1
|
Liu H, Sun X, Dong B, Zhang J, Zhang J, Gu Y, Chen L, Pang X, Ye J, Wang X, Rong Z. Systematic Characterisation and Analysis of Lysyl Oxidase Family Members as Drivers of Tumour Progression and Multiple Drug Resistance. J Cell Mol Med 2025; 29:e70536. [PMID: 40179101 PMCID: PMC11967703 DOI: 10.1111/jcmm.70536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
The intricacies of tumour microenvironment, particularly the extracellular matrix (ECM), underscore its pivotal function in modulating tumour progression and drug resistance. Among the key regulators of ECM remodelling and homeostasis, the lysyl oxidases (LOXs) emerge as promising therapeutic targets of tumour treatment. Despite their significance, a holistic evaluation of the LOX family's genomics and clinical implications across diverse cancer types remains elusive. Herein, this study aimed to investigate the correlation between LOX family expression and patient outcomes, drug responsiveness and tumour microenvironment (TME) characteristics in a cohort of 33 tumours based on The Cancer Genome Atlas (TCGA) database. Notably, patients exhibiting elevated LOX family expression suffer from worse prognosis and resistance to a spectrum of antitumor therapies, encompassing chemotherapy, endocrine therapy, targeted therapy and immunotherapy, in contrast to counterparts with subdued LOX family expression levels. Furthermore, enrichment analysis indicated that the LOX family fosters tumour progression and drug resistance. These findings were further validated by multiplex immunofluorescence staining in breast, gastric and rectal cancer, as well as breast cancer organoids. Altogether, this study unravels the intricate association between the LOX family and tumour progression, alongside multidrug resistance. We have gained further insights into the roles of LOX family genes in various tumour types, offering a novel avenue for future research into the relationship between LOX family genes and tumorigenesis.
Collapse
Affiliation(s)
- Hongjin Liu
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Xiaojiao Sun
- School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Bingqi Dong
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Jixin Zhang
- Department of PathologyPeking University First HospitalBeijingChina
| | - Junling Zhang
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Yanlun Gu
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| | - Lin Chen
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Xiaocong Pang
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| | - Jingming Ye
- Department of Thyroid and Breast SurgeryPeking University First HospitalBeijingChina
| | - Xin Wang
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Zhuona Rong
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| |
Collapse
|
2
|
Faure E, Busso N, Nasi S. Roles of Lysyl oxidases (LOX(L)) in pathologic calcification. Biomed Pharmacother 2024; 181:117719. [PMID: 39603039 DOI: 10.1016/j.biopha.2024.117719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Calcification of tissues involves the formation and deposition of calcium-containing crystals in the extracellular matrix (ECM). While this process is normal in bones, it becomes pathological when it occurs in cardiovascular and musculoskeletal soft tissues. Pathological calcification (PC) triggers detrimental pathways such as inflammation and oxidative stress, contributing to tissue damage and dysregulated tissue biomechanics, ultimately leading to severe complications and even death. The underlying mechanisms of PC remain elusive. Emerging evidence suggests a significant role of lysyl oxidases (LOX(L)) in PC. LOX(L) are a group of five enzymes involved in collagen cross-linking and ECM maturation. Beyond their classical role in bone mineralization, recent investigations propose new non-classical roles for LOX(L) that could be relevant in PC. In this review, we analyzed and summarized the functions of LOX(L) in cardiovascular and musculoskeletal PC, highlighting their deleterious roles in most studies. To date, specific inhibitors targeting LOX(L) isoforms are under development. New therapeutic tools targeting LOX(L) are warranted in PC and must avoid adverse effects on physiological bone mineralization.
Collapse
Affiliation(s)
- Elodie Faure
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
4
|
Lin W, Wang Y, Zheng L. Polycystic ovarian syndrome (PCOS) and recurrent spontaneous abortion (RSA) are associated with the PI3K-AKT pathway activation. PeerJ 2024; 12:e17950. [PMID: 39253602 PMCID: PMC11382649 DOI: 10.7717/peerj.17950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Aims We aimed to elucidate the mechanism leading to polycystic ovarian syndrome (PCOS) and recurrent spontaneous abortion (RSA). Background PCOS is an endocrine disorder. Patients with RSA also have a high incidence rate of PCOS, implying that PCOS and RSA may share the same pathological mechanism. Objective The single-cell RNA-seq datasets of PCOS (GSE168404 and GSE193123) and RSA GSE113790 and GSE178535) were downloaded from the Gene Expression Omnibus (GEO) database. Methods Datasets of PSCO and RSA patients were retrieved from the Gene Expression Omnibus (GEO) database. The "WGCNA" package was used to determine the module eigengenes associated with the PCOS and RSA phenotypes and the gene functions were analyzed using the "DAVID" database. The GSEA analysis was performed in "clusterProfiler" package, and key genes in the activated pathways were identified using the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Real-time quantitative PCR (RT-qPCR) was conducted to determine the mRNA level. Cell viability and apoptosis were measured by cell counting kit-8 (CCK-8) and flow cytometry, respectively. Results The modules related to PCOS and RSA were sectioned by weighted gene co-expression network analysis (WGCNA) and positive correlation modules of PCOS and RSA were all enriched in angiogenesis and Wnt pathways. The GSEA further revealed that these biological processes of angiogenesis, Wnt and regulation of cell cycle were significantly positively correlated with the PCOS and RSA phenotypes. The intersection of the positive correlation modules of PCOS and RSA contained 80 key genes, which were mainly enriched in kinase-related signal pathways and were significant high-expressed in the disease samples. Subsequently, visualization of these genes including PDGFC, GHR, PRLR and ITGA3 showed that these genes were associated with the PI3K-AKT signal pathway. Moreover, the experimental results showed that PRLR had a higher expression in KGN cells, and that knocking PRLR down suppressed cell viability and promoted apoptosis of KGN cells. Conclusion This study revealed the common pathological mechanisms between PCOS and RSA and explored the role of the PI3K-AKT signaling pathway in the two diseases, providing a new direction for the clinical treatment of PCOS and RSA.
Collapse
Affiliation(s)
- Wenjing Lin
- Reproductive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuting Wang
- Anesthesiology Department, Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lei Zheng
- Anesthesiology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Kreindl C, Soto-Alarcón SA, Hidalgo M, Riveros AL, Añazco C, Pulgar R, Porras O. Selenium Compounds Affect Differently the Cytoplasmic Thiol/Disulfide State in Dermic Fibroblasts and Improve Cell Migration by Interacting with the Extracellular Matrix. Antioxidants (Basel) 2024; 13:159. [PMID: 38397757 PMCID: PMC10886037 DOI: 10.3390/antiox13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis. In this study, two sets of human dermic fibroblasts were cultured in normal (5 mM) and high (25 mM)-glucose conditions in the presence of 1 µM selenium, as sodium selenite (inorganic) and the two selenium amino acids (organic), Se-cysteine and Se-methionine, for ten days. We investigated the ultrastructural changes in the secreted ECM induced by these conditions using scanning electron microscopy (SEM). In addition, we evaluated the redox impact of these three compounds by measuring the basal state and real-time responses of the thiol-based HyPer biosensor expressed in the cytoplasm of these fibroblasts. Our results indicate that selenium compound supplementation pushed the redox equilibrium towards a more oxidative tone in both sets of fibroblasts, and this effect was independent of the type of selenium. The kinetic analysis of biosensor responses allowed us to identify Se-cysteine as the only compound that simultaneously improved the sensitivity to oxidative stimuli and augmented the disulfide bond reduction rate in high-glucose-cultured fibroblasts. The redox response profiles showed no clear association with the ultrastructural changes observed in matrix fibers secreted by selenium-treated fibroblasts. However, we found that selenium supplementation improved the ECM secreted by high-glucose-cultured fibroblasts according to endothelial migration assessed with a wound healing assay. Direct application of sodium selenite and Se-cysteine on purified collagen fibers subjected to glycation also improved cellular migration, suggesting that these selenium compounds avoid the undesired effect of glycation.
Collapse
Affiliation(s)
- Christine Kreindl
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (C.K.); (M.H.)
| | - Sandra A. Soto-Alarcón
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| | - Miltha Hidalgo
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (C.K.); (M.H.)
| | - Ana L. Riveros
- Laboratorio de Nanobiotecnología y Nanotoxicología, Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingston 1007, Santiago 8380492, Chile;
| | - Carolina Añazco
- Laboratorio de Bioquímica Nutricional, Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, General Lagos #1190, Valdivia 5110773, Chile;
| | - Rodrigo Pulgar
- Laboratory of Genomics and Genetics of Biological Interactions, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile;
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago 7830490, Chile; (C.K.); (M.H.)
| |
Collapse
|
6
|
Kunnel S, Chakraborty I, Govindaraju I, Mal SS, Mazumder N. Impact of dietary advanced glycation end products (dAGEs) in processed foods on health. ADVANCED BIOPHYSICAL TECHNIQUES FOR POLYSACCHARIDES CHARACTERIZATION 2024:309-325. [DOI: 10.1016/b978-0-443-14042-6.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Shen L, Liu J, Luo A, Wang S. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities. J Ovarian Res 2023; 16:237. [PMID: 38093329 PMCID: PMC10717903 DOI: 10.1186/s13048-023-01300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
For decades, most studies of ovarian aging have focused on its functional units, known as follicles, which include oocytes and granulosa cells. However, in the ovarian stroma, there are a variety of somatic components that bridge the gap between general aging and ovarian senescence. Physiologically, general cell types, microvascular structures, extracellular matrix, and intercellular molecules affect folliculogenesis and corpus luteum physiology alongside the ovarian cycle. As a result of damage caused by age-related metabolite accumulation and external insults, the microenvironment of stromal cells is progressively remodeled, thus inevitably perturbing ovarian physiology. With the established platforms for follicle cryopreservation and in vitro maturation and the development of organoid research, it is desirable to develop strategies to improve the microenvironment of the follicle by targeting the perifollicular environment. In this review, we summarize the role of stromal components in ovarian aging, describing their age-related alterations and associated effects. Moreover, we list some potential techniques that may mitigate ovarian aging based on their effect on the stromal microenvironment.
Collapse
Affiliation(s)
- Lu Shen
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junfeng Liu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aiyue Luo
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Nagashima JB, Zenilman S, Raab A, Aranda-Espinoza H, Songsasen N. Comparative Tensile Properties and Collagen Patterns in Domestic Cat ( Felis catus) and Dog ( Canis lupus familiaris) Ovarian Cortical Tissues. Bioengineering (Basel) 2023; 10:1285. [PMID: 38002409 PMCID: PMC10669533 DOI: 10.3390/bioengineering10111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The importance of the ovarian extracellular environment and tissue rigidity on follicle survival and development has gained attention in recent years. Our laboratory has anecdotally observed differences in the rigidity of domestic cat and dog ovarian cortical tissues, which have been postulated to underlie the differences in in vitro culture responses between the species, wherein cat ovarian tissues display higher survival in extended incubation. Here, the tensile strengths of cat and dog ovarian cortical tissues were compared via micropipette aspiration. The underlying collagen patterns, including fiber length, thickness, alignment, curvature, branch points and end points, and overall tissue lacunary and high-density matrix (HDM) were quantified via picrosirius red staining and TWOMBLI analysis. Finally, we explored the potential of MMP (-1 and -9) and TIMP1 supplementation in modulating tissue rigidity, collagen structure, and follicle activation in vitro. No differences in stiffness were observed between cat or dog cortical tissues, or pre- versus post-pubertal status. Cat ovarian collagen was characterized by an increased number of branch points, thinner fibers, and lower HDM compared with dog ovarian collagen, and cat tissues exposed to MMP9 in vitro displayed a reduced Young's modulus. Yet, MMP exposure had a minor impact on follicle development in vitro in either species. This study contributes to our growing understanding of the interactions among the physical properties of the ovarian microenvironment, collagen patterns, and follicle development in vitro.
Collapse
Affiliation(s)
- Jennifer B. Nagashima
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| | - Shoshana Zenilman
- College of Veterinary Medicine, Cornell University, 144 East Ave, Ithaca, NY 14850, USA
| | - April Raab
- College of Veterinary Medicine, Michigan State University, 784 Wilson Rd., East Lansing, MI 48824, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, 3108 A. James Clark Hall, College Park, MD 20742, USA;
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| |
Collapse
|
9
|
Zuo W, Liu X, Chen J, Zuo W, Yin Y, Nie X, Tang P, Huang Y, Yu Q, Hu Q, Zhou J, Tan Y, Huang X, Ren Q. Single-cell sequencing provides insights into the landscape of ovary in PCOS and alterations induced by CUMS. Am J Physiol Endocrinol Metab 2023; 325:E346-E362. [PMID: 37584608 DOI: 10.1152/ajpendo.00165.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder related to psychological distress. However, the mechanism underlying increased prevalence of depression in PCOS remained unclear. This study aimed to explore the unique transcriptional landscape of ovary and offered a platform to explore the mechanism of PCOS, as well as the influences caused by depression. The PCOS rat model was established by letrozole whereas PCOS rat model with depression was established by letrozole combined with chronic unpredicted mild stress (CUMS). Then single-cell RNA sequencing (scRNA-Seq) was applied to analyze the transcriptional features of rat ovaries. Granulosa cells (GCs) and fibroblasts (Fibros) accounted for the top two clusters of total 12 cell types. There were nine clusters in GCs, related to inflammatory response, endoplasmic reticulum (ER) stress, and steroidogenesis. The expression of differentially expressed genes (DEG) Hes1 was higher in PCOS and PCOS + CUMS groups, exhibiting enhanced expression by pseudotime and positively related to inflammation. Pseudotemporal analysis revealed that inflammation contributed to the different GCs distributions. Moreover, analysis of DEGs and gene ontology (GO) function enrichment revealed CUMS aggravated inflammation in PCOS GCs possibly via interferon signaling pathway. In theca cells (TCs), nine clusters were observed and some of them were relevant to inflammation, ER stress, and lipid metabolism. DEGs Ass1, Insl3, and Ifi27 were positively related to Cyp17a1, and Ces1d might contribute to the different trajectory of TCs. Subsequent scRNA-seq revealed a signature profile of endothelial cells (ECs) and Fibros, which suggest that inflammation-induced damage of ECs and Fibro, further exacerbated by CUMS. Finally, analysis of T cells and mononuclear phagocytes (MPs) revealed the existence of immune dysfunction, among which interferon signaling played a critical role. These findings provided more knowledge for a better understanding PCOS from the view of inflammation and identified new biomarkers and targets for the treatment of PCOS with psychological diseases.NEW & NOTEWORTHY In this study, we mapped the landscape of polycystic ovary syndrome (PCOS) ovary with rat model induced by letrozole and provided a novel insight into the molecular mechanism of PCOS accompanied by chronic unpredicted mild stress (CUMS) at single-cell transcriptomic level. These observations highlight the importance of inflammation in the pathogenesis of PCOS, which might also be the bridge between PCOS and psychological diseases.
Collapse
Affiliation(s)
- Wenting Zuo
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiangfei Liu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yanyun Yin
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Peipei Tang
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Yunke Huang
- Department of Gynaecology, Women's Hospital School of Zhejiang University, Hangzhou, People's Republic of China
| | - Qian Yu
- Department of Science and Technology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Qiaoyun Hu
- Singleron Biotechnologies, Nanjing, People's Republic of China
| | - Jie Zhou
- Department of Traditional Chinese Medicine, The First People's Hospital of Nantong, Nantong, People's Republic of China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| | - Xi Huang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qingling Ren
- Department of Gynaecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Chandrakumar S, Santiago Tierno I, Agarwal M, Matisioudis N, Kern TS, Ghosh K. Subendothelial Matrix Stiffening by Lysyl Oxidase Enhances RAGE-Mediated Retinal Endothelial Activation in Diabetes. Diabetes 2023; 72:973-985. [PMID: 37058096 PMCID: PMC10281239 DOI: 10.2337/db22-0761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Endothelial cell (EC) activation is a crucial determinant of retinal vascular inflammation associated with diabetic retinopathy (DR), a major microvascular complication of diabetes. We previously showed that, similar to abnormal biochemical factors, aberrant mechanical cues in the form of lysyl oxidase (LOX)-dependent subendothelial matrix stiffening also contribute significantly to retinal EC activation in diabetes. Yet, how LOX is itself regulated and precisely how it mechanically controls retinal EC activation in diabetes is poorly understood. Here, we show that high-glucose-induced LOX upregulation in human retinal ECs (HRECs) is mediated by proinflammatory receptor for advanced glycation end products (RAGE). HRECs treated with methylglyoxal (MGO), an active precursor to the advanced glycation end product (AGE) MG-H1, exhibited LOX upregulation that was blocked by a RAGE inhibitor, thus confirming the ability of RAGE to promote LOX expression. Crucially, as a downstream effector of RAGE, LOX was found to mediate both the proinflammatory and matrix remodeling effects of AGE/RAGE, primarily through its ability to crosslink or stiffen matrix. Finally, using decellularized HREC-derived matrices and a mouse model of diabetes, we demonstrate that LOX-dependent matrix stiffening feeds back to enhance RAGE, thereby achieving its autoregulation and proinflammatory effects. Collectively, these findings provide fresh mechanistic insights into the regulation and proinflammatory role of LOX-dependent mechanical cues in diabetes while simultaneously implicating LOX as an alternative (downstream) target to block AGE/RAGE signaling in DR. ARTICLE HIGHLIGHTS We investigated the regulation and proinflammatory role of retinal endothelial lysyl oxidase (LOX) in diabetes. Findings reveal that LOX is upregulated by advanced glycation end products (AGE) and receptor for AGE (RAGE) and mediates AGE/RAGE-induced retinal endothelial cell activation and subendothelial matrix remodeling. We also show that LOX-dependent subendothelial matrix stiffening feeds back to enhance retinal endothelial RAGE. These findings implicate LOX as a key proinflammatory factor and an alternative (downstream) target to block AGE/RAGE signaling in diabetic retinopathy.
Collapse
Affiliation(s)
- Sathishkumar Chandrakumar
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | - Irene Santiago Tierno
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| | - Mahesh Agarwal
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
| | | | - Timothy S. Kern
- Department of Ophthalmology, University of California, Irvine, CA
- Gavin Herbert Eye Institute, University of California, Irvine, CA
| | - Kaustabh Ghosh
- Department of Bioengineering, University of California, Riverside, CA
- Department of Ophthalmology, University of California, Los Angeles, CA
- Doheny Eye Institute, Pasadena, CA
- Molecular, Cellular, and Integrated Physiology Interdepartmental PhD Program, University of California, Los Angeles, CA
| |
Collapse
|
11
|
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res 2023; 16:67. [PMID: 37024976 PMCID: PMC10080932 DOI: 10.1186/s13048-023-01151-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update 2023; 29:1-23. [PMID: 35856663 DOI: 10.1093/humupd/dmac031] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Folliculogenesis occurs in the highly dynamic environment of the ovary. Follicle cyclic recruitment, neo-angiogenesis, spatial displacement, follicle atresia and ovulation stand out as major events resulting from the interplay between mechanical forces and molecular signals. Morphological and functional changes to the growing follicle and to the surrounding tissue are required to produce oocytes capable of supporting preimplantation development to the blastocyst stage. OBJECTIVE AND RATIONALE This review will summarize the ovarian morphological and functional context that contributes to follicle recruitment, growth and ovulation, as well as to the acquisition of oocyte developmental competence. We will describe the changes occurring during folliculogenesis to the ovarian extracellular matrix (ECM) and to the vasculature, their influence on the mechanical properties of the ovarian tissue, and, in turn, their influence on the regulation of signal transduction. Also, we will outline how their dysregulation might be associated with pathologies such as polycystic ovary syndrome (PCOS), endometriosis or premature ovarian insufficiency (POI). Finally, for each of these three pathologies, we will highlight therapeutic strategies attempting to correct the altered biomechanical context in order to restore fertility. SEARCH METHODS For each area discussed, a systematic bibliographical search was performed, without temporal limits, using PubMed Central, Web of Science and Scopus search engines employing the keywords extracellular matrix, mechanobiology, biomechanics, vasculature, angiogenesis or signalling pathway in combination with: ovary, oogenesis, oocyte, folliculogenesis, ovarian follicle, theca, granulosa, cumulus, follicular fluid, corpus luteum, meiosis, oocyte developmental competence, preimplantation, polycystic ovary syndrome, premature ovarian insufficiency or endometriosis. OUTCOMES Through search engines queries, we yielded a total of 37 368 papers that were further selected based on our focus on mammals and, specifically, on rodents, bovine, equine, ovine, primates and human, and also were trimmed around each specific topic of the review. After the elimination of duplicates, this selection process resulted in 628 papers, of which 287 were cited in the manuscript. Among these, 89.2% were published in the past 22 years, while the remaining 8.0%, 2.4% or 0.3% were published during the 1990s, 1980s or before, respectively. During folliculogenesis, changes occur to the ovarian ECM composition and organization that, together with vasculature modelling around the growing follicle, are aimed to sustain its recruitment and growth, and the maturation of the enclosed oocyte. These events define the scenario in which mechanical forces are key to the regulation of cascades of molecular signals. Alterations to this context determine impaired folliculogenesis and decreased oocyte developmental potential, as observed in pathological conditions which are causes of infertility, such as PCOS, endometriosis or POI. WIDER IMPLICATIONS The knowledge of these mechanisms and the rules that govern them lay a sound basis to explain how follicles recruitment and growth are modulated, and stimulate insights to develop, in clinical practice, strategies to improve follicular recruitment and oocyte competence, particularly for pathologies like PCOS, endometriosis and POI.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | | | | | - Daria Soscia
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
| | | | | | - Gianluca Gennarelli
- Obstetrics and Gynecology, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, Sant'Anna Hospital, University of Torino, Turin, Italy.,Livet, GeneraLife IVF, Turin, Italy
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Mouanness M, Nava H, Dagher C, Merhi Z. Contribution of Advanced Glycation End Products to PCOS Key Elements: A Narrative Review. Nutrients 2022; 14:nu14173578. [PMID: 36079834 PMCID: PMC9460172 DOI: 10.3390/nu14173578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, data has suggested that dietary advanced glycation end products (AGEs) play an important role in both reproductive and metabolic dysfunctions associated with polycystic ovary syndrome (PCOS). AGEs are highly reactive molecules that are formed by the non-enzymatic glycation process between reducing sugars and proteins, lipids, or nucleic acids. They can be formed endogenously under normal metabolic conditions or under abnormal situations such as diabetes, renal disease, and other inflammatory disorders. Bodily AGEs can also accumulate from exogenous dietary sources particularly when ingested food is cooked and processed under high-temperature conditions, such as frying, baking, or grilling. Women with PCOS have elevated levels of serum AGEs that are associated with insulin resistance and obesity and that leads to a high deposition of AGEs in the ovarian tissue causing anovulation and hyperandrogenism. This review will describe new data relevant to the role of AGEs in several key elements of PCOS phenotype and pathophysiology. Those elements include ovarian dysfunction, hyperandrogenemia, insulin resistance, and obesity. The literature findings to date suggest that targeting AGEs and their cellular actions could represent a novel approach to treating PCOS symptoms.
Collapse
Affiliation(s)
| | - Henry Nava
- Rejuvenating Fertility Center, New York, NY 10019, USA
| | - Christelle Dagher
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut P.O. Box 100, Lebanon
| | - Zaher Merhi
- Rejuvenating Fertility Center, New York, NY 10019, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Correspondence: ; Tel.: +1-(203)-557-9696
| |
Collapse
|
14
|
Zhang X, Zhou W, Niu Y, Zhu S, Zhang Y, Li X, Yu C. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross-link driving by β-arrestin/ERK/STAT3 pathway. FASEB J 2022; 36:e22427. [PMID: 35792886 PMCID: PMC9544652 DOI: 10.1096/fj.202200573r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Lysyl oxidase (LOX) is a copper‐dependent monoamine oxidase whose primary function is the covalent cross‐linking of collagen in the extracellular matrix (ECM). Evidence has shown that LOX is associated with cancer and some fibrotic conditions. We recently found that serum LOX is a potential diagnostic biomarker for renal fibrosis, but the mechanism by which LOX is regulated and contributes to renal fibrosis remains unknown. The current study demonstrates the following: (1) LOX expression was increased in fibrotic kidneys including ischemia‐reperfusion injury‐(IRI‐), unilateral ureteral obstruction‐(UUO‐), and folic acid‐ (FA‐) induced fibrotic kidneys as well as in the paraffin‐embedded sections of human kidneys from the patients with renal fibrosis. (2) The increasing deposition and cross‐linking of collagen induced by LOX was observed in IRI‐, UUO‐ and FA‐kidneys. (3) LOX was regulated by the β‐arrestin‐ERK‐STAT3 pathway in renal fibrosis. STAT3 was the downstream of AT1R‐β‐arrestin‐ERK, ERK entered the nucleus and activated STAT3‐pY705 but not STAT3‐pS727. (4) STAT3 nuclear subtranslocation and binding to the LOX promoter may be responsible for the upregulation of LOX expression. (5) Pharmacologic inhibition of LOX with BAPN in vivo inhibited the upregulation of LOX, decreased collagen over cross‐linking and ameliorated renal fibrosis after ischemic injury. Collectively, these observations suggest that LOX plays an essential role in the development of renal fibrosis by catalyzing collagen over cross‐linking. Thus, strategies targeting LOX could be a new avenue in developing therapeutics against renal fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenqian Zhou
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yangyang Niu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Saiya Zhu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Dpartment of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Chen Yu
- Department of Nephrology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Berry S, Seidler K, Neil J. Vitamin D deficiency and female infertility: A mechanism review examining the role of vitamin D in ovulatory dysfunction as a symptom of polycystic ovary syndrome. J Reprod Immunol 2022; 151:103633. [DOI: 10.1016/j.jri.2022.103633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
|
16
|
Mouanness M, Merhi Z. Impact of Dietary Advanced Glycation End Products on Female Reproduction: Review of Potential Mechanistic Pathways. Nutrients 2022; 14:nu14050966. [PMID: 35267940 PMCID: PMC8912317 DOI: 10.3390/nu14050966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end products (AGEs), a heterogenous group of products formed by the reaction between protein and reducing sugars, can form endogenously due to non-enzymatic reactions or by exogenous sources such as diet where considerable increase in AGEs is observed due to the modification of food mainly by thermal processing. Recent studies have suggested that AGEs could impact, via inducing inflammation and oxidative stress, the reproductive health and fertility in both males and females. This review presents a summary of recently published data pertaining to the pathogenesis of dietary AGEs and their receptors as well as their potential impact on female reproductive health. More specifically, it will present data pertaining to dietary AGEs’ involvement in the mechanistic pathogenesis of polycystic ovary syndrome, ovarian dysfunction, as well as the AGEs’ effect perinatally on the female offspring reproduction. Understanding the mechanistic impact of dietary AGEs on female reproduction can help contribute to the development of targeted pharmacological therapies that will help curb rising female infertility.
Collapse
Affiliation(s)
- Marco Mouanness
- Rejuvenating Fertility Center, 315 W 57th Street, Suite 208, New York, NY 10019, USA;
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Zaher Merhi
- Rejuvenating Fertility Center, 315 W 57th Street, Suite 208, New York, NY 10019, USA;
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY 11219, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Correspondence:
| |
Collapse
|
17
|
Li X, Hu S, Zhu Q, Yao G, Yao J, Li J, Wang Y, Ding Y, Qi J, Xu R, Zhao H, Zhu Z, Du Y, Sun K, Sun Y. Addressing the role of 11β-hydroxysteroid dehydrogenase type 1 in the development of polycystic ovary syndrome and the putative therapeutic effects of its selective inhibition in a preclinical model. Metabolism 2021; 119:154749. [PMID: 33722534 DOI: 10.1016/j.metabol.2021.154749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrine disorder among reproductive-age women, and the leading cause of anovulatory infertility. 11β-hydroxysteroid dehydrogenases-1 (11β-HSD1) catalysing the conversion of inactive cortisone to active cortisol plays a crucial role in various metabolic diseases. However, whether 11β-HSD1 is associated with the pathogenesis of PCOS and whether 11β-HSD1 can be a treating target of PCOS remain unknown. METHODS This study was first designed to explore the role of 11β-HSD1 in PCOS development and the effect of selective 11β-HSD1 inhibitor administration on PCOS treatment. Follicular fluid and granulosa cells (GCs) were collected from 32 non-PCOS patients and 37 patients with PCOS to measure cortisol and 11β-HSDs levels. Female Sprague-Dawley rats (3-week-old) were injected with dehydroepiandrosterone (DHEA) to induce PCOS and their ovaries were collected to measure the abundance of corticosterone (CORT) and 11β-HSDs. To determine the role of 11β-HSD1 in PCOS development, we overexpressed 11β-HSD1 in the ovaries of female rats (5-week-old) or knocked down the expression of 11β-HSD1 in the ovaries from PCOS rats via lentivirus injection. After lentivirus infection, the body weights, ovarian weights, estrous cycles, reproductive hormones and morphology of the ovary were analysed in rats from different experimental groups. Then to figure out the translational potential of the selective 11β-HSD1 inhibitor in treating PCOS, PCOS rats were treated with BVT.2733, a selective 11β-HSD1 inhibitor and a cluster of PCOS-like traits were analysed, including insulin sensitivity, ovulatory function and fertility of rats from the Control, PCOS and PCOS+BVT groups. Rat ovarian explants and human GCs were used to explore the effect of CORT or cortisol on ovarian extracellular matrix remodelling. RESULTS The elevated expression of 11β-HSD1 contributed to the increased cortisol and corticosterone (CORT) concentrations observed in the ovaries of PCOS patients and PCOS rats respectively. Our results showed that ovarian overexpression of 11β-HSD1 induced a cluster of PCOS phenotypes in rats including irregular estrous cycles, reproductive hormone dysfunction and polycystic ovaries. While knockdown of ovarian 11β-HSD1 of PCOS rats reversed these PCOS-like changes. Additionally, the selective 11β-HSD1 inhibitor BVT.2733 alleviated PCOS symptoms such as insulin resistance (IR), irregular estrous cycles, reproductive hormone dysfunction, polycystic ovaries, ovulatory dysfunction and subfertility. Moreover, we showed that cortisol target ovarian insulin signalling pathway and ovarian extracellular matrix (ECM) remodelling in vivo, in ovarian explants and in GCs. CONCLUSION Elevated 11β-HSD1 abundance in ovarian is involved in the pathogenesis of PCOS by impairing insulin signalling pathway and ECM remodelling. Selective inhibition of 11β-HSD1 ameliorates a cluster of PCOS phenotypes. Our study demonstrates the selective 11β-HSD1 inhibitor as a novel and promising strategy for the treatment of PCOS.
Collapse
Affiliation(s)
- Xinyu Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Shuanggang Hu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Qinling Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jufang Yao
- Animal Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Jiaxing Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yuan Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Ying Ding
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jia Qi
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Rui Xu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Hanting Zhao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zhenyi Zhu
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Kang Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
18
|
Yan S, Ding J, Zhang Y, Wang J, Zhang S, Yin T, Yang J. C1QTNF6 participates in the pathogenesis of PCOS by affecting the inflammatory response of granulosa cells‡. Biol Reprod 2021; 105:427-438. [PMID: 33959757 DOI: 10.1093/biolre/ioab094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease. It has been reported that chronic low-grade inflammation might participate in its pathogenesis. C1q and TNF related 6 (C1QTNF6) is a newly identified adiponectin paralog associated with inflammation. The aim of the present study was to investigate the role of C1QTNF6 in the development of chronic inflammation in PCOS and the underlying molecular mechanism. After analyzing the expression of C1QTNF6 in the serum and granulosa cells (GCs) of PCOS patients and healthy controls, we verified the roles of C1QTNF6 in inflammation through dehydroepiandrosterone-induced PCOS mouse models and cell models of lipopolysaccharide (LPS)-induced inflammation. The results demonstrated that C1QTNF6 expression in the serum and GCs of patients with PCOS was significantly elevated compared with those of the controls, and similar results were observed in the serum and ovary of PCOS mouse models. In PCOS mice and C1QTNF6-overexpressing PCOS mice, serum levels of pro-inflammatory factors including C-reactive protein (CRP), interleukin 6 (IL6), and tumor necrosis factor-α (TNFα) were increased, while the opposite effects were observed when C1QTNF6 was down-regulated in PCOS mice. Furthermore, C1QTNF6 overexpression up-regulated the levels of TNFα, IL6, and CRP and activated the AKT/NF-κB pathway in LPS-treated KGN cells, whereas C1QTNF6 knockdown and BAY-117082 (an NF-κB inhibitor) treatment resulted in the opposite effects. Taken together, our results indicate that C1QTNF6 is involved in the pathogenesis of PCOS by affecting the inflammatory response via the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jiayu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
19
|
Al-U'datt D, Allen BG, Nattel S. Role of the lysyl oxidase enzyme family in cardiac function and disease. Cardiovasc Res 2020; 115:1820-1837. [PMID: 31504232 DOI: 10.1093/cvr/cvz176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart diseases are a major cause of morbidity and mortality world-wide. Lysyl oxidase (LOX) and related LOX-like (LOXL) isoforms play a vital role in remodelling the extracellular matrix (ECM). The LOX family controls ECM formation by cross-linking collagen and elastin chains. LOX/LOXL proteins are copper-dependent amine oxidases that catalyse the oxidation of lysine, causing cross-linking between the lysine moieties of lysine-rich proteins. Dynamic changes in LOX and LOXL protein-expression occur in a variety of cardiac pathologies; these changes are believed to be central to the associated tissue-fibrosis. An awareness of the potential pathophysiological importance of LOX has led to the evaluation of interventions that target LOX/LOXL proteins for heart-disease therapy. The purposes of this review article are: (i) to summarize the basic biochemistry and enzyme function of LOX and LOXL proteins; (ii) to consider their tissue and species distribution; and (iii) to review the results of experimental studies of the roles of LOX and LOXL proteins in heart disease, addressing involvement in the mechanisms, pathophysiology and therapeutic responses based on observations in patient samples and relevant animal models. Therapeutic targeting of LOX family enzymes has shown promising results in animal models, but small-molecule approaches have been limited by non-specificity and off-target effects. Biological approaches show potential promise but are in their infancy. While there is strong evidence for LOX-family protein participation in heart failure, myocardial infarction, cardiac hypertrophy, dilated cardiomyopathy, atrial fibrillation and hypertension, as well as potential interest as therapeutic targets, the precise involvement of LOX-family proteins in heart disease requires further investigation.
Collapse
Affiliation(s)
- Doa'a Al-U'datt
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada
| | - Bruce G Allen
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Medicine, Université de Montreal, Montreal, Quebec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Medicine, Université de Montreal, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci 2020; 255:117830. [PMID: 32450172 DOI: 10.1016/j.lfs.2020.117830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
Advanced glycation end products (AGEs) are heterogeneous products of the non-enzymatic interaction between proteins and reducing sugars. Numerous studies have shown that AGEs are associated with senescence, diabetes, vascular disease, aging and kidney disease. Infertility has been affected approximately 10 to15% of couples of reproductive ages. AGEs accumulation has been shown to play a crucial role in pathogenesis of infertility-related diseases. The present review provides the generation process, mechanism and pathological significance of AGEs and the novel treatment targeting AGEs for infertility.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ya-Qin Cai
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang-Lian Long
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China.
| | - Zhong-Cheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
21
|
Guo K, Chen J, Chen Z, Luo G, Yang S, Zhang M, Hong J, Zhang L, Chen C. Triptolide alleviates radiation-induced pulmonary fibrosis via inhibiting IKKβ stimulated LOX production. Biochem Biophys Res Commun 2020; 527:283-288. [PMID: 32446381 DOI: 10.1016/j.bbrc.2020.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Lysyl oxidase (LOX) is involved in fibrosis by catalyzing collagen cross-linking. Previous work observed that Triptolide (TPL) alleviated radiation-induced pulmonary fibrosis (RIPF), but it is unknown whether the anti-RIPF effect of TPL is related to LOX. In a mouse model of RIPF, we found that LOX persistently increased in RIPF which was significantly lowered by TPL. Excessive LOX aggravated fibrotic lesions in RIPF, while LOX inhibition mitigated RIPF. Irradiation enhanced the transcription and synthesis of LOX by lung fibroblasts through IKKβ/NFκB activation, and siRNA knockdown IKKβ largely abolished LOX production. By interfering radiation induced IKKβ activation, TPL prevented NFκB nuclear translocation and DNA binding, and potently decreased LOX synthesis. Our results demonstrate that the anti-RIPF effect of TPL is associated with reduction of LOX production which mediated by inhibition of IKKβ/NFκB pathway.
Collapse
Affiliation(s)
- Kaining Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinran Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangjie Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Gelian Luo
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian, China
| | - Shanmin Yang
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Mei Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jinsheng Hong
- Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fujian Key Laboratory of Individualized Active Immunotherapy, Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Lurong Zhang
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA; Department of Radiation Oncology, First Affiliated Hospital, Fujian Medical University, Fujian Key Laboratory of Individualized Active Immunotherapy, Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China; Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Chun Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, China; Institute of Materia Medica, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
22
|
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019; 9:biom9120888. [PMID: 31861217 PMCID: PMC6995512 DOI: 10.3390/biom9120888] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Maillard reaction is a simple but ubiquitous reaction that occurs both in vivo and ex vivo during the cooking or processing of foods under high-temperature conditions, such as baking, frying, or grilling. Glycation of proteins is a post-translational modification that forms temporary adducts, which, on further crosslinking and rearrangement, form permanent residues known as advanced glycation end products (AGEs). Cooking at high temperature results in various food products having high levels of AGEs. This review underlines the basis of AGE formation and their corresponding deleterious effects on the body. Glycated Maillard products have a direct association with the pathophysiology of some metabolic diseases, such as diabetes mellitus type 2 (DM2), acute renal failure (ARF), Alzheimer’s disease, dental health, allergies, and polycystic ovary syndrome (PCOS). The most glycated and structurally abundant protein is collagen, which acts as a marker for diabetes and aging, where decreased levels indicate reduced skin elasticity. In diabetes, high levels of AGEs are associated with carotid thickening, ischemic heart disease, uremic cardiomyopathy, and kidney failure. AGEs also mimic hormones or regulate/modify their receptor mechanisms at the DNA level. In women, a high AGE diet directly correlates with high levels of androgens, anti-Müllerian hormone, insulin, and androstenedione, promoting ovarian dysfunction and/or infertility. Vitamin D3 is well-associated with the pathogenesis of PCOS and modulates steroidogenesis. It also exhibits a protective mechanism against the harmful effects of AGEs. This review elucidates and summarizes the processing of infant formula milk and the associated health hazards. Formulated according to the nutritional requirements of the newborn as a substitute for mother’s milk, formula milk is a rich source of primary adducts, such as carboxy-methyl lysine, which render an infant prone to inflammation, dementia, food allergies, and other diseases. We therefore recommend that understanding this post-translational modification is the key to unlocking the mechanisms and physiology of various metabolic syndromes.
Collapse
Affiliation(s)
- Vidhu Gill
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India; (V.G.); (K.S.)
| | - Ashok Kumar
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-53-810-3027 or +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3027 (J.-J.K.)
| |
Collapse
|
23
|
González A, López B, Ravassa S, San José G, Díez J. Reprint of "The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking". BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118521. [PMID: 31394074 DOI: 10.1016/j.bbamcr.2019.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Myocardial interstitial fibrosis (MIF) is a common finding in heart failure (HF) patients, both with preserved and reduced ejection fraction, as well as in HF animal models. MIF is associated with impaired cardiac function and worse clinical outcome. The impact of MIF is influenced not only by the quantity but also by changes in the quality of collagen fibers and in the extracellular matrix components, such as a shift in collagen types proportion, increased fibronectin polymerization and increased degree of collagen cross-linking (CCL). In particular, CCL, a process that renders collagen fibers stiffer and more resistant to degradation, is increased both in patients and animal models of HF. Importantly, in HF patients increased cardiac CCL is directly associated with increased left ventricular stiffness and a higher risk of hospitalization for HF. The aim of this review is to address the complexity of MIF in HF, focusing on CCL.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain; Departments of Cardiology and Cardiac Surgery and of Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Lu M, Qin Q, Yao J, Sun L, Qin X. Induction of LOX by TGF-β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life 2019; 71:1729-1739. [PMID: 31317653 DOI: 10.1002/iub.2112] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
This study aims to evaluate the efficacy of lysyl oxidase (LOX) inhibition in regulating rat myocardial fibrosis and chronic heart failure (CHF) and to validate the regulation of LOX by TGF-β1/Smad2/3 signaling in this process. A rat model of CHF was established by abdominal aortic coarctation. The renin-angiotensin-aldosterone system (RAAS) indexes (PRA, ACE2, Ang II, and ALD), cardiac function indicators (LVEF, LVFS, SAP, DAP, and LVEDP), ventricular remodeling- and fibrosis-related indicators (hydroxyproline, collagen deposition,and MMP-2/9), and morphological changes of myocardial tissues were examined. Rat cardiac fibroblasts (RCFs) were used in vitro assays. CHF patients showed increased LOX activity, accompanied by activated RAAS and TGF-β1. Furthermore, inhibition of LOX by β-aminopropionitrile (BAPN) mitigated the RAAS activation and attenuated cardiac dysfunction, ventricular remodeling, myocardial fibrosis, and collagen deposition in CHF rats. Moreover, TGF-β1 signaling diminished the LOX inhibition-mediated antiheart failure effect. Further assays showed that TGF-β1/Smad2/3 signaling increased expression of c-jun (AP-1 transcription factor subunit), which transcriptionally induced LOX expression. Additionally, BAPN abrogated the TGF-β1-mediated increase in cell proliferation and levels of MMP-2/9 and collagen I/III in RCFs. In conclusion, LOX can be induced by TGF-β1/Smad/AP-1 signaling and LOX inhibition attenuates rat myocardial fibrosis and CHF.
Collapse
Affiliation(s)
- Min Lu
- Department of Cardiology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Qingzhu Qin
- Department of Cardiology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jungong Yao
- Department of Cardiology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Lin Sun
- Department of Cardiology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xinglei Qin
- Department of Cardiology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
González A, López B, Ravassa S, San José G, Díez J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1421-1432. [PMID: 31181222 DOI: 10.1016/j.bbamcr.2019.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Myocardial interstitial fibrosis (MIF) is a common finding in heart failure (HF) patients, both with preserved and reduced ejection fraction, as well as in HF animal models. MIF is associated with impaired cardiac function and worse clinical outcome. The impact of MIF is influenced not only by the quantity but also by changes in the quality of collagen fibers and in the extracellular matrix components, such as a shift in collagen types proportion, increased fibronectin polymerization and increased degree of collagen cross-linking (CCL). In particular, CCL, a process that renders collagen fibers stiffer and more resistant to degradation, is increased both in patients and animal models of HF. Importantly, in HF patients increased cardiac CCL is directly associated with increased left ventricular stiffness and a higher risk of hospitalization for HF. The aim of this review is to address the complexity of MIF in HF, focusing on CCL.
Collapse
Affiliation(s)
- Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| | - Begoña López
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Susana Ravassa
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Gorka San José
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain; Departments of Cardiology and Cardiac Surgery and of Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
26
|
Merhi Z, Kandaraki EA, Diamanti-Kandarakis E. Implications and Future Perspectives of AGEs in PCOS Pathophysiology. Trends Endocrinol Metab 2019; 30:150-162. [PMID: 30712978 DOI: 10.1016/j.tem.2019.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
Human, animal, and in vitro studies provide evidence that advanced glycation end-products (AGEs) may contribute to the pathogenesis of polycystic ovary syndrome (PCOS) and its metabolic and reproductive consequences. AGEs are able to induce, via activation of key intracellular signaling pathways, the generation of oxidative stress and proinflammatory cytokines, thus contributing to the adverse health impact of PCOS. This review presents the implications of AGEs in several disease pathophysiologies, including PCOS, as well as the cellular and systemic effects of AGEs on insulin resistance (IR), hyperandrogenemia, endoplasmic reticulum (ER) stress, hypoxia, and ovarian function. The gaps in our knowledge will serve as launching pad for future developments ranging from dietary and lifestyle changes to pharmaceutical interventions aiming at potential applications in women with PCOS.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Eleni A Kandaraki
- St Bartholomew's Hospital, Department of Endocrinology, London EC1A 7BE, UK
| | - Evanthia Diamanti-Kandarakis
- Medical School, University of Athens, 11527 Goudi, Athens, Greece; Endocrinology and Diabetes Department, Hygeia Hospital, 15123 Marousi, Athens, Greece
| |
Collapse
|
27
|
Merhi Z. Crosstalk between advanced glycation end products and vitamin D: A compelling paradigm for the treatment of ovarian dysfunction in PCOS. Mol Cell Endocrinol 2019; 479:20-26. [PMID: 30170183 DOI: 10.1016/j.mce.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Women with PCOS have elevated levels of the harmful advanced glycation end products (AGEs) and low serum levels of vitamin D. AGEs and their receptors may contribute to the pathogenesis of PCOS and its metabolic and reproductive consequences. On the other hand, vitamin D might improve PCOS phenotype and could alleviate the detrimental effects of AGEs. A literature review using PubMed was performed. Critical analysis was carried out for articles pertaining to: 1) the role of AGEs and their receptors in the pathophysiology of PCOS, in particular ovarian dysfunction, and 2) the action of vitamin D in attenuating the adverse effects of AGEs in women with PCOS at both the serum and the cellular levels. Data from in vitro experiments, animal models, and human studies provide compelling evidence that AGEs and their receptors may contribute to the pathogenesis of ovarian dysfunction in PCOS. The actions of AGEs in PCOS might be attenuated and/or reversed by the presence or supplementation of vitamin D. Once a mechanistic understanding of the relationship between AGEs and vitamin D is established, this knowledge might contribute to the subsequent development of new-targeted pharmacological therapies for improving ovarian health in women with PCOS.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Obstetrics and Gynecology, New York University School of Medicine, 4 Columbus Circle, Fourth Floor, New York, NY 10019, USA.
| |
Collapse
|
28
|
Bai L, Chang HM, Zhu YM, Leung PCK. Bone morphogenetic protein 2 increases lysyl oxidase activity via up-regulation of snail in human granulosa-lutein cells. Cell Signal 2018; 53:201-211. [PMID: 30321593 DOI: 10.1016/j.cellsig.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022]
Abstract
Lysyl oxidase (LOX) is a copper-dependent enzyme that maintains and stabilizes the extracellular matrix (ECM) by catalyzing the cross-linking of elastin and collagen. ECM within the ovarian follicle plays a crucial role in regulating follicular development and oocyte maturation. Bone morphogenetic protein 2 (BMP2) belongs to the BMP subfamily that has been shown to be involved in the process of ovarian folliculogenesis and luteal formation. To date, whether BMP2 regulates the activity of LOX during human follicular development remains to be elucidated. The aim of this study was to investigate the effect of BMP2 on the regulation of LOX expression and activity in human granulosa-lutein cells (hGL) and the underlying mechanisms. Using both primary and immortalized (SVOG cells) hGL cells, we demonstrated that BMP2 up-regulated the expression and activity of LOX and hence decreased the soluble collagens in cultured medium in hGL cells. Additionally, the mRNA and protein levels of two transcriptional factors, SNAIL and SLUG, were increased following cell exposure to BMP2. Knockdown of SNAIL, but not SLUG partially reversed BMP2-induced increases in LOX expression and activity. The BMP2-induced up-regulation of SNAIL expression was abolished by the pre-treatment with two BMP type I receptor inhibitors, dorsomorphin and DMH-1, but not SB431542. Moreover, knockdown of SMAD4 completely abolished BMP2-induced up-regulation of SNAIL expression and the subsequent increases in LOX expression and activity. Our results suggest that BMP2 increases LOX expression and activity via the up-regulation of SNAIL in hGL cells. These findings may provide insights into the functional role of BMP2 in the regulation of ECM formation during folliculogenesis.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peter C K Leung
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Obstetrics and Gynaecology, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Zhang C, Ma J, Wang W, Sun Y, Sun K. Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome. Hum Reprod 2018; 33:2096-2106. [DOI: 10.1093/humrep/dey292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Chuyue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Jin Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R.China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, P.R.China
| |
Collapse
|
30
|
Jia G, Tao H, Xue Y, Xu S, Xue K, Zhu Q, Chen X, Liu X, Xu S, Li Q, Xu P. Analysis of secreted peptidome from omental adipose tissue in polycystic ovarian syndrome patients. J Cell Physiol 2018; 233:5885-5894. [PMID: 29226956 DOI: 10.1002/jcp.26393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrinopathy associated with increased risk of metabolic disorders. Prevalence of adiposity and obesity is greater in women suffering from PCOS. Moreover, adipose tissue dysfunction has been demonstrated in PCOS patients, particularly in abdominal adipose tissue. This dysfunction likely aggravates the metabolic and reproductive abnormalities. We used liquid chromatography-mass spectrometry to compare the peptides secreted from PCOS and non-PCOS abdominal adipose tissue. We detected 298 upregulated peptides and 31 downregulated peptides (absolute fold change ≥ 2 and p < 0.05). Twenty-nine peptides were only detected in the PCOS group, while 18 were only detected in the control group. In addition, we demonstrate that these cleavage products are not degradation products of the proteasome based on previous studies reported. Gene Ontology enrichment and pathway analysis were performed to study differentially secreted peptides through their precursor proteins. We identified 12 peptides from 10 precursor proteins associated with PCOS, and 6 peptide sequences were located in the functional domains of their corresponding precursor proteins. These results provide a deeper understanding of adipose tissue-derived peptides in PCOS for future functional studies.
Collapse
Affiliation(s)
- Genmei Jia
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Hongjiang Tao
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Yunping Xue
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China.,Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Sujuan Xu
- Department of Clinical Laboratory, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Kai Xue
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Qiaoying Zhu
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoyan Chen
- Department of Reproduction, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Xiaoguang Liu
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Siliang Xu
- Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qian Li
- Department of Gynecology, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
31
|
Abstract
OBJECTIVE The hypothalamic gonadotropin-releasing hormone pulse generator, the pituitary gonadotropes, the ovaries, and the uterus play a crucial role in female fertility. A decline in reproductive performance represents a complex interplay of actions at all levels of the hypothalamic-pituitary-ovarian axis. Recently, in the field of female reproductive aging attention is drawn to the carbonyl stress theory. Advanced glycation end products (AGEs) contribute directly to protein damage, induce a chain of oxidative stress (OS) reactions, and increase inflammatory reactions. Here, we highlight some of the mechanisms underlying glycation damage in the ovary. METHODS Searches of electronic databases were performed. Articles relevant to possible role of OS, AGEs, and receptor for AGE (RAGE) in aging ovary were summarized in this interpretive literature review. RESULTS Follicular microenvironment undergoes an increase in OS with aging. Data support the role of OS in ovulatory dysfunction because AGEs are well-recognized mediators of increased OS. RAGE and AGE-modified proteins with activated nuclear factor-kappa B are expressed in human ovarian tissue. It was suggested that accumulation of AGEs products at the level of the ovarian follicle might trigger early ovarian aging or could be responsible for reduced glucose uptake by granulosa cells, potentially altering follicular growth. Moreover, impaired methylglyoxal detoxification causing relevant damage to the ovarian proteome might be one of the mechanisms underlying reproductive aging. CONCLUSIONS Further investigation of the role for the AGE-RAGE axis in the ovarian follicular environment is needed, and results could relate to assisted reproduction technology outcomes and new measures of ovarian reserve.
Collapse
|
32
|
Kumari S, Panda TK, Pradhan T. Lysyl Oxidase: Its Diversity in Health and Diseases. Indian J Clin Biochem 2017; 32:134-141. [PMID: 28428687 PMCID: PMC5382067 DOI: 10.1007/s12291-016-0576-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/06/2016] [Indexed: 01/27/2023]
Abstract
The mechanical properties of extracellular matrix (ECM) and connective tissues is largely dependent on the collagen and elastin structure. Lysyl oxidase (LOX) plays a critical role in the formation and repair of the ECM by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent cross linkages which stabilize these fibrous proteins. Due to its multiple functions both extracellularly and intracellularly, lysyl oxidase is involved in several processes in the tumorigenic pathway, in many different cancer types and stages. Alteration in LOX activity is implicated in many diseases and disorders including inflammation and inflammatory diseases, fibrosis of distinct organs and fibrotic disorders, cancer promotion and progression. There are only sparse reports of mutations or epigenetic alterations in the LOX gene. This review provides the recent clinical developments in the molecular mechanisms and pathologic process, pointing out LOX as a potential therapeutic target in translational medicine.
Collapse
Affiliation(s)
- Suchitra Kumari
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | | | | |
Collapse
|
33
|
Diamanti-Kandarakis E, Papalou O, Kandaraki EA, Kassi G. MECHANISMS IN ENDOCRINOLOGY: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women. Eur J Endocrinol 2017; 176:R79-R99. [PMID: 27678478 DOI: 10.1530/eje-16-0616] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Nutrition can generate oxidative stress and trigger a cascade of molecular events that can disrupt oxidative and hormonal balance. Nutrient ingestion promotes a major inflammatory and oxidative response at the cellular level in the postprandial state, altering the metabolic state of tissues. A domino of unfavorable metabolic changes is orchestrated in the main metabolic organs, including adipose tissue, skeletal muscle, liver and pancreas, where subclinical inflammation, endothelial dysfunction, mitochondrial deregulation and impaired insulin response and secretion take place. Simultaneously, in reproductive tissues, nutrition-induced oxidative stress can potentially violate delicate oxidative balance that is mandatory to secure normal reproductive function. Taken all the above into account, nutrition and its accompanying postprandial oxidative stress, in the unique context of female hormonal background, can potentially compromise normal metabolic and reproductive functions in women and may act as an active mediator of various metabolic and reproductive disorders.
Collapse
Affiliation(s)
| | - Olga Papalou
- Department of Endocrinology and Diabetes Center of ExcellenceEUROCLINIC, Athens, Greece
| | - Eleni A Kandaraki
- Endocrine Unit3rd Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| | - Georgia Kassi
- Endocrine Unit3rd Department of Internal Medicine, University of Athens Medical School, Athens, Greece
| |
Collapse
|
34
|
Apparent diffusion coefficient measurement of ovarian stroma: A potential tool for the diagnosis of polycystic ovary syndrome. Diagn Interv Imaging 2017; 98:57-61. [DOI: 10.1016/j.diii.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022]
|
35
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
36
|
Chang HM, Cheng JC, Liu Y, Klausen C, Xu C, Leung PCK. Activin A-induced increase in LOX activity in human granulosa-lutein cells is mediated by CTGF. Reproduction 2016; 152:293-301. [PMID: 27530347 DOI: 10.1530/rep-16-0254] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2025]
Abstract
Lysyl oxidase (LOX) is the key enzyme involved in the crosslinking of collagen and elastin that is essential for the formation of extracellular matrix (ECM). LOX-mediated ECM remodeling plays a critical role in follicle development, oocyte maturation and corpus luteum formation. To date, the regulation of LOX in human ovary has never been elucidated. Activin A and its functional receptors are highly expressed in ovarian follicles from an early developmental stage. They locally regulate follicle progression. The aim of this study was to investigate the effects of activin A on the expression of LOX and its extracellular enzyme activity in primary and immortalized human granulosa-lutein cells obtained from patients undergoing an in vitro fertilization procedure. We demonstrated that activin A significantly upregulated the expression of connective tissue growth factor (CTGF) and LOX via an activin/TGF-β type I receptor mediated-signaling pathway. Using a target depletion small interfering RNA knockdown approach, we further confirmed that the upregulation of CTGF expression resulted in an activin-A-induced increases in LOX expression and activity. These findings may provide insight into the mechanisms by which intrafollicular growth factors regulate the expression of LOX for ECM formation and tissue remodeling in the human ovary.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and GynaecologyChild and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jung-Chien Cheng
- Department of Obstetrics and GynaecologyChild and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yingtao Liu
- Department of Obstetrics and GynaecologyChild and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada Obstetrics and Gynecology Hospital of Fudan UniversityShanghai, China
| | - Christian Klausen
- Department of Obstetrics and GynaecologyChild and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghai, China
| | - Peter C K Leung
- Department of Obstetrics and GynaecologyChild and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Yariswamy M, Yoshida T, Valente AJ, Kandikattu HK, Sakamuri SSVP, Siddesha JM, Sukhanov S, Saifudeen Z, Ma L, Siebenlist U, Gardner JD, Chandrasekar B. Cardiac-restricted Overexpression of TRAF3 Interacting Protein 2 (TRAF3IP2) Results in Spontaneous Development of Myocardial Hypertrophy, Fibrosis, and Dysfunction. J Biol Chem 2016; 291:19425-36. [PMID: 27466370 PMCID: PMC5016681 DOI: 10.1074/jbc.m116.724138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/25/2016] [Indexed: 01/19/2023] Open
Abstract
TRAF3IP2 (TRAF3 interacting protein 2; previously known as CIKS or Act1) is a key intermediate in the normal inflammatory response and the pathogenesis of various autoimmune and inflammatory diseases. Induction of TRAF3IP2 activates IκB kinase (IKK)/NF-κB, JNK/AP-1, and c/EBPβ and stimulates the expression of various inflammatory mediators with negative myocardial inotropic effects. To investigate the role of TRAF3IP2 in heart disease, we generated a transgenic mouse model with cardiomyocyte-specific TRAF3IP2 overexpression (TRAF3IP2-Tg). Echocardiography, magnetic resonance imaging, and pressure-volume conductance catheterization revealed impaired cardiac function in 2-month-old male transgenic (Tg) mice as evidenced by decreased ejection fraction, stroke volume, cardiac output, and peak ejection rate. Moreover, the male Tg mice spontaneously developed myocardial hypertrophy (increased heart/body weight ratio, cardiomyocyte cross-sectional area, GATA4 induction, and fetal gene re-expression). Furthermore, TRAF3IP2 overexpression resulted in the activation of IKK/NF-κB, JNK/AP-1, c/EBPβ, and p38 MAPK and induction of proinflammatory cytokines, chemokines, and extracellular matrix proteins in the heart. Although myocardial hypertrophy decreased with age, cardiac fibrosis (increased number of myofibroblasts and enhanced expression and deposition of fibrillar collagens) increased progressively. Despite these adverse changes, TRAF3IP2 overexpression did not result in cell death at any time period. Interestingly, despite increased mRNA expression, TRAF3IP2 protein levels and activation of its downstream signaling intermediates remained unchanged in the hearts of female Tg mice. The female Tg mice also failed to develop myocardial hypertrophy. In summary, these results demonstrate that overexpression of TRAF3IP2 in male mice is sufficient to induce myocardial hypertrophy, cardiac fibrosis, and contractile dysfunction.
Collapse
Affiliation(s)
- Manjunath Yariswamy
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201
| | | | - Anthony J Valente
- University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | | | | | | | - Zubaida Saifudeen
- Department of Pediatric Nephrology Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Lixin Ma
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201, Department of Radiology, University of Missouri, Columbia, Missouri 65211
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Jason D Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Bysani Chandrasekar
- From the Department of Medicine and Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri 65201,
| |
Collapse
|
38
|
Nuclear expression of lysyl oxidase enzyme is an independent prognostic factor in rectal cancer patients. Oncotarget 2016; 8:60015-60024. [PMID: 28947950 PMCID: PMC5601118 DOI: 10.18632/oncotarget.9623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence has implicated a pivotal role for lysyl oxidase (LOX) in cancer progression and metastasis. Whilst the majority of work has focused on the extracellular matrix cross-linking role of LOX, the exact function of intracellular LOX localisation remains unclear. In this study, we analysed the LOX expression patterns in the nuclei of rectal cancer patient samples and determined the clinical significance of this expression. Nuclear LOX expression was significantly increased in patient lymph node metastases compared to their primary tumours. High nuclear LOX expression in tumours was correlated with a high rate of distant metastasis and increased recurrence. Multivariable analysis showed that high nuclear LOX expression was also correlated with poor overall survival and disease free survival. Furthermore, we are the first to identify LOX enzyme isoforms (50 kDa and 32 kDa) within the nucleus of colon cancer cell lines by confocal microscopy and Western blot. Our results show a powerful link between nuclear LOX expression in tumours and patient survival, and offer a promising prognostic biomarker for rectal cancer patients.
Collapse
|
39
|
Sørensen AE, Wissing ML, Englund ALM, Dalgaard LT. MicroRNA Species in Follicular Fluid Associating With Polycystic Ovary Syndrome and Related Intermediary Phenotypes. J Clin Endocrinol Metab 2016; 101:1579-89. [PMID: 26771704 PMCID: PMC4880172 DOI: 10.1210/jc.2015-3588] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) has a largely unknown etiology and presents with a clinical heterogeneous patient group. Small noncoding microRNA (miRNA) might prove promising as biomarker candidates for PCOS patient stratification. Altered miRNA expression profiles have been observed in few studies. OBJECTIVE The aim was to assess the miRNA expression profile in follicular fluid from PCOS patients and healthy, regularly cycling, matched controls. DESIGN AND SETTING Experimental case-control study including 49 PCOS women (19 of which were hyperandrogenic and 30 normo-androgenic) and 21 healthy matched women all undergoing in vitro fertilization treatment. INTERVENTIONS AND MAIN OUTCOME Anthropometric and relevant clinical baseline measurements were obtained. Relative expression of miRNA levels were estimated using miRNA quantitative PCR arrays and validated by quantitative RT-PCR. Correlation between miRNAs and clinical relevant measurements was estimated. RESULTS PCOS women, both normo-androgenic and hyperandrogenic, had decreased levels of miR-24-3p, -29a, -151-3p, and -574-3p compared with controls. Furthermore, miR-518f-3p was differentially expressed within the PCOS group with high levels observed in the hyperandrogenic group compared with the normo-androgenic PCOS patients. Serum levels of total and free T were positively correlated with miR-518f-3p in PCOS subjects (P = .001). Distinction between PCOS and controls could be made using miR-151-3p alone with an area under the curve of 0.91 or a combination of four selected miRNAs (area under the curve, 0.93). Bioinformatic target analysis points to an involvement of these miRNAs in biological pathways involving regulation of cell proliferation, extracellular matrix, and processes in intermediary metabolism. CONCLUSION Our study provides evidence that the miRNA expression profile in follicular fluid is altered in PCOS and indicates that specific follicular fluid miRNAs are associated with phenotypical traits of PCOS. An altered miRNA profile holds potentials for new methods of PCOS patient stratification and may contribute to and in part explain the heterogeneous nature found within PCOS women.
Collapse
Affiliation(s)
- Anja E Sørensen
- Department of Science, Systems and Models (A.E.S., L.T.D.), Roskilde University, Roskilde, Denmark; Fertility Clinic Region Sjaelland (L.W., A.L.M.E.), Holbaek Hospital, Holbaek, Denmark; and The Danish Diabetes Academy (A.E.S.), Odense University Hospital, Odense C, Denmark
| | - Marie Louise Wissing
- Department of Science, Systems and Models (A.E.S., L.T.D.), Roskilde University, Roskilde, Denmark; Fertility Clinic Region Sjaelland (L.W., A.L.M.E.), Holbaek Hospital, Holbaek, Denmark; and The Danish Diabetes Academy (A.E.S.), Odense University Hospital, Odense C, Denmark
| | - Anne Lis M Englund
- Department of Science, Systems and Models (A.E.S., L.T.D.), Roskilde University, Roskilde, Denmark; Fertility Clinic Region Sjaelland (L.W., A.L.M.E.), Holbaek Hospital, Holbaek, Denmark; and The Danish Diabetes Academy (A.E.S.), Odense University Hospital, Odense C, Denmark
| | - Louise T Dalgaard
- Department of Science, Systems and Models (A.E.S., L.T.D.), Roskilde University, Roskilde, Denmark; Fertility Clinic Region Sjaelland (L.W., A.L.M.E.), Holbaek Hospital, Holbaek, Denmark; and The Danish Diabetes Academy (A.E.S.), Odense University Hospital, Odense C, Denmark
| |
Collapse
|
40
|
Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cell Mol Life Sci 2016; 73:1685-1698. [PMID: 26646068 PMCID: PMC11108501 DOI: 10.1007/s00018-015-2091-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties and cell proliferation.
Collapse
Affiliation(s)
- Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Evanthia Diamanti-Kandarakis
- Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 'Sotiria' Hospital, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
41
|
Somanna NK, Valente AJ, Krenz M, Fay WP, Delafontaine P, Chandrasekar B. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4. J Cell Physiol 2015; 231:1130-41. [PMID: 26445208 DOI: 10.1002/jcp.25210] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 01/07/2023]
Abstract
Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling.
Collapse
Affiliation(s)
- Naveen K Somanna
- Microbiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anthony J Valente
- Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - William P Fay
- Medicine/Cardiology, University of Missouri, Columbia, Missouri
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| |
Collapse
|
42
|
Fusaric acid induces a notochord malformation in zebrafish via copper chelation. Biometals 2015; 28:783-9. [PMID: 25913293 DOI: 10.1007/s10534-015-9855-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Over a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos. The active compound was isolated and identified as fusaric acid. Previous literature has shown this phenotype to be associated with copper chelation from the active site of lysyl oxidase, but the ability of fusaric acid to bind copper ions has not been well described. Isothermal titration calorimetry revealed that fusaric acid is a modest copper chelator with a binding constant of 4.4 × 10(5) M(-1). These results shed light on the toxicity of fusaric acid and the potential teratogenic effects of consuming plants infected with Fusarium sp.
Collapse
|
43
|
Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res 2014; 42:85-102. [PMID: 24905859 DOI: 10.1016/j.preteyeres.2014.05.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in vision loss associated with macula degeneration, cataract formation, diabetic retinopathy and glaucoma. This pathogenic potential is mainly attributed to their accumulation in ocular tissues where they mediate aberrant crosslinking of extracellular matrix proteins and disruption of endothelial junctional complexes that affects cell permeability, mediates angiogenesis and breakdown of the inner blood-retinal barrier. Furthermore, AGEs severely affect cellular metabolism by disrupting ATP production, enhancing oxidative stress and modulating gene expression of anti-angiogenic and anti-inflammatory genes. Elucidation of AGE-induced mechanisms of action in different eye compartments will help in the understanding of the complex cellular and molecular processes associated with eye diseases. Several pharmaceutical agents with anti-glycating and anti-oxidant properties as well as AGE crosslink 'breakers' have been currently applied to eye diseases. The role of diet and the beneficial effects of certain nutriceuticals provide an alternative way to manage chronic visual disorders that affect the quality of life of millions of people.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, 'AHEPA' Hospital, Thessaloniki, Greece
| | | |
Collapse
|
44
|
Abstract
The ovary is the main regulator of female fertility. Changes in maternal health and physiology can disrupt intraovarian homoeostasis thereby compromising oocyte competence and fertility. Research has only recently devoted attention to the involvement of dicarbonyl stress in ovarian function. On this basis, the present review focuses on clinical and experimental research supporting the role of dicarbonyl overload and AGEs (advanced glycation end-products) as key contributors to perturbations of the ovarian microenvironment leading to lower fertility. Particular emphasis has been given to oocyte susceptibility to methylglyoxal, a powerful glycating agent, whose levels are known to increase during aging and metabolic disorders. According to the literature, the ovary and the oocyte itself can rely on the glyoxalase system to counteract the possible dicarbonyl overload such as that which may occur in reproductive-age women and patients with PCOS (polycystic ovarian syndrome) or diabetes. Overall, although biochemical methods for proper evaluation of dicarbonyl stress in oocytes and the ovarian microenvironment need to be established, AGEs can be proposed as predictive markers and/or therapeutic targets in new strategies for improving reproductive counselling and infertility therapies.
Collapse
|
45
|
Merhi Z, Irani M, Doswell AD, Ambroggio J. Follicular fluid soluble receptor for advanced glycation end-products (sRAGE): a potential indicator of ovarian reserve. J Clin Endocrinol Metab 2014; 99:E226-33. [PMID: 24276462 DOI: 10.1210/jc.2013-3839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT The interaction of advanced glycation end-products (AGEs) with their cellular receptor (RAGE) is implicated in the pathogenesis of abnormal ovarian follicular growth. RAGE has a circulating secretory receptor form, soluble RAGE (sRAGE), which neutralizes the action of AGEs and might exert a protective role on the follicular environment. OBJECTIVE The objective of the study was to investigate whether serum or follicular fluid (FF) sRAGE levels are associated with markers of ovarian reserve. DESIGN, SETTING, AND PARTICIPANTS Serum anti-Mullerian hormone (AMH) and sRAGE protein levels were correlated in 31 reproductive-aged women. An additional 33 women who underwent oocyte retrieval for in vitro fertilization were enrolled. AMH and its receptor (AMHR-II) mRNA levels were quantified in cumulus granulosa cells and FF sRAGE and AMH protein levels were measured. MAIN OUTCOME MEASURES Granulosa cell AMH and AMHR-II gene expression, serum and FF AMH and sRAGE protein concentration, and number of oocytes retrieved were measured. RESULTS In the serum, sRAGE levels were negatively correlated with body mass index (BMI) (r = -0.5, P < .001) but not with age or serum AMH. The higher the FF sRAGE, the lower the number of international units of gonadotropin needed per cycle independent of age, BMI, or day 3 FSH level (r = -0.4, P = .04). After adjusting for age, BMI, day 3 FSH, and the total dose of gonadotropins, FF sRAGE predicted the number of oocytes retrieved (R(2) = 0.27, P = .045). FF sRAGE positively correlated with FF AMH levels (r = 0.5, P = .0085). RT-PCR results showed no correlation between the FF sRAGE and AMH or AMHR-II mRNA levels. CONCLUSION These data support a relationship between FF sRAGE and measures of ovarian reserve. The pathological significance of the harmful inflammatory AGEs in follicular health clearly requires further investigation. Targeting AGEs might offer potential therapeutic options for the treatment of diminished ovarian response.
Collapse
Affiliation(s)
- Zaher Merhi
- Department of Obstetrics, Gynecology, and Reproductive Sciences (Z.M., A.D.D., J.A.), Division of Reproductive Endocrinology and Infertility, University of Vermont College of Medicine, Burlington, Vermont 05401; and Department of Obstetrics and Gynecology (M.I.), Maimonides Medical Center, Brooklyn, New York 11219
| | | | | | | |
Collapse
|
46
|
N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clin Sci (Lond) 2013; 126:85-94. [PMID: 23834332 DOI: 10.1042/cs20120619] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have reported previously that Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) reduces fibrosis and inflammation (in macrophages and mast cells). However, it is not known whether Ac-SDKP decreases collagen cross-linking and lymphocyte infiltration; lymphocytes modulate both collagen cross-linking and ECM (extracellular matrix) formation in hypertension. Thus we hypothesized that (i) in AngII (angiotensin II)-induced hypertension, Ac-SDKP prevents increases in cross-linked and total collagen by down-regulating LOX (lysyl oxidase), the enzyme responsible for cross-linking, and (ii) these effects are associated with decreased pro-fibrotic cytokine TGFβ (transforming growth factor β) and the pro-inflammatory transcription factor NF-κB (nuclear factor κB) and CD4+/CD8+ lymphocyte infiltration. We induced hypertension in rats by infusing AngII either alone or combined with Ac-SDKP for 3 weeks. Whereas Ac-SDKP failed to lower BP (blood pressure) or LV (left ventricular) hypertrophy, it did prevent AngII-induced increases in (i) cross-linked and total collagen, (ii) LOX mRNA expression and LOXL1 (LOX-like 1) protein, (iii) TGFβ expression, (iv) nuclear translocation of NF-κB, (v) CD4+/CD8+ lymphocyte infiltration, and (vi) CD68+ macrophages infiltration. In addition, we found a positive correlation between CD4+ infiltration and LOXL1 expression. In conclusion, the effect of Ac-SDKP on collagen cross-linking and total collagen may be due to reduced TGFβ1, LOXL1, and lymphocyte and macrophage infiltration, and its effect on inflammation could be due to lower NF-κB.
Collapse
|
47
|
Abstract
STUDY QUESTION Do advanced glycation end products (AGEs) and their receptors play a role in female reproduction? SUMMARY ANSWER AGEs might contribute to the etiology of polycystic ovary syndrome (PCOS) and infertility. WHAT IS KNOWN ALREADY The endogenous AGEs are produced in the body by chemical reactions. Exogenous sources of AGEs are diet and smoking. AGEs have been proposed to be among the main intermediaries involved in several diseases, such as metabolic syndrome, type 2 diabetes mellitus, cardiovascular disease, ovarian aging, inflammation, neurodegenerative disorders and PCOS. STUDY DESIGN, SIZE, DURATION A systematic review was performed for all available basic science and clinical peer-reviewed articles published in PubMed from 1987 to date. Abstracts of annual meetings of the Endocrine Society and American Society for Reproductive Medicine were also reviewed. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 275 publications and scientific abstracts were identified from the initial search. Sixty-two papers and four published scientific abstracts were selected for full review. The main outcomes were the regulatory effects of AGEs on: (i) granulosa cells, adipocyte physiology, obesity and insulin resistance in women with PCOS and in polycystic ovary animal models and (ii) infertility and measures of ovarian reserve. MAIN RESULTS AND THE ROLE OF CHANCE There is an intricate relationship between the AGE-RAGE (receptor for AGEs) system and some aspects of PCOS, such as granulosa cell dysfunction, adipocyte pathophysiology, obesity and insulin resistance. Additionally, irregular ovarian AGE signaling might in part explain the abnormal ovarian histology observed in women with PCOS. The ovarian dysfunction due to AGEs in women without PCOS suggests a role for the AGE-RAGE system in the ovarian follicular environment, and might relate to assisted reproduction technology outcome and measures of ovarian reserve. LIMITATIONS, REASONS FOR CAUTION The body of literature currently available limits these findings. The results obtained from granulosa cell lines and animal models may not fully extrapolate to humans. WIDER IMPLICATIONS OF THE FINDINGS This review underscores a critical need to unveil the exact mechanistic actions of AGEs in reproductive physiology and more specifically the hypothalamic-pituitary-ovarian axis. AGE inhibitors might present an emerging therapeutic approach with significant applications in the context of PCOS and infertility. STUDY FUNDING/COMPETING INTEREST(S) American Society for Reproductive Medicine New Investigator Award and University of Vermont College of Medicine Internal Funds. No competing interests.
Collapse
Affiliation(s)
- Z Merhi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Reproductive Endocrinology and Infertility, University of Vermont College of Medicine, 111 Colchester Avenue, Burlington VT 05401, USA
| |
Collapse
|
48
|
Longuespée R, Boyon C, Desmons A, Vinatier D, Leblanc E, Farré I, Wisztorski M, Ly K, D'Anjou F, Day R, Fournier I, Salzet M. Ovarian cancer molecular pathology. Cancer Metastasis Rev 2013; 31:713-32. [PMID: 22729278 DOI: 10.1007/s10555-012-9383-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ovarian cancer (OVC) is the fourth leading cause of cancer mortality among women in Europe and the United States. Its early detection is difficult due to the lack of specificity of clinical symptoms. Unfortunately, late diagnosis is a major contributor to the poor survival rates for OVC, which can be attributed to the lack of specific sets of markers. Aside from patients sharing a strong family history of ovarian and breast cancer, including the BRCA1 and BRCA2 tumor suppressor genes mutations, the most used biomarker is the Cancer-antigen 125 (CA-125). CA-125 has a sensitivity of 80 % and a specificity of 97 % in epithelial cancer (stage III or IV). However, its sensitivity is 30 % in stage I cancer, as its increase is linked to several physiological phenomena and benign situations. CA-125 is particularly useful for at-risk population diagnosis and to assess response to treatment. It is clear that alone, CA-125 is inadequate as a biomarker for OVC diagnosis. There is an unmet need to identify additional biomarkers. Novel and more sensitive proteomic strategies such as MALDI mass spectrometry imaging studies are well suited to identify better markers for both diagnosis and prognosis. In the present review, we will focus on such proteomic strategies in regards to OVC signaling pathways, OVC development and escape from the immune response.
Collapse
Affiliation(s)
- Rémi Longuespée
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée, Université Nord de France, EA 4550, Université de Lille 1, Cité Scientifique, 59650 Villeneuve D'Ascq, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Huang CS, Ho CT, Tu SH, Pan MH, Chuang CH, Chang HW, Chang CH, Wu CH, Ho YS. Long-term ethanol exposure-induced hepatocellular carcinoma cell migration and invasion through lysyl oxidase activation are attenuated by combined treatment with pterostilbene and curcumin analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4326-4335. [PMID: 23560895 DOI: 10.1021/jf4004175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ethanol consumption induces hepatocellular carcinoma (HCC) cell metastasis by changing the extracellular matrix (ECM). Lysyl oxidase (LOX) catalyzes the cross-linkage of collagen or elastin in the ECM. LOX protein and mRNA overexpression (>21-fold compared with controls, n = 6) was detected in cirrhotic HCC patients with a history of alcoholism. LOX protein expression was induced in HCC cells after long-term treatment with ethanol (10 mM) for 20-40 passages (denoted E20-E40 cells). Pterostilbene (PSB, 1 μM) displayed significant potency to reduce LOX-mediated activity in E40 cells when combined with curcumin and its analogues. The ability of E40 cells to form colonies in soft agar was reduced by both genetic depletion of LOX and by chemical inhibitors of LOX expression. This study suggests that targeting LOX expression with food components such as PSB and curcumin may be a novel strategy to overcome ethanol-induced HCC cell metastasis in liver cancer patients.
Collapse
Affiliation(s)
- Ching-Shui Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tatone C, Amicarelli F. The aging ovary--the poor granulosa cells. Fertil Steril 2013; 99:12-17. [PMID: 23273984 DOI: 10.1016/j.fertnstert.2012.11.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 11/24/2022]
Abstract
The development of a competent oocyte intimately depends on the maintenance of energetic homeostasis in the ovarian and follicular microenvironment. On this basis, it is very likely that the oocyte ages as the ovary ages. Starting from the molecular evidence for energy perturbations in the whole ovary, we review current knowledge on the involvement of endogenous highly reactive metabolites in follicle aging. The first part provides an update of recent findings that confirm the key role of oxidative stress in aged granulosa cells. The second part focuses on studies providing evidence for the implication of advanced glycation end product (AGE) in aging reproductive dysfunction. With their prolonged half-life and ability to act as signaling molecules AGEs may gradually accumulate in the ovary and potentiate the wide spatiotemporal spread of oxidative stress. Clinical evidence for this view supports the hypothesis that AGE is a good candidate as a predictive marker and therapeutic target in new strategies for improving reproductive counseling in aging women.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Fernanda Amicarelli
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|