1
|
Noël ES. Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Curr Top Dev Biol 2024; 156:121-156. [PMID: 38556421 DOI: 10.1016/bs.ctdb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.
Collapse
Affiliation(s)
- Emily S Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med 2022; 291:713-731. [PMID: 35137472 PMCID: PMC9303299 DOI: 10.1111/joim.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart failure is a devastating clinical syndrome, but current therapies are unable to abolish the disease burden. New strategies to treat or prevent heart failure are urgently needed. Over the past decades, a clear relationship has been established between poor cardiac performance and metabolic perturbations, including deficits in substrate uptake and utilization, reduction in mitochondrial oxidative phosphorylation and excessive reactive oxygen species production. Together, these perturbations result in progressive depletion of cardiac adenosine triphosphate (ATP) and cardiac energy deprivation. Increasing the delivery of energy substrates (e.g., fatty acids, glucose, ketones) to the mitochondria will be worthless if the mitochondria are unable to turn these energy substrates into fuel. Micronutrients (including coenzyme Q10, zinc, copper, selenium and iron) are required to efficiently convert macronutrients to ATP. However, up to 50% of patients with heart failure are deficient in one or more micronutrients in cross-sectional studies. Micronutrient deficiency has a high impact on mitochondrial energy production and should be considered an additional factor in the heart failure equation, moving our view of the failing myocardium away from an "an engine out of fuel" to "a defective engine on a path to self-destruction." This summary of evidence suggests that supplementation with micronutrients-preferably as a package rather than singly-might be a potential therapeutic strategy in the treatment of heart failure patients.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK.,National Heart & Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Hoes MF, Bomer N, van der Meer P. Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Transl Med 2018; 8:66-74. [PMID: 30302938 PMCID: PMC6312446 DOI: 10.1002/sctm.18-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 12/11/2022] Open
Abstract
Until recently, in vivo and ex vivo experiments were the only means to determine factors and pathways involved in disease pathophysiology. After the generation of characterized human embryonic stem cell lines, human diseases could readily be studied in an extensively controllable setting. The introduction of human‐induced pluripotent stem cells, a decade ago, allowed the investigation of hereditary diseases in vitro. In the field of cardiology, diseases linked to known genes have successfully been studied, revealing novel disease mechanisms. The direct effects of various mutations leading to hypertrophic cardiomyopathy, dilated cardiomyopathy, arrythmogenic cardiomyopathy, or left ventricular noncompaction cardiomyopathy are discovered as a result of in vitro disease modeling. Researchers are currently applying more advanced techniques to unravel more complex phenotypes, resulting in state‐of‐the‐art models that better mimic in vivo physiology. The continued improvement of tissue engineering techniques and new insights into epigenetics resulted in more reliable and feasible platforms for disease modeling and the development of novel therapeutic strategies. The introduction of CRISPR‐Cas9 gene editing granted the ability to model diseases in vitro independent of induced pluripotent stem cells. In addition to highlighting recent developments in the field of human in vitro cardiomyopathy modeling, this review also aims to emphasize limitations that remain to be addressed; including residual somatic epigenetic signatures induced pluripotent stem cells, and modeling diseases with unknown genetic causes. Stem Cells Translational Medicine2019;8:66–74
Collapse
Affiliation(s)
- Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, RB, The Netherlands
| |
Collapse
|
4
|
Zhang S, Huang H, Li J, Zeng B, Qiu W, Xie D. Putative protein interaction analysis for human embryonic stem cell derived cardiomyocytes. 2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI) 2016:1837-1842. [DOI: 10.1109/cisp-bmei.2016.7853016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Kokkinopoulos I, Ishida H, Saba R, Coppen S, Suzuki K, Yashiro K. Cardiomyocyte differentiation from mouse embryonic stem cells using a simple and defined protocol. Dev Dyn 2015; 245:157-65. [DOI: 10.1002/dvdy.24366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ioannis Kokkinopoulos
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Hidekazu Ishida
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Rie Saba
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Steven Coppen
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Ken Suzuki
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| | - Kenta Yashiro
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square; London United Kingdom
| |
Collapse
|
6
|
Huang H, Zhang S, Shen WJ, Wong HS, Xie D. Gene set enrichment ensemble using fold change data only. J Biomed Inform 2015; 57:189-203. [PMID: 26241354 DOI: 10.1016/j.jbi.2015.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/10/2015] [Accepted: 07/29/2015] [Indexed: 02/05/2023]
Abstract
In a number of biological studies, the raw gene expression data are not usually published due to different causes, such as data privacy and patent rights. Instead, significant gene lists with fold change values are usually provided in most studies. However, due to variations in data sources and profiling conditions, only a small number of common significant genes could be found among similar studies. Moreover, traditional gene set based analyses that consider these genes have not taken into account the fold change values, which may be important to distinguish between the different levels of significance of the genes. Human embryonic stem cell derived cardiomyocytes (hESC-CM) is a good representative of this category. hESC-CMs, with its role as a potentially unlimited source of human heart cells for regenerative medicine, have attracted the attentions of biological and medical researchers. Because of the difficulty of acquiring data and the resulting expenses, there are only a few related hESC-CM studies and few hESC-CM gene expression data are provided. In view of these challenges, we propose a new Gene Set Enrichment Ensemble (GSEE) approach to perform gene set based analysis on individual studies based on significant up-regulated gene lists with fold change data only. Our approach provides both explicit and implicit ways to utilize the fold change data, in order to make full use of scarce data. We validate our approach with hESC-CM data and fetal heart data, respectively. Experimental results on significant gene lists from different studies illustrate the effectiveness of our proposed approach.
Collapse
Affiliation(s)
- Hai Huang
- School of Mathematics and Information, Guangzhou University, Guangzhou, PR China.
| | - Shaohong Zhang
- Department of Computer Science, Guangzhou University, Guangzhou, PR China.
| | - Wen-Jun Shen
- Shantou University Medical College, Shantou, PR China.
| | - Hau-San Wong
- Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China.
| | - Dongqing Xie
- Department of Computer Science, Guangzhou University, Guangzhou, PR China.
| |
Collapse
|
7
|
Tanwar V, Bylund JB, Hu J, Yan J, Walthall JM, Mukherjee A, Heaton WH, Wang WD, Potet F, Rai M, Kupershmidt S, Knapik EW, Hatzopoulos AK. Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Stem Cells 2015; 32:1774-88. [PMID: 24648383 DOI: 10.1002/stem.1703] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/17/2014] [Accepted: 02/23/2014] [Indexed: 01/23/2023]
Abstract
The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation. Here, we demonstrate that Grem2 expression is induced concurrently with the emergence of cardiovascular progenitor cells during differentiation of mouse embryonic stem cells (ESCs). Grem2 exposure enhances the cardiogenic potential of ESCs by 20-120-fold, preferentially inducing genes expressed in atrial myocytes such as Myl7, Nppa, and Sarcolipin. We show that Grem2 acts upstream to upregulate proatrial transcription factors CoupTFII and Hey1 and downregulate atrial fate repressors Irx4 and Hey2. The molecular phenotype of Grem2-induced atrial cardiomyocytes was further supported by induction of ion channels encoded by Kcnj3, Kcnj5, and Cacna1d genes and establishment of atrial-like action potentials shown by electrophysiological recordings. We show that promotion of atrial-like cardiomyocytes is specific to the Gremlin subfamily of BMP antagonists. Grem2 proatrial differentiation activity is conveyed by noncanonical BMP signaling through phosphorylation of JNK and can be reversed by specific JNK inhibitors, but not by dorsomorphin, an inhibitor of canonical BMP signaling. Taken together, our data provide novel mechanistic insights into atrial cardiomyocyte differentiation from pluripotent stem cells and will assist the development of future approaches to study and treat arrhythmias.
Collapse
Affiliation(s)
- Vineeta Tanwar
- Department of Medicine, Division of Cardiovascular Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183:117-28. [PMID: 25662074 DOI: 10.1016/j.ijcard.2015.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
Abstract
Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
9
|
Abstract
During development, cardiogenesis is orchestrated by a family of heart progenitors that build distinct regions of the heart. Each region contains diverse cell types that assemble to form the complex structures of the individual cardiac compartments. Cardiomyocytes are the main cell type found in the heart and ensure contraction of the chambers and efficient blood flow throughout the body. Injury to the cardiac muscle often leads to heart failure due to the loss of a large number of cardiomyocytes and its limited intrinsic capacity to regenerate the damaged tissue, making it one of the leading causes of morbidity and mortality worldwide. In this Primer we discuss how insights into the molecular and cellular framework underlying cardiac development can be used to guide the in vitro specification of cardiomyocytes, whether by directed differentiation of pluripotent stem cells or via direct lineage conversion. Additional strategies to generate cardiomyocytes in situ, such as reactivation of endogenous cardiac progenitors and induction of cardiomyocyte proliferation, will also be discussed.
Collapse
Affiliation(s)
- Daniela Später
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Bioscience, CVMD iMED, AstraZeneca, Pepparedsleden 1, Mölndal 43150, Sweden
| | - Emil M Hansson
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| | - Lior Zangi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cardiology, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kenneth R Chien
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA Department of Cell and Molecular Biology and Medicine, Karolinska Institutet, 35 Berzelius Vag, Stockholm 171 77, Sweden
| |
Collapse
|
10
|
Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 2013; 31:829-37. [PMID: 23355363 PMCID: PMC3749929 DOI: 10.1002/stem.1331] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPS-CM) may offer a number of advantages over previous cardiac models, however, questions of their immaturity complicate their adoption as a new in vitro model. hPS-CM differ from adult cardiomyocytes with respect to structure, proliferation, metabolism and electrophysiology, better approximating fetal cardiomyocytes. Time in culture appears to significantly impact phenotype, leading to what can be referred to as early and late hPS-CM. This work surveys the phenotype of hPS-CM, including structure, bioenergetics, sensitivity to damage, gene expression, and electrophysiology, including action potential, ion channels, and intracellular calcium stores, while contrasting fetal and adult CM with hPS-CM at early and late time points after onset of differentiation.
Collapse
Affiliation(s)
- Claire Robertson
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - David D. Tran
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
| | - Steven C. George
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California, USA
- Department of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
11
|
Friedrichs S, Malan D, Sasse P. Modeling long QT syndromes using induced pluripotent stem cells: Current progress and future challenges. Trends Cardiovasc Med 2013; 23:91-8. [DOI: 10.1016/j.tcm.2012.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 01/27/2023]
|
12
|
Mesenchymal stem cell-like cells from children foreskin inhibit the growth of SGC-7901 gastric cancer cells. Exp Mol Pathol 2013; 94:430-7. [PMID: 23421973 DOI: 10.1016/j.yexmp.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/07/2013] [Accepted: 02/08/2013] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) become a research hotspot in recent years because of their roles in regenerative medicine and tissue injury repair. However, the limited source for MSCs hampers its clinical application. In this study, we isolated and identified human mesenchymal stem cell-like cells from foreskin (hFMSCs) by explant culture. HFMSCs had similar morphology and immunophenotype to that of human bone marrow derived-mesenchymal stem cells. HFMSCs formed colonies after 9 days of inoculation and could be propagated for more than 50 passages. HFMSCs had a normal karyotype and high G0/G1 phase independent of passage number. Further, hFMSCs could be induced to differentiate into osteocytes and adipocytes. We found that the growth of SGC-7901 (human gastric adenocarcinoma) cells could be suppressed by simultaneous injection of hFMSCs in vivo. HFMSCs also inhibited SGC-7901 cell proliferation in vitro. HFMSC co-injection resulted in a decrease in PCNA-positive and an increase in apoptotic tumor cells. HFMSCs derived conditioned medium inhibited the expression of BCL-2 while increased the expression of BAX and caspase-3 in SGC-7901 cells. Taken together, our findings suggest that children foreskin is a new source for MSCs and hFMSCs could inhibit gastric cancer cell growth both in vitro and in vivo.
Collapse
|
13
|
Mezentseva NV, Yang J, Kaur K, Iaffaldano G, Rémond MC, Eisenberg CA, Eisenberg LM. The histone methyltransferase inhibitor BIX01294 enhances the cardiac potential of bone marrow cells. Stem Cells Dev 2012; 22:654-67. [PMID: 22994322 DOI: 10.1089/scd.2012.0181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow (BM) has long been considered a potential stem cell source for cardiac repair due to its abundance and accessibility. Although previous investigations have generated cardiomyocytes from BM, yields have been low, and far less than produced from ES or induced pluripotent stem cells (iPSCs). Since differentiation of pluripotent cells is difficult to control, we investigated whether BM cardiac competency could be enhanced without making cells pluripotent. From screens of various molecules that have been shown to assist iPSC production or maintain the ES cell phenotype, we identified the G9a histone methyltransferase inhibitor BIX01294 as a potential reprogramming agent for converting BM cells to a cardiac-competent phenotype. BM cells exposed to BIX01294 displayed significantly elevated expression of brachyury, Mesp1, and islet1, which are genes associated with embryonic cardiac progenitors. In contrast, BIX01294 treatment minimally affected ectodermal, endodermal, and pluripotency gene expression by BM cells. Expression of cardiac-associated genes Nkx2.5, GATA4, Hand1, Hand2, Tbx5, myocardin, and titin was enhanced 114, 76, 276, 46, 635, 123, and 5-fold in response to the cardiogenic stimulator Wnt11 when BM cells were pretreated with BIX01294. Immunofluorescent analysis demonstrated that BIX01294 exposure allowed for the subsequent display of various muscle proteins within the cells. The effect of BIX01294 on the BM cell phenotype and differentiation potential corresponded to an overall decrease in methylation of histone H3 at lysine9, which is the primary target of G9a histone methyltransferase. In summary, these data suggest that BIX01294 inhibition of chromatin methylation reprograms BM cells to a cardiac-competent progenitor phenotype.
Collapse
Affiliation(s)
- Nadejda V Mezentseva
- New York Medical College/Westchester Medical Center Stem Cell Laboratory, Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Díez Villanueva P, Sanz-Ruiz R, Núñez García A, Fernández Santos ME, Sánchez PL, Fernández-Avilés F. Functional multipotency of stem cells: what do we need from them in the heart? Stem Cells Int 2012; 2012:817364. [PMID: 22966237 PMCID: PMC3433152 DOI: 10.1155/2012/817364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/22/2012] [Accepted: 07/22/2012] [Indexed: 12/14/2022] Open
Abstract
After more than ten years of human research in the field of cardiac regenerative medicine, application of stem cells in different phases of ischemic heart disease has come to age. Randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease, and several efficacy phase III trials with clinical endpoints are on their way. Nevertheless, a complete knowledge on the mechanisms of action of stem cells still remains elusive. Of the three main mechanisms by which stem cells could exert their benefit, paracrine signaling from the administered cells and stimulation of endogenous repair are nowadays the most plausible ones. However, in this review we will define and discuss the concept of stem cell potency and differentiation, will examine the evidence available, and will depict future directions of research.
Collapse
Affiliation(s)
- Pablo Díez Villanueva
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto Núñez García
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Pedro L. Sánchez
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|