study we demonstrate that RORα-deficient staggerer mice (RORα(sg/sg)) fed with a high-fat diet (HFD) exhibited reduced adiposity and hepatic triglyceride levels compared with wild-type (WT) littermates and were resistant to the development of hepatic steatosis, adipose-associated inflammation, and insulin resistance. Gene expression profiling showed that many genes involved in triglyceride synthesis and storage, including Cidec, Cidea, and Mogat1, were expressed at much lower levels in liver of RORα(sg/sg) mice. In contrast, overexpression of RORα in mouse hepatoma Hepa1-6 cells significantly increased the expression of genes that were repressed in RORα(sg/sg) liver, including Sult1b1, Adfp, Cidea, and ApoA4. ChIP and promoter analysis suggested that several of these genes were regulated directly by RORα. In addition to reduced lipid accumulation, inflammation was greatly diminished in white adipose tissue (WAT) of RORα(sg/sg) mice fed with an HFD. The infiltration of macrophages and the expression of many immune response and proinflammatory genes, including those encoding various chemo/cytokines, Toll-like receptors, and TNF signaling proteins, were significantly reduced in RORα(sg/sg) WAT. Moreover, RORα(sg/sg) mice fed with an HFD were protected from the development of insulin resistance. RORα(sg/sg) mice consumed more oxygen and produced more carbon dioxide, suggesting increased energy expenditure in this genotype. Our study indicates that RORα plays a critical role in the regulation of several aspects of metabolic syndrome. Therefore, RORα may provide a novel therapeutic target in the management of obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ulici V, James CG, Hoenselaar KD, Beier F. Regulation of gene expression by PI3K in mouse growth plate chondrocytes. PLoS One 2010; 5:e8866. [PMID: 20111593 PMCID: PMC2810323 DOI: 10.1371/journal.pone.0008866] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/02/2010] [Indexed: 02/02/2023] Open
Abstract
Background Endochondral ossification, the process through which long bones are formed, involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular, shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of the PI3K signaling pathway in hypertrophic chondrocytes. Methodology/Principal Findings Through the intersection of two different microarray analyses methods (classical single gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures. Conclusions/Significance Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.
Collapse
Affiliation(s)
- Veronica Ulici
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Claudine G. James
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Katie D. Hoenselaar
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Frank Beier
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Schibler L, Gibbs L, Benoist-Lasselin C, Decraene C, Martinovic J, Loget P, Delezoide AL, Gonzales M, Munnich A, Jais JP, Legeai-Mallet L. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling. PLoS One 2009; 4:e7633. [PMID: 19898608 PMCID: PMC2764091 DOI: 10.1371/journal.pone.0007633] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/03/2009] [Indexed: 11/18/2022] Open
Abstract
Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR)3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD), achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM) structure and turnover, especially glycosaminoglycan (GAG) and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These results also suggest that many signaling pathways may be directly or indirectly altered by FGFR3 and confirm the crucial role of FGFR3 in the control of growth plate development.
Collapse
Affiliation(s)
- Laurent Schibler
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
- Unité Mixte de Recherche 1313, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Linda Gibbs
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
- 4Clinics, Waterloo, Belgique
| | - Catherine Benoist-Lasselin
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
| | | | - Jelena Martinovic
- Service de Fœtopathologie, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Philippe Loget
- Centre Pluridisciplinaire de Diagnostic Prénatal de Rennes, Hôpital de Rennes, Rennes, France
| | - Anne-Lise Delezoide
- Service de Biologie du développement, Hôpital Robert Debré, Université Paris Diderot, Paris, France
| | - Marie Gonzales
- Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, Université Pierre et Marie Curie, Paris, France
| | - Arnold Munnich
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
| | - Jean-Philippe Jais
- Service de Biostatistique et Informatique Médicale, Hôpital Necker, Université Paris Descartes, Paris, France
| | - Laurence Legeai-Mallet
- Unité U781, Institut National de la Santé et de la Recherche Médicale, Université Paris Descartes-Hôpital Necker, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Genetic loci that regulate healing and regeneration in LG/J and SM/J mice. Mamm Genome 2009; 20:720-33. [PMID: 19760323 DOI: 10.1007/s00335-009-9216-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
Abstract
MRL mice display unusual healing properties. When MRL ear pinnae are hole punched, the holes close completely without scarring, with regrowth of cartilage and reappearance of both hair follicles and sebaceous glands. Studies using (MRL/lpr x C57BL/6)F(2) and backcross mice first showed that this phenomenon was genetically determined and that multiple loci contributed to this quantitative trait. The lpr mutation itself, however, was not one of them. In the present study we examined the genetic basis of healing in the Large (LG/J) mouse strain, a parent of the MRL mouse and a strain that shows the same healing phenotype. LG/J mice were crossed with Small (SM/J) mice and the F(2) population was scored for healing and their genotypes determined at more than 200 polymorphic markers. As we previously observed for MRL and (MRL x B6)F(2) mice, the wound-healing phenotype was sexually dimorphic, with female mice healing more quickly and more completely than male mice. We found quantitative trait loci (QTLs) on chromosomes (Chrs) 9, 10, 11, and 15. The heal QTLs on Chrs 11 and 15 were linked to differential healing primarily in male animals, whereas QTLs on Chrs 9 and 10 were not sexually dimorphic. A comparison of loci identified in previous crosses with those in the present report using LG/J x SM/J showed that loci on Chrs 9, 11, and 15 colocalized with those seen in previous MRL crosses, whereas the locus on Chr 10 was not seen before and is contributed by SM/J.
Collapse
|