1
|
van Hensbergen VP, Movert E, de Maat V, Lüchtenborg C, Le Breton Y, Lambeau G, Payré C, Henningham A, Nizet V, van Strijp JAG, Brügger B, Carlsson F, McIver KS, van Sorge NM. Streptococcal Lancefield polysaccharides are critical cell wall determinants for human Group IIA secreted phospholipase A2 to exert its bactericidal effects. PLoS Pathog 2018; 14:e1007348. [PMID: 30321240 PMCID: PMC6201954 DOI: 10.1371/journal.ppat.1007348] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/25/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
Human Group IIA secreted phospholipase A2 (hGIIA) is an acute phase protein with bactericidal activity against Gram-positive bacteria. Infection models in hGIIA transgenic mice have suggested the importance of hGIIA as an innate defense mechanism against the human pathogens Group A Streptococcus (GAS) and Group B Streptococcus (GBS). Compared to other Gram-positive bacteria, GAS is remarkably resistant to hGIIA activity. To identify GAS resistance mechanisms, we exposed a highly saturated GAS M1 transposon library to recombinant hGIIA and compared relative mutant abundance with library input through transposon-sequencing (Tn-seq). Based on transposon prevalence in the output library, we identified nine genes, including dltA and lytR, conferring increased hGIIA susceptibility. In addition, seven genes conferred increased hGIIA resistance, which included two genes, gacH and gacI that are located within the Group A Carbohydrate (GAC) gene cluster. Using GAS 5448 wild-type and the isogenic gacI mutant and gacI-complemented strains, we demonstrate that loss of the GAC N-acetylglucosamine (GlcNAc) side chain in the ΔgacI mutant increases hGIIA resistance approximately 10-fold, a phenotype that is conserved across different GAS serotypes. Increased resistance is associated with delayed penetration of hGIIA through the cell wall. Correspondingly, loss of the Lancefield Group B Carbohydrate (GBC) rendered GBS significantly more resistant to hGIIA-mediated killing. This suggests that the streptococcal Lancefield antigens, which are critical determinants for streptococcal physiology and virulence, are required for the bactericidal enzyme hGIIA to exert its bactericidal function.
Collapse
Affiliation(s)
- Vincent P. van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elin Movert
- Department of Experimental Medical Science, Section for Immunology, Lund University, Lund, Sweden
| | - Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States of America
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Department of Biochemistry, Valbonne, France
| | - Christine Payré
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Department of Biochemistry, Valbonne, France
| | - Anna Henningham
- Department of Pediatrics and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Britta Brügger
- Heidelberg University, Biochemistry Center (BZH), Heidelberg, Germany
| | - Fredric Carlsson
- Department of Experimental Medical Science, Section for Immunology, Lund University, Lund, Sweden
- Department of Biology, Section for Molecular Cell Biology, Lund University, Lund, Sweden
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States of America
| | - Nina M. van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E, Lieberman J, Shirtliff ME, Tettelin H, El-Sayed NM, McIver KS. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 2017; 13:e1006584. [PMID: 28832676 PMCID: PMC5584981 DOI: 10.1371/journal.ppat.1006584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023] Open
Abstract
The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments. The WHO ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues. The genetic requirements for M1T1 GAS 5448 within this niche were interrogated by in vivo transposon sequencing (Tn-seq), identifying 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during GAS 5448 soft tissue infection and dissemination into the bloodstream. Thus, this study improves the functional annotation of the GAS genome, providing new insights into GAS pathophysiology and enhancing the development of novel GAS therapeutics.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey A. Freiberg
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ganesh S. Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Joshua Lieberman
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark E. Shirtliff
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| |
Collapse
|
3
|
Cabrita P, Trigo MJ, Ferreira RB, Brito L. Is the exoproteome important for bacterial pathogenesis? Lessons learned from interstrain exoprotein diversity in Listeria monocytogenes grown at different temperatures. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:553-69. [PMID: 25127015 DOI: 10.1089/omi.2013.0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial exoproteomes vary in composition and quantity among species and within each species, depending on the environmental conditions to which the cells are exposed. This article critically reviews the literature available on exoproteins synthesized by the foodborne pathogenic bacterium Listeria monocytogenes grown at different temperatures. The main challenges posed for exoproteome analyses and the strategies that are being used to overcome these constraints are discussed. Over thirty exoproteins from L. monocytogenes are considered, and the multifunctionality of some of them is discussed. Thus, at the host temperature of 37°C, good examples are provided by Lmo0443, a potential marker for low virulence, and by the virulence factors internalin C (InlC) and listeriolysin O (LLO). Based on the reported LLO-induced mucin exocytosis, a model is proposed for the involvement of extracellular LLO in optimizing the conditions for InlC intervention in the invasion of intestinal epithelial cells. At lower growth temperatures, exoproteins such as flagellin (FlaA) and oligopeptide permease (OppA) may explain the persistence of particular strains in the food industry environment, eventually allowing the development of new tools to eradicate L. monocytogenes, a major concern for public health.
Collapse
Affiliation(s)
- Paula Cabrita
- 1 CBAA/DRAT-Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon , Lisbon, Portugal
| | | | | | | |
Collapse
|