1
|
Ma X, Fu S, Yin Y, Wu Y, Wang T, Xu G, Liu M, Xu Y, Tian J, Jiang G. Aberrant Functional Connectivity of Basal Forebrain Subregions with Cholinergic System in Short-term and Chronic Insomnia Disorder. J Affect Disord 2021; 278:481-487. [PMID: 33011526 DOI: 10.1016/j.jad.2020.09.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND To systematically investigate structural and functional abnormalities in subregions of the basal forebrain (BF) using structural and resting-state fMRI, and to examine their clinical relevance in short-term and chronic insomnia disorder (ID). METHODS Thirty-four patients with short-term ID, 41 patients with chronic ID, and 46 healthy controls (HCs) were recruited. Grey matter volume and seed-based resting-state functional connectivity (RSFC) in each BF subregion (Ch1,2,3 and 4) were computed and compared among the three groups. Spearman correlation was used to estimate the relationships between MRI-based alterations and clinical variables. RESULTS The short-term group exhibited lower RSFC with the bilateral striatum and bilateral Ch_4 than HCs and the chronic group. In the left Ch_4, subjects in the chronic group exhibited lower RSFC with the left middle cingulate cortex than HCs and the short-term group. The short-term group exhibited lower RSFC with the left parahippocampal gyrus (PHG) than HCs and the chronic group. The chronic group exhibited the highest RSFC with the left middle frontal gyrus (MFG), followed by HCs and the short-term group. In the right Ch_4, the chronic group exhibited the lowest RSFC with the right superior temporal gyrus, followed by HCs and the short-term group. Moreover, in the short-term group, negative correlations were found between the left Ch_4 and left MFG RSFC and Epworth Sleepiness Scale scores. CONCLUSIONS These findings suggest that the Ch_4 may be a key node for establishing diagnostic and categorical biomarkers of ID, which could be useful in developing more effective treatment strategies for insomnia.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Mengchen Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medial University, Guangzhou, 510515, P. R. China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China.
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, No.466 Road XinGang, Guangzhou, 510317, P. R. China.
| |
Collapse
|
2
|
Zhang X, Jin G, Li W, Zou L, Shi J, Qin J, Tian M, Li H. Ectopic neurogenesis in the forebrain cholinergic system-related areas of a rat dementia model. Stem Cells Dev 2011; 20:1627-38. [PMID: 21142974 DOI: 10.1089/scd.2010.0285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lesions to the fimbria fornix (FiFx) plus cingulate bundle (CB), the principal routes of communication of forebrain cholinergic regions, produce lasting impairment of spatial learning and memory in mice. We report that extensive neurogenesis takes place in the FiFx, CB, and basalis magnocellularis following FiFx plus CB transection. Immunofluorescence revealed that nestin-expressing cells were present in all 3 areas following lesion; the majority of nestin-positive cells were also positive for 5-bromo-2-deoxy-uridine, a marker of DNA synthesis. Nestin-positive proliferative cells were almost entirely absent from unlesioned tissue. Neurospheres cultured in vitro from lesioned FiFx displayed the characteristics of neural stem cells--proliferation, expression of embryonic markers, and multipotential differentiation into neurons, astrocytes, and oligodendrocytes. At early stages after transection, a small number of immature and migrating doublecortin-immunopositive neurons were detected in lesioned FiFx, where neuronal cell bodies are normally absent. At later stages, postlesion immature neurons developed into β-tubulin III-positive mature neurons. Lentivirus labeling assay implied that the injury-induced neurogenesis in FiFx may be from local neurogenic astrocytes but not from dentate gyrus. These results demonstrate that insult to cholinergic tracts can stimulate neural stem cell proliferation and neuronal regeneration not only in innervated regions but also in the projection pathways themselves. Ectopic neurogenesis in cholinergic system-related areas provides an additional mechanism for repair of cholinergic innervation following damage.
Collapse
Affiliation(s)
- Xinhua Zhang
- Department of Anatomy and Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong City, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Hong JH, Jang SH. Neural pathway from nucleus basalis of Meynert passing through the cingulum in the human brain. Brain Res 2010; 1346:190-4. [DOI: 10.1016/j.brainres.2010.05.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/25/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
|
4
|
Härtig W, Bauer A, Brauer K, Grosche J, Hortobágyi T, Penke B, Schliebs R, Harkany T. Functional recovery of cholinergic basal forebrain neurons under disease conditions: old problems, new solutions? Rev Neurosci 2003; 13:95-165. [PMID: 12160262 DOI: 10.1515/revneuro.2002.13.2.95] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recognition of the involvement of cholinergic neurons in the modulation of cognitive functions and their severe dysfunction in neurodegenerative disorders, such as Alzheimer's disease, initiated immense research efforts aimed at unveiling the anatomical organization and cellular characteristics of the basal forebrain (BFB) cholinergic system. Concomitant with our unfolding knowledge about the structural and functional complexity of the BFB cholinergic projection system, multiple pharmacological strategies were introduced to rescue cholinergic nerve cells from noxious attacks; however, a therapeutic breakthrough is still awaited. In this review, we collected recent findings that significantly contributed to our better understanding of cholinergic functions under disease conditions, and to the design of effective means to restore lost or damaged cholinergic functions. To this end, we first provide a brief survey of the neuroanatomical organization of BFB nuclei with emphasis on major evolutionary differences among mammalian species, in particular rodents and primates, and discuss limitations of the translation of experimental data to human therapeutic applications. Subsequently, we summarize the involvement of cholinergic dysfunction in the pathogenesis of severe neurological conditions, including stroke, traumatic brain injury, virus encephalitis and Alzheimer's disease, and emphasize the critical role of pro-inflammatory cytokines as common mediators of cholinergic neuronal damage. Moreover, we review leading functional concepts on the limited recovery of cholinergic neurons and their impaired plastic re-modeling, as well as on the hampered interplay of the ascending cholinergic and monoaminergic projection systems under neurodegenerative conditions. In addition, recent advances in the dynamic labeling of living cholinergic neurons by fluorochromated antibodies, referred to as in vivo labeling, and novel neuroimaging approaches as potential diagnostic tools of progressive cholinergic decline are surveyed. Finally, the potential of cell replacement strategies using embryonic and adult stem cells, and multipotent neural progenitors, as a means to recover damaged cholinergic functions, is discussed.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Oh JD, Chartisathian K, Chase TN, Butcher LL. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res 2000; 853:174-85. [PMID: 10640615 DOI: 10.1016/s0006-8993(99)02054-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both excitotoxicity and altered trophic factor support have been implicated in the pathogenesis of Alzheimer's disease. To determine whether stimulation of p75, the low-affinity receptor for nerve growth factor, contributes to the excitotoxin-induced apoptotic death of cholinergic neurons, we examined the effect of unilateral kainic acid (KA; PBS vehicle, 1.25, 2.5 and 5.0 nmol) administration into rat basal forebrain on neuronal loss and p75 expression. KA (2. 5 nmol) destroyed 43% of Nissl-stained neurons and 70% of choline acetyltransferase (ChAT)-positive neurons 5 days after injection. Agarose gel electrophoresis revealed that KA (2.5 nmol) induced local internucleosomal DNA fragmentation after 6-48 h. Immunohistochemical analysis further showed that KA (2.5 nmol) augmented p75 immunoreactivity at a time when terminal transferase-mediated deoxyuridine trophosphate (d-UTP)-digoxigenin nick end labeling (TUNEL)-positive nuclei were increased. Many fragmented nuclei were co-labeled with ChAT antibody. The chronic administration of anti-rat p75 or the protein synthesis inhibitor, cycloheximide, but not anti-human p75, substantially reduced the KA-induced destruction of cholinergic neurons and the induction of internucleosomal DNA fragmentation. Anti-rat p75, but not cycloheximide, also reversed the spatial memory impairment produced by KA. These findings suggest that overexpression of p75 contributes to the excitotoxin-induced death of rat basal forebrain cholinergic neurons by an apoptotic-like mechanism.
Collapse
Affiliation(s)
- J D Oh
- Experimental Therapeutics Branch, Building 10, Room 5C103, National Institute of Neurological Disorders and Stroke, NIH, Bldg. 10, Room 5C211, 90900 Rockville Pike, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
6
|
van der Zee EA, Luiten PG. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: a review of immunocytochemical localization in relation to learning and memory. Prog Neurobiol 1999; 58:409-71. [PMID: 10380240 DOI: 10.1016/s0301-0082(98)00092-6] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Immunocytochemical mapping studies employing the extensively used monoclonal anti-muscarinic acetylcholine receptor (mAChR) antibody M35 are reviewed. We focus on three neuronal muscarinic cholinoceptive substrates, which are target regions of the cholinergic basal forebrain system intimately involved in cognitive functions: the hippocampus; neocortex; and amygdala. The distribution and neurochemistry of mAChR-immunoreactive cells as well as behaviorally induced alterations in mAChR-immunoreactivity (ir) are described in detail. M35+ neurons are viewed as cells actively engaged in neuronal functions in which the cholinergic system is typically involved. Phosphorylation and subsequent internalization of muscarinic receptors determine the immunocytochemical outcome, and hence M35 as a tool to visualize muscarinic receptors is less suitable for detection of the entire pool of mAChRs in the central nervous system (CNS). Instead, M35 is sensitive to and capable of detecting alterations in the physiological condition of muscarinic receptors. Therefore, M35 is an excellent tool to localize alterations in cellular cholinoceptivity in the CNS. M35-ir is not only determined by acetylcholine (ACh), but by any substance that changes the phosphorylation/internalization state of the mAChR. An important consequence of this proposition is that other neurotransmitters than ACh (especially glutamate) can regulate M35-ir and the cholinoceptive state of a neuron, and hence the functional properties of a neuron. One of the primary objectives of this review is to provide a synthesis of our data and literature data on mAChR-ir. We propose a hypothesis for the role of muscarinic receptors in learning and memory in terms of modulation between learning and recall states of brain areas at the postsynaptic level as studied by way of immunocytochemistry employing the monoclonal antibody M35.
Collapse
Affiliation(s)
- E A van der Zee
- Department of Zoology, University of Groningen, Haren, The Netherlands.
| | | |
Collapse
|
7
|
Härtig W, Seeger J, Naumann T, Brauer K, Brückner G. Selective in vivo fluorescence labelling of cholinergic neurons containing p75(NTR) in the rat basal forebrain. Brain Res 1998; 808:155-65. [PMID: 9767155 DOI: 10.1016/s0006-8993(98)00792-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cholinergic system of the rat basal forebrain is used as a model for the homologous region in humans which is highly susceptible to neuropathological alterations as in Alzheimer's disease. Cholinergic cells in the basal forebrain express the low-affinity neurotrophin receptor p75NTR. This has been utilized for selective immunolesioning of cholinergic neurons after internalization of an immunotoxin composed of anti-p75NTR and the ribosome-inactivating toxin saporin. However, the goal of many studies may be not the lesion, but the identification of cholinergic cells after other experimentally induced alterations in the basal forebrain. Therefore, a novel cholinergic marker was prepared by conjugating the monoclonal antibody 192IgG directed against p75NTR with the bright red fluorochrome carbocyanine 3 (Cy3). Three days after intraventricular injection of Cy3-192IgG the fluorescence microscopic analysis revealed a pattern of Cy3-labelled cells matching the distribution of cholinergic neurons. Apparently the marker was internalized within complexes of p75NTR and Cy3-192IgG which were then retrogradely transported to the cholinergic perikarya of the basal forebrain. In addition to the even labelling of somata, a strong punctate-like Cy3-immunofluorescence was seen in structures resembling lysosomes. The specificity of the in vivo staining was proven by subsequent immunolabelling of choline acetyltransferase (ChAT) with green fluorescent Cy2-tagged secondary antibodies. In the medial septum, the diagonal band and the nucleus basalis only cholinergic neurons were marked by Cy3-192IgG. In parallel experiments, digoxigenylated 192IgG was not detectable within cholinergic basal forebrain neurons after intraventricular injection. Presumably, this modified antibody could not be internalized. On the other hand, digoxigenylated 192IgG was found to be an excellent immunocytochemical marker for p75NTR as shown by double labelling including highly sensitive mouse antibodies directed against ChAT. Based on the present findings, future applications of the apparently non-toxic Cy3-192IgG and other antibodies for fluorescent in vivo and in vitro labelling are discussed.
Collapse
Affiliation(s)
- W Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Department of Neurochemistry, Jahnallee 59, D-04109, Leipzig, Germany
| | | | | | | | | |
Collapse
|
8
|
Stewart GR, Olney JW, Schmidt RE, Wozniak DF. Mineralization of the globus pallidus following excitotoxic lesions of the basal forebrain. Brain Res 1995; 695:81-7. [PMID: 8574652 DOI: 10.1016/0006-8993(95)00864-m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The excitotoxin N-methyl aspartic acid was injected into the rat nucleus basalis to destroy basal forebrain cholinergic (BFC) neurons. In long-term survival experiments (up to 11 months post-lesion), conspicuous mineralized deposits were found in the globus pallidus and to a lesser extent in the thalamus. Deposits stained in a manner consistent with a composition of calcium and iron. Typically, deposits were absent from the center of the injection site, where BFC cell loss was most severe, but were present within the ventral and lateral globus pallidus where there was substantial sparing of BFC neurons. The similarity of this pathology to basal ganglia calcification and its relationship to Alzheimer's Disease and Down's syndrome is discussed.
Collapse
Affiliation(s)
- G R Stewart
- Neurobiology Unit, Roche Bioscience, Palo Alto, CA 94303, USA
| | | | | | | |
Collapse
|