1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Le T. Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Dmitriy V. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Elizaveta R. Naberezhnaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Denis O. Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| | - Anastasia V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (O.N.A.); (P.O.V.); (D.V.K.); (Y.D.G.); (E.R.N.); (D.O.C.); (P.M.C.)
| |
Collapse
|
2
|
Sakamoto S, Inoue H, Kaneko MK, Ogasawara S, Kajikawa M, Urano S, Ohba S, Kato Y, Kawada M. Generation and evaluation of a chimeric antibody against coxsackievirus and adenovirus receptor for cancer therapy. Cancer Sci 2019; 110:3595-3602. [PMID: 31512325 PMCID: PMC6825000 DOI: 10.1111/cas.14196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/02/2023] Open
Abstract
Coxsackievirus and adenovirus receptor (CAR) is a single-pass transmembrane protein that is associated with adenoviral infection. CAR is involved in the formation of epithelial tight junctions and promotes tumor growth in some cancers. Previously, we developed mouse monoclonal antibodies against human CAR and found that one, mu6G10A, significantly inhibited tumor growth in xenografts of human cancer cells. Herein, we generated and characterized a mouse-human chimeric anti-CAR antibody (ch6G10A) from mu6G10A. ch6G10A had binding activity, inducing antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, and in vivo anti-tumor activity against CAR-expressing prostate cancer DU-145 cells. In addition, cancer tissue array analysis confirmed that CAR is highly expressed in neuroendocrine lung cancers including small cell lung cancer, and treatment with ch6G10A effectively inhibited in vivo subcutaneous tumor growth of NCI-H69 small cell lung cancer cells in nude mice. Moreover, treatment with mu6G10A effectively inhibited both in vivo orthotopic tumor growth and distant metastatic formation in mouse xenograft models of a highly metastatic subline of human small cell lung cancer DMS273 cells. These results suggest that targeting therapy to CAR with a therapeutic antibody might be effective against several cancer types including small cell lung cancer.
Collapse
Affiliation(s)
| | | | - Mika K. Kaneko
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
| | - Satoshi Ogasawara
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
| | | | - Sakiko Urano
- Medical & Biological Laboratories Co., LtdNagoyaJapan
| | | | - Yukinari Kato
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
- New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN)NumazuJapan
- Laboratory of OncologyInstitute of Microbial Chemistry (BIKAKEN)TokyoJapan
| |
Collapse
|
3
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
4
|
Leech AO, Cruz RGB, Hill ADK, Hopkins AM. Paradigms lost-an emerging role for over-expression of tight junction adhesion proteins in cancer pathogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:184. [PMID: 26366401 DOI: 10.3978/j.issn.2305-5839.2015.08.01] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
Tight junctions (TJ) are multi-protein complexes located at the apicalmost tip of the lateral membrane in polarised epithelial and endothelial cells. Their principal function is in mediating intercellular adhesion and polarity. Accordingly, it has long been a paradigm that loss of TJ proteins and consequent deficits in cell-cell adhesion are required for tumour cell dissemination in the early stages of the invasive/metastatic cascade. However it is becoming increasingly apparent that TJ proteins play important roles in not just adhesion but also intracellular signalling events, activation of which can contribute to, or even drive, tumour progression and metastasis. In this review, we shall therefore highlight cases wherein the gain of TJ proteins has been associated with signals promoting tumour progression. We will also discuss the potential of overexpressed TJ proteins to act as therapeutic targets in cancer treatment. The overall purpose of this review is not to disprove the fact that loss of TJ-based adhesion contributes to the progression of several cancers, but rather to introduce the growing body of evidence that gain of TJ proteins may have adhesion-independent consequences for promoting progression in other cancers.
Collapse
Affiliation(s)
- Astrid O Leech
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rodrigo G B Cruz
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
5
|
Presence of the coxsackievirus and adenovirus receptor (CAR) in human neoplasms: a multitumour array analysis. Br J Cancer 2013; 109:1848-58. [PMID: 24022195 PMCID: PMC3790165 DOI: 10.1038/bjc.2013.509] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/23/2022] Open
Abstract
Background: The Coxsackie- and Adenovirus Receptor (CAR) has been assigned two crucial attributes in carcinomas: (a) involvement in the regulation of growth and dissemination and (b) binding for potentially therapeutic adenoviruses. However, data on CAR expression in cancer types are conflicting and several entities have not been analysed to date. Methods: The expression of CAR was assessed by immunohistochemical staining of tissue microarrays (TMA) containing 3714 specimens derived from 100 malignancies and from 273 normal control tissues. Results: The expression of CAR was detected in all normal organs, except in the brain. Expression levels, however, displayed a broad range from being barely detectable (for example, in the thymus) to high abundance expression (for example, in the liver and gastric mucosa). In malignancies, a high degree of variability was notable also, ranging from significantly elevated CAR expression (for example, in early stages of malignant transformation and several tumours of the female reproductive system) to decreased CAR expression (for example, in colon and prostate cancer types). Conclusion: Our results provide a comprehensive insight into CAR expression in neoplasms and indicate that CAR may offer a valuable target for adenovirus-based therapy in a subset of carcinomas. Furthermore, these data suggest that CAR may contribute to carcinogenesis in an entity-dependent manner.
Collapse
|
6
|
Saito K, Sakaguchi M, Iioka H, Matsui M, Nakanishi H, Huh NH, Kondo E. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells. Oncogene 2013; 33:1274-86. [PMID: 23503462 DOI: 10.1038/onc.2013.66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Coxsackie and adenovirus receptor (CAR) is essential for adenovirus infection to target cells, and its constitutive expression in various cancerous and normal tissues has been reported. Recently, the biological role of CAR in human cancers of several different origins has been investigated with respect to tumor progression, metastasis and tumorigenesis. However, its biological function in tumor cells remains controversial. Here we report the critical role of CAR in growth regulation of oral squamous cell carcinomas (SCCs) in vitro and in vivo via the specific interaction with Rho-associated protein kinase (ROCK). Loss of endogenous CAR expression by knockdown using specific small interfering RNA (siRNA) against CAR facilitates growth suppression of SCC cells due to cell dissociation, followed by apoptosis. The consequent morphological reaction was reminiscent of anoikis, rather than epithelial-mesenchymal transition, and the dissociation of oral SCC cells was triggered not by lack of contact with extracellular matrix, but by loss of cell-to-cell contact caused by abnormal translocation of E-cadherin from surface membrane to cytoplasm. Immunoprecipitation assays of the CAR-transfected oral SCC cell line, HSC-2, with or without ROCK inhibitor (Y-27632) revealed that CAR directly associates with ROCKI and ROCKII, which results in inhibition of ROCK activity and contributes to maintenance of cell-to-cell adhesion for their growth and survival. Based on these findings, in vivo behavior of CAR-downregulated HSC-2 cells from siRNA knockdown was compared with that of normally CAR-expressing cells in intraperitoneally xenografted mouse models. The mice engrafted with CAR siRNA-pretreated HSC-2 cells showed poor formation of metastatic foci in contrast to those implanted with the control siRNA-pretreated cells. Thus, CAR substantially has an impact on growth and survival of oral SCC cells as a negative regulator of ROCK in vitro and in vivo.
Collapse
Affiliation(s)
- K Saito
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - M Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - H Iioka
- 1] Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan [2] Division of Translational Research, Advanced Medical Research Center, Aichi Medical University, Nagakute, Japan
| | - M Matsui
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - H Nakanishi
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - N H Huh
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - E Kondo
- 1] Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan [2] Department of Epidemiology, Program in Health and Community Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Expression of the coxsackie adenovirus receptor in neuroendocrine lung cancers and its implications for oncolytic adenoviral infection. Cancer Gene Ther 2012. [PMID: 23196273 DOI: 10.1038/cgt.2012.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coxsackie adenovirus receptor (CAR) is the primary receptor to which oncolytic adenoviruses have to bind for internalization and viral replication. A total of 171 neuroendocrine lung tumors in form of multitissue arrays have been analyzed resulting in a positivity of 112 cases (65.5%). Immunostaining correlated statistically significant with histopathology and development of recurrence. The subtype small cell lung cancer (SCLC) showed the highest CAR expression (77.6%), moreover the CAR level was correlated to the disease-free survival. Further, high CAR expression level in SCLC cell lines was found in vitro and in vivo when cell lines had been transplanted into immunodeficient mice. A correlation between CAR expression in the primary tumors and metastases development in the tumor model underlined the clinical relevance. Cell lines with high CAR level showed a high infectivity when infected with a replication-deficient adenovirus. Low levels of CAR expression in SCLC could be upregulated with Trichostatin A, a histone deacetylase inhibitor. As a result of the unaltered poor prognosis of SCLC and its high CAR expression it seems to be the perfect candidate for oncolytic therapy. With our clinically relevant tumor model, we show that xenograft experiments are warrant to test the efficiency of oncolytic adenoviral therapy.
Collapse
|
8
|
Giaginis C, Demetriou N, Alexandrou P, Stolakis V, Delladetsima I, Klijanienko J, Griniatsos I, Theocharis S. Receptor-binding cancer antigen expressed on SiSo cells (RCAS1) expression in human benign and malignant thyroid lesions. Med Sci Monit 2012; 18:BR123-9. [PMID: 22460085 PMCID: PMC3560822 DOI: 10.12659/msm.882613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is a human tumor-associated antigen that contributes to tumor progression by enabling cancer cells to evade immune surveillance. The present study aimed to evaluate the clinical significance of RCAS1 expression in human benign and malignant thyroid lesions. Material/Methods RCAS1 protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 121 patients with benign and malignant lesions and was associated with type of thyroid histopathology and tumor stage parameters such as tumor size, lymph node metastases, capsular, lymphatic and vascular invasion. Results RCAS1 positivity, overexpression and staining intensity provided a distinct discrimination between benign and malignant thyroid cases (p=0.0006, p=0.0001 and p=0.0001, respectively), as well as between hyperplastic nodule and papillary carcinoma cases (p=0.0229, p=0.0001 and p=0.0001, respectively). RCAS1 positivity, overexpression and staining intensity also provided distinct discrimination between cases with Hashimoto thyroiditis and those with hyperplastic nodule (p=0.0221, p=0.0001 and p=0.0019, respectively). In the subgroup of malignant thyroid lesions, RCAS1 overexpression was significantly associated with large tumor size (p=0.0246), the presence of lymph node metastases (p=0.0351) and capsular invasion (p=0.0397). Conclusions RCAS1 protein may participate in thyroid neoplastic transformation and could be considered as a useful biomarker to improve diagnostic scrutiny.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim J, Kim PH, Kim SW, Yun CO. Enhancing the therapeutic efficacy of adenovirus in combination with biomaterials. Biomaterials 2011; 33:1838-50. [PMID: 22142769 DOI: 10.1016/j.biomaterials.2011.11.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/10/2011] [Indexed: 12/18/2022]
Abstract
With the reason that systemically administered adenovirus (Ad) is rapidly extinguished by innate/adaptive immune responses and accumulation in liver, in vivo application of the Ad vector is strictly restricted. For achieving to develop successful Ad vector systems for cancer therapy, the chemical or physical modification of Ad vectors with polymers has been generally used as a promising strategy to overcome the obstacles. With polyethylene glycol (PEG) first in order, a variety of polymers have been developed to shield the surface of therapeutic Ad vectors and well accomplished to extend circulation time in blood and reduce liver toxicity. However, although polymer-coated Ads can successfully evacuate from a series of guarding systems in vivo and locate within tumors by enhanced permeability and retention (EPR) effect, the possibility to entering into the target cell is few and far between. To endow targeting moiety to polymer-coated Ad vectors, a diversity of ligands such as tumor-homing peptides, growth factors or antibodies, have been introduced with avoiding unwanted transduction and enhancing therapeutic efficacy. Here, we will describe and classify the characteristics of the published polymers with respect to Ad vectors. Furthermore, we will also compare the properties of variable targeting ligands, which are being utilized for addressing polymer-coated Ad vectors actively.
Collapse
Affiliation(s)
- Jaesung Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA
| | | | | | | |
Collapse
|
10
|
Karidis NP, Giaginis C, Tsourouflis G, Alexandrou P, Delladetsima I, Theocharis S. Eph-A2 and Eph-A4 expression in human benign and malignant thyroid lesions: an immunohistochemical study. Med Sci Monit 2011; 17:BR257-BR265. [PMID: 21873938 PMCID: PMC3560523 DOI: 10.12659/msm.881929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/16/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Ephrin receptors (Ephs) are frequently overexpressed in a wide variety of human malignant tumors, being associated with tumor growth, invasion, metastasis and angiogenesis. The aim of the present study was to evaluate the clinical significance of Eph-A2 and Eph-A4 expression in human benign and malignant thyroid lesions. MATERIAL/METHODS Eph-A2 and Eph-A4 protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 131 patients with benign and malignant lesions. RESULTS Eph-A2 was significantly overexpressed in malignant compared to benign thyroid lesions (p<0.001). Papillary carcinoma cases presented significantly increased Eph-A2 expression compared to those with hyperplasia nodules (p<0.001). Eph-A4 expression was not differentiated between cases with malignant or benign thyroid lesions. Papillary carcinoma cases presented significantly increased Eph-A4 expression compared to those with hyperplasia nodules (p=0.006). In the subgroup of malignant thyroid lesions, Eph-A2 and Eph-A4 expression was not associated with TNM stage, capsular, lymphatic or vascular invasion. CONCLUSIONS The present data suggest that Eph-A2, but not Eph-A4, overexpression may be associated with the malignant transformation of thyroid neoplasia. Further studies conducted on cohorts including a higher proportion of patients with advanced nodal and metastatic disease are recommended to draw definite conclusions on the clinical significance of Eph proteins in thyroid neoplasia.
Collapse
Affiliation(s)
- Nikolaos P. Karidis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece
| | - Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece
| | - Gerasimos Tsourouflis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece
| | | | - Ioanna Delladetsima
- 1 Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - Stamatios Theocharis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
11
|
Giaginis C, Michailidi C, Stolakis V, Alexandrou P, Tsourouflis G, Klijanienko J, Delladetsima I, Theocharis S. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: an immunohistochemical study. Med Sci Monit 2011; 17:BR81-90. [PMID: 21358597 PMCID: PMC3524721 DOI: 10.12659/msm.881444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Michailidi C, Giaginis C, Stolakis V, Alexandrou P, Klijanienko J, Delladetsima I, Chatzizacharias N, Tsourouflis G, Theocharis S. Evaluation of FAK and Src expression in human benign and malignant thyroid lesions. Pathol Oncol Res 2010; 16:497-507. [PMID: 20405349 DOI: 10.1007/s12253-010-9269-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 04/05/2010] [Indexed: 11/28/2022]
Abstract
Focal Adhesion Kinase (FAK) and Src have been reported to regulate tumor growth, invasion, metastasis and angiogenesis. The present study aimed to evaluate by immunohistochemistry the clinical significance of FAK and Src expression in 108 patients with benign and malignant thyroid lesions. Total FAK expression provided a distinct discrimination between malignant and benign (p = 0.00001), as well as between papillary carcinoma and hyperplastic nodules thyroid lesions (p = 0.00005), being also associated with follicular cells' proliferative capacity (p = 0.0003). In malignant thyroid lesions, total FAK expression was associated with tumor size (p = 0.0455), and presence of capsular (p = 0.0102) and lymphatic (p = 0.0173) invasion. Total Src expression was borderline increased in cases of papillary carcinoma compared to hyperplastic nodules (p = 0.0993), being also correlated with tumor size (p = 0.0169). FAK and Src expression was ascribed to a significant extent to the phosphorylated forms of the enzymes, which provided a better discrimination between malignant and benign thyroid lesions. The current data revealed that FAK and to a lesser extent Src expression could be considered of clinical utility in thyroid neoplasia with potential use as therapeutic targets.
Collapse
Affiliation(s)
- Christina Michailidi
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 M Asias str, Goudi, GR11527 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|