1
|
Abudupataer M, Zou W, Zhang W, Ding S, Zhou Z, Chen J, Li H, Zhang Z, Wang C, Ge J, Hong T, Yang X. Histamine deficiency delays ischaemic skeletal muscle regeneration via inducing aberrant inflammatory responses and repressing myoblast proliferation. J Cell Mol Med 2019; 23:8392-8409. [PMID: 31600036 PMCID: PMC6850925 DOI: 10.1111/jcmm.14720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/27/2023] Open
Abstract
Histidine decarboxylase (HDC) catalyses the formation of histamine from L‐histidine. Histamine is a biogenic amine involved in many physiological and pathological processes, but its role in the regeneration of skeletal muscles has not been thoroughly clarified. Here, using a murine model of hindlimb ischaemia, we show that histamine deficiency in Hdc knockout (Hdc−/−) mice significantly reduces blood perfusion and impairs muscle regeneration. Using Hdc‐EGFP transgenic mice, we demonstrate that HDC is expressed predominately in CD11b+Gr‐1+ myeloid cells but not in skeletal muscles and endothelial cells. Large amounts of HDC‐expressing CD11b+ myeloid cells are rapidly recruited to injured and inflamed muscles. Hdc−/− enhances inflammatory responses and inhibits macrophage differentiation. Mechanically, we demonstrate that histamine deficiency decreases IGF‐1 (insulin‐like growth factor 1) levels and diminishes myoblast proliferation via H3R/PI3K/AKT‐dependent signalling. These results indicate a novel role for HDC‐expressing CD11b+ myeloid cells and histamine in myoblast proliferation and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Mieradilijiang Abudupataer
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihong Zou
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheliang Zhou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinmiao Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Hong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
3
|
Andreo L, Mesquita-Ferrari RA, Ribeiro BG, Benitte A, de Fátima Nogueira T, França CM, Silva DDFTD, Bussadori SK, Fernandes KPS, Corrêa FI, Corrêa JCF. Effects of myogenic precursor cells (C2C12) transplantation and low-level laser therapy on muscle repair. Lasers Surg Med 2018; 50:781-791. [PMID: 29399847 DOI: 10.1002/lsm.22798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 02/28/2024]
Abstract
OBJECTIVE The aim of the present study was to evaluate the effects of myoblast inoculation in combination with photobiomodulation therapy (PBMT) on skeletal muscle tissue following injury. MATERIALS AND METHODS Sixty-five Wistar rats were divided into five groups: Control-animals not submitted to any procedure; Injury-cryoinjury of the tibialis anterior muscle; HBSS-animals submitted to cryoinjury and intramuscular Hank's Balanced Salt Solution; Injury + Cells-animals submitted to cryoinjury, followed by myogenic precursor cells (C2C12) transplantation; Injury + Cells + LLLT-animals submitted to cryoinjury, followed by myogenic precursor cells (C2C12) transplantation and PBMT (780 nm, 40 mW, 3.2 J in 8 points). The periods analyzed were 1, 3, and 7 days. The tibialis anterior muscle was harvest for histological analysis, collagen analysis, and immunolabeling of macrophages. RESULTS No differences were found between the HBSS group and injury group. The Injury + Cells group exhibited an increase of inflammatory cells and immature fibers as well as a decrease in the number of macrophages on Day 1. The Injury + Cells + LLLT group exhibited a decrease in myonecrosis and inflammatory infiltrate at 7 days, but an increase in inflammatory infiltrate at 1 and 3 days as well as an increase in blood vessels at 3 and 7 days, an increase in macrophages at 3 days and better collagen organization at 7 days. CONCLUSION Cell transplantation combined with PBMT led to an increase in the number of blood vessels, a reduction in myonecrosis and total inflammatory cells as well as better organization of collagen fibers during the skeletal muscle repair process. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucas Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Raquel A Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Beatriz G Ribeiro
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | | | | | - Cristiane M França
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | - Sandra K Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Kristianne P S Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Fernanda I Corrêa
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - João C F Corrêa
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Vojnits K, Pan H, Dai X, Sun H, Tong Q, Darabi R, Huard J, Li Y. Functional Neuronal Differentiation of Injury-Induced Muscle-Derived Stem Cell-Like Cells with Therapeutic Implications. Sci Rep 2017; 7:1177. [PMID: 28446779 PMCID: PMC5430871 DOI: 10.1038/s41598-017-01311-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Mammalian skeletal muscles contain a number of heterogeneous cell populations. Our previous study characterized a unique population of myogenic lineage stem cells that can be isolated from adult mammalian skeletal muscles upon injury. These injury-induced muscle-derived stem cell-like cells (iMuSCs) displayed a multipotent state with sensitiveness and strong migration abilities. Here, we report that these iMuSCs have the capability to form neurospheres that represent multiple neural phenotypes. The induced neuronal cells expressed various neuron-specific proteins, their mRNA expression during neuronal differentiation recapitulated embryonic neurogenesis, they generated action potentials, and they formed functional synapses in vitro. Furthermore, the transplantation of iMuSCs or their cell extracts into the muscles of mdx mice (i.e., a mouse model of Duchenne Muscular Dystrophy [DMD]) could restore the morphology of their previously damaged neuromuscular junctions (NMJs), suggesting that the beneficial effects of iMuSCs may not be restricted to cell restoration alone, but also due to their transient paracrine actions. The current study reveals the essential role of iMuSCs in the restoration of NMJs related to injuries and diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.,Department of Pediatric Surgery, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA
| | - Haiying Pan
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.,Department of Orthopeadic, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA
| | - Xiaojing Dai
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.,Department of Pediatric Surgery, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA
| | - Hao Sun
- Center for Metabolic and Degenerative Disease, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Qingchun Tong
- Center for Metabolic and Degenerative Disease, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Johnny Huard
- Department of Orthopeadic, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA.,Center for Sports Regenerative Medicine, Steadman Philippon Research Institute, Vail, CO, USA.,Center for Tissue Engineering and Aging Research, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA
| | - Yong Li
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA. .,Department of Pediatric Surgery, University of Texas McGovern Medical School at Houston, Houston, 77030, TX, USA. .,Center for Tissue Engineering and Aging Research, The IMM at the University of Texas Health Science Center at Houston, TX, Houston, 77030, USA.
| |
Collapse
|
5
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
6
|
Davies OG, Grover LM, Lewis MP, Liu Y. PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification. J Tissue Eng Regen Med 2017; 12:e355-e367. [PMID: 27696748 PMCID: PMC6084375 DOI: 10.1002/term.2320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is first the rate at which bone is deposited, and second the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, a tissue‐engineered skeletal muscle was used model to better understand the role of inflammation on this debilitating phenomenon. It was shown that myoblasts could be divided into two distinct populations: myogenic cells and undifferentiated ‘reserve’ cells. Gene expression analysis of myogenic and osteoregulatory markers confirmed that ‘reserve’ cells were primed for osteogenic differentiation but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of platelet‐derived growth factor (PDGF)‐BB and bone morphogenetic protein 2 (BMP2), and correlated with conversion to a Sca‐1+/CD73+ phenotype. Alizarin red staining showed that PDGF‐BB promoted significantly more mineral deposition than BMP2. Finally, it was shown that PDGF‐induced mineralization was blocked in the presence of the pro‐inflammatory cytokines tumour necrosis factor‐α and interleukin 1. In conclusion, the present study identified that PDGF‐BB is a potent osteoinductive factor in a model of tissue‐engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro‐inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Owen G Davies
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Yang Liu
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
7
|
Jin K, Su KK, Li T, Zhu XQ, Wang Q, Ge RS, Pan ZF, Wu BW, Ge LJ, Zhang YH, Wang YF, Shen GF, Zhu DY, Xiang CS, Li LJ, Lou YJ. Hepatic Premalignant Alterations Triggered by Human Nephrotoxin Aristolochic Acid I in Canines. Cancer Prev Res (Phila) 2016; 9:324-34. [PMID: 26851235 DOI: 10.1158/1940-6207.capr-15-0339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 11/16/2022]
Abstract
Aristolochic acid I (AAI) existing in plant drugs from Aristolochia species is an environmental human carcinogen associated with urothelial cancer. Although gene association network analysis demonstrated gene expression profile changes in the liver of human TP53 knock-in mice after acute AAI exposure, to date, whether AAI causes hepatic tumorigenesis is still not confirmed. Here, we show that hepatic premalignant alterations appeared in canines after a 10-day AAI oral administration (3 mg/kg/day). We observed c-Myc oncoprotein and oncofetal RNA-binding protein Lin28B overexpressions accompanied by cancer progenitor-like cell formation in the liver by AAI exposure. Meanwhile, we found that forkhead box O1 (FOXO1) was robustly phosphorylated, thereby shuttling into the cytoplasm of hepatocytes. Furthermore, utilizing microarray and qRT-PCR analysis, we confirmed that microRNA expression significantly dysregulated in the liver treated with AAI. Among them, we particularly focused on the members in let-7 miRNAs and miR-23a clusters, the downstream of c-Myc and IL6 receptor (IL6R) signaling pathway linking the premalignant alteration. Strikingly, when IL6 was added in vitro, IL6R/NF-κB signaling activation contributed to the increase of FOXO1 phosphorylation by the let-7b inhibitor. Therefore, it highlights the new insight into the interplay of the network in hepatic tumorigenesis by AAI exposure, and also suggests that anti-premalignant therapy may be crucial for preventing AAI-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ke Jin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Kun-kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The 1st Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Tong Li
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Xia-qing Zhu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Qi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Ren-shan Ge
- The Population Council at the Rockefeller University, New York, USA. Institute of Reproductive Biomedicine, the 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Zong-fu Pan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Bo-wen Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Li-jun Ge
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yi-han Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yi-fan Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Guo-fang Shen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Dan-yan Zhu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Chun-sheng Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The 1st Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Lan-juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The 1st Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| | - Yi-jia Lou
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
8
|
Davies OG, Grover LM, Eisenstein N, Lewis MP, Liu Y. Identifying the Cellular Mechanisms Leading to Heterotopic Ossification. Calcif Tissue Int 2015; 97:432-44. [PMID: 26163233 DOI: 10.1007/s00223-015-0034-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the de novo development of bone within non-osseous soft tissues, and can be either hereditary or acquired. The hereditary condition, fibrodysplasia ossificans progressiva is rare but life threatening. Acquired HO is more common and results from a severe trauma that produces an environment conducive for the formation of ectopic endochondral bone. Despite continued efforts to identify the cellular and molecular events that lead to HO, the mechanisms of pathogenesis remain elusive. It has been proposed that the formation of ectopic bone requires an osteochondrogenic cell type, the presence of inductive agent(s) and a permissive local environment. To date several lineage-tracing studies have identified potential contributory populations. However, difficulties identifying cells in vivo based on the limitations of phenotypic markers, along with the absence of established in vitro HO models have made the results difficult to interpret. The purpose of this review is to critically evaluate current literature within the field in an attempt identify the cellular mechanisms required for ectopic bone formation. The major aim is to collate all current data on cell populations that have been shown to possess an osteochondrogenic potential and identify environmental conditions that may contribute to a permissive local environment. This review outlines the pathology of endochondral ossification, which is important for the development of potential HO therapies and to further our understanding of the mechanisms governing bone formation.
Collapse
Affiliation(s)
- O G Davies
- School of Mechanical and Manufacturing Engineering, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK.
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - N Eisenstein
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - M P Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough, UK
- National Centre for Sport and Exercise Medicine, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Y Liu
- School of Mechanical and Manufacturing Engineering, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK
| |
Collapse
|
9
|
Choi Y, Cox C, Lally K, Li Y. The strategy and method in modulating finger regeneration. Regen Med 2015; 9:231-42. [PMID: 24750063 DOI: 10.2217/rme.13.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tip of the human finger can regenerate if the amputation is distal to the nail bed, usually in young children. Studies in regeneration of rodent digits have shown that regeneration occurs if the amputation is distal to the mid-third phalanx for certain ages. The digit contains many different components, such as muscle, tendon, bone, skin, nerves and blood vessels, which must all be regrown in the proper location in order to restore functionality. The mechanism behind the complex healing/regeneration processes is still under investigation; however, improvements in injured finger regeneration have been gradually developing in animal models over the past few years. This review discusses a few strategies and methods to possibly enhance digit regeneration beyond current natural limits, focusing on aspects including scarless wound healing, cell-based treatments, tissue engineering and electrical stimulation.
Collapse
Affiliation(s)
- Yohan Choi
- Children's Regenerative Medicine, Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | |
Collapse
|
10
|
Accornero F, Kanisicak O, Tjondrokoesoemo A, Attia AC, McNally EM, Molkentin JD. Myofiber-specific inhibition of TGFβ signaling protects skeletal muscle from injury and dystrophic disease in mice. Hum Mol Genet 2014; 23:6903-15. [PMID: 25106553 DOI: 10.1093/hmg/ddu413] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Muscular dystrophy (MD) is a disease characterized by skeletal muscle necrosis and the progressive accumulation of fibrotic tissue. While transforming growth factor (TGF)-β has emerged as central effector of MD and fibrotic disease, the cell types in diseased muscle that underlie TGFβ-dependent pathology have not been segregated. Here, we generated transgenic mice with myofiber-specific inhibition of TGFβ signaling owing to expression of a TGFβ type II receptor dominant-negative (dnTGFβRII) truncation mutant. Expression of dnTGFβRII in myofibers mitigated the dystrophic phenotype observed in δ-sarcoglycan-null (Sgcd(-/-)) mice through a mechanism involving reduced myofiber membrane fragility. The dnTGFβRII transgene also reduced muscle injury and improved muscle regeneration after cardiotoxin injury, as well as increased satellite cell numbers and activity. An unbiased global expression analysis revealed a number of potential mechanisms for dnTGFβRII-mediated protection, one of which was induction of the antioxidant protein metallothionein (Mt). Indeed, TGFβ directly inhibited Mt gene expression in vitro, the dnTGFβRII transgene conferred protection against reactive oxygen species accumulation in dystrophic muscle and treatment with Mt mimetics protected skeletal muscle upon injury in vivo and improved the membrane stability of dystrophic myofibers. Hence, our results show that the myofibers are central mediators of the deleterious effects associated with TGFβ signaling in MD.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Onur Kanisicak
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Andoria Tjondrokoesoemo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Aria C Attia
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Elizabeth M McNally
- Department of Medicine, Section of Cardiology, 5841 S, Maryland, MC 6088, Chicago, IL 60637, USA and
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH 45229, USA Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
11
|
Sondag GR, Salihoglu S, Lababidi SL, Crowder DC, Moussa FM, Abdelmagid SM, Safadi FF. Osteoactivin induces transdifferentiation of C2C12 myoblasts into osteoblasts. J Cell Physiol 2014; 229:955-66. [PMID: 24265122 DOI: 10.1002/jcp.24512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022]
Abstract
Osteoactivin (OA) is a novel osteogenic factor important for osteoblast differentiation and function. Previous studies showed that OA stimulates matrix mineralization and transcription of osteoblast specific genes required for differentiation. OA plays a role in wound healing and its expression was shown to increase in post fracture calluses. OA expression was reported in muscle as OA is upregulated in cases of denervation and unloading stress. The regulatory mechanisms of OA in muscle and bone have not yet been determined. In this study, we examined whether OA plays a role in transdifferentiation of C2C12 myoblast into osteoblasts. Infected C2C12 with a retroviral vector overexpressing OA under the CMV promoter were able to transdifferentiate from myoblasts into osteoblasts. Immunofluorescence analysis showed that skeletal muscle marker MF-20 was severely downregulated in cells overexpressing OA and contained significantly less myotubes compared to uninfected control. C2C12 myoblasts overexpressing OA showed an increase in expression of bone specific markers such as alkaline phosphatase and alizarin red staining, and also showed an increase in Runx2 protein expression. We also detected increased levels of phosphorylated focal adhesion kinase (FAK) in C2C12 myoblasts overexpressing OA compared to control. Taken together, our results suggest that OA is able to induce transdifferentiation of myoblasts into osteoblasts through increasing levels of phosphorylated FAK.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio; School of Biomedical Sciences, Kent State University, Kent, Ohio
| | | | | | | | | | | | | |
Collapse
|
12
|
Cohen TV, Gnocchi VF, Cohen JE, Phadke A, Liu H, Ellis JA, Foisner R, Stewart CL, Zammit PS, Partridge TA. Defective skeletal muscle growth in lamin A/C-deficient mice is rescued by loss of Lap2α. Hum Mol Genet 2013; 22:2852-69. [PMID: 23535822 DOI: 10.1093/hmg/ddt135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in lamin A/C result in a range of tissue-specific disorders collectively called laminopathies. Of these, Emery-Dreifuss and Limb-Girdle muscular dystrophy 1B mainly affect striated muscle. A useful model for understanding both laminopathies and lamin A/C function is the Lmna(-/-) mouse. We found that skeletal muscle growth and muscle satellite (stem) cell proliferation were both reduced in Lmna(-/-) mice. Lamins A and C associate with lamina-associated polypeptide 2 alpha (Lap2α) and the retinoblastoma gene product, pRb, to regulate cell cycle exit. We found Lap2α to be upregulated in Lmna(-/-) myoblasts (MBs). To specifically test the contribution of elevated Lap2α to the phenotype of Lmna(-/-) mice, we generated Lmna(-/-)Lap2α(-/-) mice. Lifespan and body mass were increased in Lmna(-/-)Lap2α(-/-) mice compared with Lmna(-/-). Importantly, the satellite cell proliferation defect was rescued, resulting in improved myogenesis. Lmna(-/-) MBs also exhibited increased levels of Smad2/3, which were abnormally distributed in the cell and failed to respond to TGFβ1 stimulation as in control cells. However, using SIS3 to inhibit signaling via Smad3 reduced cell death and augmented MB fusion. Together, our results show that perturbed Lap2α/pRb and Smad2/3 signaling are important regulatory pathways mediating defective muscle growth in Lmna(-/-) mice, and that inhibition of either pathway alone or in combination can ameliorate this deleterious phenotype.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Research Center for Genetic Medicine, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Satellite cells represent the primary population of stem cells resident in skeletal muscle. These adult muscle stem cells facilitate the postnatal growth, remodeling, and regeneration of skeletal muscle. Given the remarkable regenerative potential of satellite cells, there is great promise for treatment of muscle pathologies such as the muscular dystrophies with this cell population. Various protocols have been developed which allow for isolation, enrichment, and expansion of satellite cell derived muscle stem cells. However, isolated satellite cells have yet to translate into effective modalities for therapeutic intervention. Broadening our understanding of satellite cells and their niche requirements should improve our in vivo and ex vivo manipulation of these cells to expedite their use for regeneration of diseased muscle. This review explores the fates of satellite cells as determined by their molecular signatures, ontogeny, and niche dependent programming.
Collapse
Affiliation(s)
- Arif Aziz
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, Canada K1H 8L6
| | | | | |
Collapse
|
14
|
Rathbone CR, Yamanouchi K, Chen XK, Nevoret-Bell CJ, Rhoads RP, Allen RE. Effects of transforming growth factor-beta (TGF-β1) on satellite cell activation and survival during oxidative stress. J Muscle Res Cell Motil 2011; 32:99-109. [PMID: 21823037 DOI: 10.1007/s10974-011-9255-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/19/2011] [Indexed: 11/30/2022]
Abstract
The regulation of adult skeletal muscle repair and regeneration is largely due to the contribution of resident adult myogenic precursor cells called satellite cells. The events preceding their participation in muscle repair include activation (exit from quiescence), proliferation, and differentiation. This study examined the effects of transforming growth factor-beta (TGF-β1) on satellite cell activation, determined whether TGF-β1 could maintain quiescence in the presence of hepatocyte growth factor (HGF), and whether the regulation of satellite cell activation with TGF-β1 improves the ability of satellite cells to withstand oxidative stress. The addition of TGF-β1 during early satellite cell activation (0-48 h) or during the proliferative phase (48-96 h) maintained and induced satellite cell quiescence, respectively, as determined by myogenic differentiation (MyoD) protein expression. TGF-β1 also attenuated satellite cell activation when used with HGF. Finally, the role of quiescence in protecting cells against oxidative stress was examined. TGF-β1 treatment and the low pH satellite cell preparation procedure, a technique that forestalls spontaneous activation in vitro, both enhanced survival of cultured satellite cells following hydrogen peroxide treatment. These findings indicate that TGF-β1 is capable of maintaining and inducing satellite cell quiescence and suggest methods to maintain satellite cell quiescence may improve their transplantation efficiency.
Collapse
Affiliation(s)
- Christopher R Rathbone
- Muscle Biology Group, Department of Animal Sciences, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Mu X, Xiang G, Rathbone CR, Pan H, Bellayr IH, Walters TJ, Li Y. Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:931-41. [PMID: 21684246 DOI: 10.1016/j.ajpath.2011.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/07/2011] [Accepted: 05/02/2011] [Indexed: 11/17/2022]
Abstract
A wide variety of myogenic cell sources have been used for repair of injured and diseased muscle including muscle stem cells, which can be isolated from skeletal muscle as a group of slow-adhering cells on a collagen-coated surface. The therapeutic use of muscle stem cells for improving muscle regeneration is promising; however, the effect of injury on their characteristics and engraftment potential has yet to be described. In the present study, slow-adhering stem cells (SASCs) from both laceration-injured and control noninjured skeletal muscles in mice were isolated and studied. Migration and proliferation rates, multidifferentiation potentials, and differences in gene expression in both groups of cells were compared in vitro. Results demonstrated that a larger population of SASCs could be isolated from injured muscle than from control noninjured muscle. In addition, SASCs derived from injured muscle demonstrated improved migration, a higher rate of proliferation and multidifferentiation, and increased expression of Notch1, STAT3, Msx1, and MMP2. Moreover, when transplanted into dystrophic muscle in MDX/SCID mice, SASCs from injured muscle generated greater engraftments with a higher capillary density than did SASCs from control noninjured muscle. These data suggest that traumatic injury may modify stem cell characteristics through trophic factors and improve the transplantation potential of SASCs in alleviating skeletal muscle injuries and diseases.
Collapse
Affiliation(s)
- Xiaodong Mu
- Laboratory of Molecular Pathology, Stem Cell Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Mu X, Peng H, Pan H, Huard J, Li Y. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system. PLoS One 2011; 6:e16699. [PMID: 21304901 PMCID: PMC3033395 DOI: 10.1371/journal.pone.0016699] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/26/2010] [Indexed: 01/06/2023] Open
Abstract
Background Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can coexist within the population of cells being studied. Methodology/Principal Findings In the current study, we created a Cre/Lox-β-galactosidase system, which can specifically tag differentiated multinuclear myotubes and myotube-generated mononuclear cells based on the activation of the marker gene, β-galactosidase. By using this system in an adult mouse model, we found that β-galactosidase positive mononuclear cells were generated from β-galactosidase positive multinuclear myofibers upon muscle injury. We also demonstrated that these mononuclear cells can develop into a variety of different muscle cell lineages, i.e., myoblasts, satellite cells, and muscle derived stem cells. Conclusions/Significance These novel findings demonstrated, for the first time, that cellular dedifferentiation of skeletal muscle cells actually occurs in mammalian skeletal muscle following traumatic injury in vivo.
Collapse
Affiliation(s)
- Xiaodong Mu
- The Laboratory of Molecular Pathology, Stem Cell Research Center (SCRC), Children's Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hairong Peng
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Haiying Pan
- The Laboratory of Molecular Pathology, Stem Cell Research Center (SCRC), Children's Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Johnny Huard
- The Laboratory of Molecular Pathology, Stem Cell Research Center (SCRC), Children's Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yong Li
- The Laboratory of Molecular Pathology, Stem Cell Research Center (SCRC), Children's Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mu X, Urso ML, Murray K, Fu F, Li Y. Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2399-410. [PMID: 20934971 DOI: 10.2353/ajpath.2010.091121] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polypeptide hormone relaxin has been proven to be effective in promoting both the remodeling and regeneration of various tissues, including cardiac muscle. In addition, our previous study demonstrated that relaxin is beneficial to skeletal muscle healing by both promoting muscle regeneration and preventing fibrosis formation. However, the molecular and cellular mechanisms of relaxin in regulating both myogenic cell differentiation and muscle healing process are still unclear. In this study, C2C12 mouse myoblasts and primary human myoblasts were treated with relaxin to investigate its potential effect in vitro; relaxin was also injected intramuscularly into the injured site of the mouse on the second day after injury to observe its function in vivo, especially in the aged muscle. Results showed that relaxin promoted myogenic differentiation, migration, and activation of matrix metalloproteinases (MMPs) of cultured myoblasts in vitro. In the injured muscle, relaxin administration promoted the activation of Pax7-positive skeletal muscle satellite cells and increased its local population compared with nontreated control muscles. Meanwhile, both angiogenesis and revascularization were increased, while the extended inflammatory reaction was repressed in the relaxin-treated injured muscle. Moreover, relaxin similarly promoted muscle healing in mice with aged muscle. These results revealed the multiple effects of relaxin in systematically improving muscle healing as well as its potential for clinical applications in patients with skeletal muscle injuries and diseases.
Collapse
Affiliation(s)
- Xiaodong Mu
- Laboratory of Molecular Pathology Stem Cell Research Center (SCRC), Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Office 217, Bridgeside Point II, 450 Technology Drive Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|