1
|
Sturm MC, Abazid A, Stope MB. Tissue adhesion after surgical interventions (Review). Exp Ther Med 2025; 29:97. [PMID: 40165802 PMCID: PMC11956145 DOI: 10.3892/etm.2025.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Tissue adhesion after surgical procedures is a common postoperative complication that affects a significant number of patients across all surgical disciplines. In pelvic surgical procedures, second-look surgeries have revealed adhesions in more than half of all patients weeks to several months after surgery. Adhesions can be asymptomatic, but they can also cause a wide range of complications, such as severe pain, nausea, vomiting, constipation, ileus and reproductive dysfunction. Undetected adhesions that lead to problems in subsequent surgical interventions are also of high clinical importance. Lysis of these adhesions before the actual surgery leads to loss of time and possible additional complications, such as trocar injuries in laparoscopies or inadvertent enterotomies during adhesiolysis, during the originally planned intervention. The health care associated with adhesion-related problems are significant. Because of the widely varying manifestations of symptoms, the already concerning figure of patients with significant adhesions is likely to increase. Outpatient healthcare expenditures are further increased because of undetected adhesions. Adhesions therefore represent a major surgical and health economic problem; however, yet there are currently few options for prophylaxis and treatment.
Collapse
Affiliation(s)
- Malin C.K. Sturm
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, D-10115 Berlin, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
2
|
Gupta PS, Wasnik K, Patra S, Pareek D, Singh G, Yadav DD, Maity S, Paik P. Nitric oxide releasing novel amino acid-derived polymeric nanotherapeutic with anti-inflammatory properties for rapid wound tissue regeneration. NANOSCALE 2024; 16:1770-1791. [PMID: 38170815 DOI: 10.1039/d3nr03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Endogenous gasotransmitter nitric oxide (NO) is a central signalling molecule that modulates wound healing by maintaining homeostasis, collagen formation, wound contraction, anti-microbial action and accelerating tissue regeneration. The optimum delivery of NO using nanoparticles (NPs) is clinically challenging; hence, it is drawing significant attention in wound healing. Herein, a novel polymeric nanoplatform loaded with sodium nitroprusside (SP) NPs was prepared and used for wound healing to obtain the sustained release of NO in therapeutic quantities. SP NPs-induced excellent proliferation (∼300%) of mouse fibroblast (L929) cells was observed. With an increase in the SP NPs dose at 200 μg mL-1 concentration, a 200% upsurge in proliferation was observed along with enhanced migration, and only 17.09 h were required to fill the 50% gap compared to 37.85 h required by the control group. Further, SP NPs showed an insignificant impact on the coagulation cascade, revealing safe wound-healing treatment when tested in isolated rat RBCs. Additionally, SP NPs exhibited excellent angiogenic activity at a 10 μg mL-1 dose. Moreover, the formulated SP nanoformulation is non-irritant, non-toxic, and does not produce any skin sensitivity reaction on the rat's skin. Further, an in vivo wound healing study revealed that within 11 days of treatment with SP nanoformulation, 99.2 ± 1.0% of the wound was closed, while in the control group, only 45.5 ± 3.8% was repaired. These results indicate that owing to sustained NO release, the SP NP and SP nanoformulations are paramount with enormous clinical potential for the regeneration of wound tissues.
Collapse
Affiliation(s)
- Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| | - Somedutta Maity
- School of Engineering Science and Technology, University of Hydrabad, Hydrabad, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|
3
|
Mutual inter-regulation between iNOS and TGF-β1: Possible molecular and cellular mechanisms of iNOS in wound healing. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165850. [PMID: 32497615 DOI: 10.1016/j.bbadis.2020.165850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 01/20/2023]
Abstract
Abnormal wound healing with excessive scarring is a major health problem with socioeconomic and psychological impacts. In human, chronic wounds and scarring are associated with upregulation of the inducible nitric oxide synthase (iNOS). Recently, we have shown physiological regulation of iNOS in wound healing. Here, we sought to investigate the possible mechanistic role of iNOS in wound healing using biochemical and immunohistochemical assays. We found: (a) iNOS is the main source of wound nitric oxide (NO), (b) NOS inhibition in the wound, downregulated iNOS protein, mRNA and enzymatic activity, and reduced wound NO, and (c) iNOS inhibition resulted in delayed healing at early time points, and excessive scarring at late time points. Furthermore, molecular and cellular analysis of the wound showed that iNOS inhibition significantly (P < 0.05) increased TGF-β1 mRNA and protein levels, fibroblasts and collagen deposition. These latter findings suggest that iNOS might be exerting its action in the wound by signaling through TGF-β1 that activates wound fibroblasts to produce excessive collagen. Our current findings provide further support that iNOS is crucial for physiological wound healing, and suggest that dysregulation of iNOS during the inflammatory phase impairs healing, and results in disfiguring post-healing scarring. Thus, the mutual feedback regulation between iNOS and TGF-β1 at the gene, protein and functional levels might be the mechanism through which iNOS regulates the healing. Monitoring and maintenance of wound NO levels might be important for healing and avoiding long-term complications in susceptible people including patients with diabetic wounds, venous ulcers or keloid prone.
Collapse
|
4
|
Lombardi F, Palumbo P, Mattei A, Augello FR, Cifone MG, Giuliani M, Cinque B. Soluble Fraction from Lysates of Selected Probiotic Strains Differently Influences Re-Epithelialization of HaCaT Scratched Monolayer through a Mechanism Involving Nitric Oxide Synthase 2. Biomolecules 2019; 9:biom9120756. [PMID: 31766379 PMCID: PMC6995614 DOI: 10.3390/biom9120756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence supports the use of probiotics in the treatment of several skin conditions, including wounds. Even if in vitro and in vivo studies have highlighted the pro-healing effects of some probiotic bacteria, the underlying mechanisms are still not fully defined. The current investigation aimed to determine the re-epithelialization potential of the soluble fraction from lysate of seven different probiotic strains belonging to different genera (i.e., Streptococcus, Lactobacillus, and Bifidobacterium) on in vitro physically wounded HaCaT monolayer model. The results suggested that the soluble fraction of S. thermophilus, L. plantarum, and L. acidophilus promoted the re-epithelialization of scratched HaCaT monolayers, whereas those from B. longum, B. infantis, and B. breve significantly inhibited the process. On the other hand, L. bulgaricus showed no significant effect on in vitro wound repair. The mechanisms underlying the pro- or anti-healing properties of selected bacterial strains strictly and positively correlated with their ability to modulate nitric oxide synthase 2 (NOS2) expression and activity. Accordingly, the pre-treatment with aminoguanidine (AG), a specific inhibitor of NOS2 activity, abrogated the pro-healing effects of S. thermophilus, L. plantarum, and L. acidophilus.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Antonella Mattei
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Francesca Rosaria Augello
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Maurizio Giuliani
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
- Unit of Plastic and Reconstructive Surgery, Casa di Cura “Di Lorenzo” SrL, Via Vittorio Veneto 37, Avezzano, 67051 L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
- Correspondence: ; Tel.: +39-0862-433-553
| |
Collapse
|
5
|
Schanuel FS, Saguie BO, Monte-Alto-Costa A. Olive oil promotes wound healing of mice pressure injuries through NOS-2 and Nrf2. Appl Physiol Nutr Metab 2019; 44:1199-1208. [PMID: 30901524 DOI: 10.1139/apnm-2018-0845] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pressure injury environment is characterized by overproduction of reactive oxygen species and exacerbated inflammation, which impair the healing of these lesions. Mediterranean-like diet may be a good intervention to improve the healing of pressure injury owing to its anti-inflammatory and antioxidant components. Thus, this study evaluated the hypothesis that olive oil, as a main source of lipid in Mediterranean diet, could improve cutaneous wound healing of pressure injury in mice. Male Swiss mice were randomly divided into standard, olive oil, or soybean oil plus olive oil groups and fat represented 10% of total calories in all groups. Four weeks after the beginning of diet administration, 2 cycles of ischemia-reperfusion (IR) by external application of 2 magnets disks were performed in the dorsal skin to induce pressure injury formation. Fourteen days after the end of the second IR cycle, olive oil-based diet reduced neutrophils cells and cyclooxygenase-2 protein expression and increased nitric oxide synthase-2 and protein and lipid oxidation. Olive oil based-diet also increased nuclear factor erythroid 2-related factor 2 protein expression and collagen type I precursor protein expression. In addition, administration of olive oil-based diet promoted wound closure at 7, 10, and 14 days after the end of the second IR cycle. These findings support the hypothesis that olive oil-based diet improves cutaneous wound healing of pressure injury in mice through the reduction of inflammation and stimulation of redox equilibrium.
Collapse
Affiliation(s)
- Fernanda Seabra Schanuel
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
| | - Bianca Oliveira Saguie
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
| | - Andréa Monte-Alto-Costa
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
| |
Collapse
|
6
|
The 12-HHT/BLT2/NO Axis Is Associated to the Wound Healing and Skin Condition in Different Glycaemic States. Med Sci (Basel) 2019; 7:medsci7040065. [PMID: 31022982 PMCID: PMC6524016 DOI: 10.3390/medsci7040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes affects over 340 million people worldwide. This condition can go unnoticed and undiagnosed for years, leading to a late stage where high glycaemia produces complications such as delayed wound healing. Studies have shown that 12-HHT through BLT2, accelerates keratinocyte migration and wound healing. Additionally, evidence has shown the role of nitric oxide as a pro-regenerative mediator, which is decreased in diabetes. Our main goal was to study the association between the 12-HHT/BLT2 axis and the nitric oxide production in wound healing under different glycaemia conditions. For that purpose, we used in vivo and in vitro models. Our results show that the skin from diabetic mice showed reduced BLT2 and iNOS mRNA, TEER, 12-HHT, nitrites, and tight junction levels, accompanied by higher MMP9 mRNA levels. Furthermore, a positive correlation between BLT2 mRNA and nitrites was observed. In vitro, HaCaT-BLT2 cells showed higher nitric oxide and tight junction levels, and reduced MMP9 mRNA levels, compared to mock-keratinocytes under low and high glucose condition. The wound healing capacity was associated with higher nitric oxide production and was affected by the NOS inhibition. We suggest that the BLT2 expression improves the keratinocyte response to hyperglycaemia, associated with the production of nitric oxide.
Collapse
|
7
|
Brochado TMM, de Carvalho Schweich L, Di Pietro Simões N, Oliveira RJ, Antoniolli‐Silva ACMB. Carboxytherapy: Controls the inflammation and enhances the production of fibronectin on wound healing under venous insufficiency. Int Wound J 2019; 16:316-324. [PMID: 30467979 PMCID: PMC7949331 DOI: 10.1111/iwj.13031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/29/2022] Open
Abstract
To examine the influence of carboxytherapy on wound healing under venous insufficiency, full-thickness excisional wounds were created on Wistar rats. We used three groups with 32 rats each: Group (I): daily cleaning with 0.9% saline solution; Group Sulfadiazine (II): 1% silver sulfadiazine; and Carboxytherapy (III): subcutaneous application of 0.3 mL of carbon dioxide. The predetermined periods of analysis were the 3rd, 7th, 14th, and 30th day. The slides were stained with haematoxylin and eosin and Picrosirius red and submitted for immunohistochemistry. Groups II and III presented a statistically significant decrease in relation to the presence of neutrophilic and lymphocytic infiltrates. The presence of collagen significant increased in groups II and III. However, group III presented better organisation. Only group I maintained the neovascularisation until the 30th day. The new epithelium statistically significantly increased in groups II and III. On immunohistochemistry, regarding fibronectin expression, only group III demonstrated a statistically significant increase since the beginning of the healing process. Thus, the use of carboxytherapy promotes the formation of a tissue better structured and that may be an important resource for the treatment of wounds under venous insufficiency, especially those of recurrent re-openings.
Collapse
Affiliation(s)
- Themis M. M. Brochado
- Graduate Programme in Dermatofunctional PhysiotherapyBrazilian Institute of Therapies and Education (IBRATE)Campo GrandeBrazil
| | - Laynna de Carvalho Schweich
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen)“Maria Aparecida Pedrossian” University Hospital, Brazilian Hospital Services Company (EBSERH)Campo GrandeBrazil
- Graduate Programme in Health and Development in the Central‐West Region, Faculty of Medicine (FAMED)Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil
| | - Naudimar Di Pietro Simões
- Graduate Programme in Dermatofunctional PhysiotherapyBrazilian Institute of Therapies and Education (IBRATE)Campo GrandeBrazil
| | - Rodrigo J. Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen)“Maria Aparecida Pedrossian” University Hospital, Brazilian Hospital Services Company (EBSERH)Campo GrandeBrazil
- Graduate Programme in Health and Development in the Central‐West Region, Faculty of Medicine (FAMED)Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil
- Graduate Programme in Genetics and Molecular Biology, Department of General BiologyState University of Londrina (UEL)LondrinaBrazil
| | - Andréia C. M. B. Antoniolli‐Silva
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen)“Maria Aparecida Pedrossian” University Hospital, Brazilian Hospital Services Company (EBSERH)Campo GrandeBrazil
- Graduate Programme in Health and Development in the Central‐West Region, Faculty of Medicine (FAMED)Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil
- Faculty of Medicine (FAMED)Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil
| |
Collapse
|
8
|
He M, Sun L, Fu X, McDonough SP, Chu CC. Biodegradable amino acid-based poly(ester amine) with tunable immunomodulating properties and their in vitro and in vivo wound healing studies in diabetic rats' wounds. Acta Biomater 2019; 84:114-132. [PMID: 30508656 DOI: 10.1016/j.actbio.2018.11.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022]
Abstract
The objective of this study is to design a new family of biodegradable synthetic polymeric biomaterials for providing a tunable inhibition of macrophage's nitric oxide synthase (NOS) pathway. l-Arginine (Arg) is the common substrate for NOS and arginase. Both two metabolic pathways participate in the wound healing process. An impaired wound healing, such as diabetic or other chronic wounds is usually associated with an overproduction of NO by macrophages via the NOS pathway. In this study, a new family of l-nitroarginine (NOArg) based polyester amide (NOArg-PEA) and NOArg-Arg PEA copolymers (co-PEA) were designed and synthesized with different composition ratios. The NOArg-PEA and NOArg-Arg co-PEAs are biodegradable (more than 50% degradation in vitro in 4 days at 37 °C), biocompatible and did not activate the resting macrophage immune response per se. When classically activated or alternatively activated macrophages (CAM/AAM) were incubated with NOArg-PEA and NOArg-Arg co-PEAs, the treatments decreased the NO production of CAM, increased the arginase activity in both CAM and AAM, increased TGF-β1 production of CAM to various degrees and had no significant effect on TNF-α production. Diabetic rat models were used to evaluate the efficacy of NOArg-PEA and NOArg-Arg co-PEAs on wound healing. Diabetic rats treated with 2-NOArg-4 PEA, 2-NOArg-4-Arg-4 20/80, and 2-NOArg-4-Arg-4 50/50 biomaterials achieved 40%-80% faster-wound healing when compared with the control on day 7. The data from the histological and immunohistochemical analysis showed that the 2-NOArg-4-Arg-4 20/80 and 2-NOArg-4-Arg-4 50/50 treatments led to more AAM phenotypes (CD206) and arginase I production in wound tissue than the control during the first 7 days, i.e., suggesting pro-healing wound microenvironment with improved re-epithelialization of wound healing. A similar trend was retained until day 14. The 2-NOArg-4-Arg-4 20/80 and 2-NOArg-4-Arg-4 50/50 treatments also increased the collagen deposition and angiogenesis in the healing wound between day 7 and day 14. Both in vitro and in vivo data of this study showed that this new family of NOArg-Arg co-PEA biomaterials have the potential as viable alternatives for treating impaired wound healing, such as diabetic or other types of chronic wounds. STATEMENT OF SIGNIFICANCE: Diabetic or other chronic wounds is usually associated with an overproduction of NO and pro-inflammatory signals by macrophages. Arginine supplement or NOS inhibitors administration failed to achieve an expected improved wound healing because of the dynamic complexity of arginine catabolism, the difficulty in transition from pro-inflammatory to pro-healing, and the short-term efficacy. We designed and synthesized a new family of water-soluble and degradable nitroarginine-arginine polyester amides to rebalance NOS/arginase metabolism pathways of macrophages. They showed tunable immunomodulating properties in vitro. The in vivo studies were performed to evaluate their efficacy in accelerating the healing. These new biomaterials have the potential as viable alternatives for treating impaired wound healing. The general audience of Acta Biomaterialia should be interested in these findings.
Collapse
|
9
|
Zhang Y, Tang K, Chen B, Zhou S, Li N, Liu C, Yang J, Lin R, Zhang T, He W. A polyethylenimine-based diazeniumdiolate nitric oxide donor accelerates wound healing. Biomater Sci 2019; 7:1607-1616. [PMID: 30702089 DOI: 10.1039/c8bm01519h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A polyethylenimine based diazeniumdiolate nitric oxide donor was prepared to accelerate wound healing.
Collapse
|
10
|
André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair. Int J Mol Sci 2017; 18:ijms18102149. [PMID: 29036938 PMCID: PMC5666831 DOI: 10.3390/ijms18102149] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the role of oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in oxidative metabolism to its recognition as an important player in cell signaling. With regard to the latter, oxygen is needed for the generation of reactive oxygen species (ROS), which regulate a number of different cellular functions including differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding wound contraction. In this review we provide an overview of the current literature on the role of molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| | - Ali Modarressi
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| | - Michael S Pepper
- Department of Human Genetics and Development, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
- SAMRC Extramural Unit for Stem Cell Research and Therapy, and Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Brigitte Pittet-Cuénod
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
11
|
Dong Y, A S, Rodrigues M, Li X, Kwon SH, Kosaric N, Khong S, Gao Y, Wang W, Gurtner GC. Injectable and Tunable Gelatin Hydrogels Enhance Stem Cell Retention and Improve Cutaneous Wound Healing. ADVANCED FUNCTIONAL MATERIALS 2017; 27. [DOI: 10.1002/adfm.201606619] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design of an ideal material with tunable properties that can mimic different tissue niches and regulate stem cell behaviors remains an unfulfilled promise. Here, an injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed with highly tunable properties, from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within about 2 min under the physiological condition. Murine adipose‐derived stem cells (ASCs) can be easily encapsulated into the hydrogel, which supports ASC growth and maintains their stemness. The hydrogel mechanical properties, biodegradability, and cellular responses can be finely controlled by changing hydrogel formulation and cell seeding densities. An animal study shows that the in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure using a murine wound healing model. These data suggest that injectable PEG–gelatin hydrogel can be used for regulating stem cell behaviors in 3D culture, delivering cells for wound healing and other tissue regeneration applications.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Surgery Stanford University School of Medicine Stanford CA 94305 USA
- Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Dublin 4 Ireland
| | - Sigen A
- Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Dublin 4 Ireland
| | - Melanie Rodrigues
- Department of Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Xiaolin Li
- Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Dublin 4 Ireland
| | - Sun H. Kwon
- Department of Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Nina Kosaric
- Department of Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Sacha Khong
- Department of Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Yongsheng Gao
- Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Dublin 4 Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Dublin 4 Ireland
| | - Geoffrey C. Gurtner
- Department of Surgery Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
12
|
Yeh DD, Nazarian RM, Demetri L, Mesar T, Dijkink S, Larentzakis A, Velmahos G, Sadik KW. Histopathological assessment of OASIS Ultra on critical-sized wound healing: a pilot study. J Cutan Pathol 2017; 44:523-529. [PMID: 28256051 DOI: 10.1111/cup.12925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/23/2017] [Accepted: 02/27/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Dermatopathologists assess wounds secondary to trauma, infection, or oncologic resection that can be challenging to reconstruct. OASIS Ultra, an extracellular matrix, has been described for use in chronic and burn wounds. The aim of this pilot study is to assess wound healing in post-traumatic and infective wounds treated with OASIS using histological markers of repair. MATERIALS AND METHODS Adults with traumatic, infective or iatrogenic wound defects with size precluding primary closure were eligible. Half the wound was randomly assigned to receive OASIS plus standard therapy; the other half received standard of care (SOC) therapy. During dressing changes, standardized-scale photographs were taken and biopsies obtained. Histologic sections were reviewed for degree of acute inflammation and extent of tissue repair. Neutrophils, edema, hemorrhage, necrosis, fibroblasts, collagen density and neovascularization were semi-quantitatively assessed. RESULTS Forty-four skin biopsies from 7 patients with 10 acute wounds met eligibility criteria. Histologically, OASIS samples demonstrated improved acute inflammation scores compared to SOC. No patients experienced OASIS-related complications. OASIS-treated wound halves trended toward more wound contraction and improved tissue repair. CONCLUSION Our scoring system aids histopathological wound assessment. Treatment of critical-sized, post-traumatic, acute wounds with OASIS resulted in decreased inflammation, and potentially more advanced wound healing, compared to SOC.
Collapse
Affiliation(s)
- Daniel Dante Yeh
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Rosalynn M Nazarian
- Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Dermatopathology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Tomaz Mesar
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Suzan Dijkink
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Andreas Larentzakis
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - George Velmahos
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Karim Walid Sadik
- Department of Surgery, Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Ganzarolli de Oliveira M. S-Nitrosothiols as Platforms for Topical Nitric Oxide Delivery. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:49-56. [PMID: 27030007 DOI: 10.1111/bcpt.12588] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) is a small radical species involved in several fundamental physiological processes, including the control of vascular tone, the immune response and neuronal signalling. Endothelial dysfunction with the decreased NO bioavailability is the underlying cause of several diseases and has led to the development of a wide range of systemic NO donor compounds to lower the blood pressure and control hypertensive crises. However, several potential therapeutic actions of NO, not related to the cardiovascular system, demand exclusively local actions. Primary S-nitrosothiols (RSNOs) are endogenously found NO carriers and donors and have emerged as platforms for the localized delivery of NO in topical applications. Formulations for this purpose have evolved from low molecular weight RSNOs incorporated in polymeric films, hydrogels and viscous vehicles, to polymeric RSNOs where the SNO moiety is covalently bound to the polymer backbone. The biological actions displayed by these formulations include the increase in dermal vasodilation, the acceleration of wound healing, the killing of infectious microorganisms and an analgesic action against inflammatory pain. This MiniReview focuses on the state of the art of experimental topical formulations for NO delivery based on S-nitrosothiols and their potential therapeutic applications.
Collapse
|
14
|
Novaes RD, Cupertino MC, Sarandy MM, Souza A, Soares EA, Gonçalves RV. Time-Dependent Resolution of Collagen Deposition During Skin Repair in Rats: A Correlative Morphological and Biochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1482-1490. [PMID: 26538416 DOI: 10.1017/s1431927615015366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skin samples were used to compare microscopy methods used to quantify collagen with potential applicability to resolve time-dependent collagen deposition during skin wound healing in rats. Skin wounds by secondary intention were made in rats and tissue fragments were collected every 7 days for 21 days. Collagen content determined by biochemical analysis was compared with collagen measured by point counting (PC) on histological skin sections stained by Gomori's trichrome method (Trichrome/PC), Sirius red under polarized light (PL) microscopy (Sirius red/PL-PC), and computational color segmentation (CS) applied to sections stained with Sirius red (Sirius red/PL-CS). All microscopy methods investigated resolved the time-dependent dynamics of collagen deposition in scar tissue during skin wound healing in rats. Collagen content measured by Sirius red/PL-PC and Sirius red/PL-CS was significantly lower when compared with Trichrome/PC. The Trichrome/PC method provided overestimated values of collagen compared with biochemical analysis. In the early stages of wound healing, which shows high production of noncollagenous molecules, Sirius red/PL-CS and Sirius red/PL-PC methods were more suitable for quantification of collagen fibers. Trichrome staining did not allow clear separation between collagenous and noncollagenous elements in skin samples, introducing a marked bias in collagen quantification.
Collapse
Affiliation(s)
- Rômulo D Novaes
- 1Department of Structural Biology,Federal University of Alfenas,Rua Gabriel Monteiro da Silva, 700,Campus Universitário,Centro,Alfenas,MG 37130-000,Brazil
| | - Marli C Cupertino
- 2Department of General Biology,Federal University of Viçosa,Viçosa,MG 36570-000,Brazil
| | - Mariaurea M Sarandy
- 2Department of General Biology,Federal University of Viçosa,Viçosa,MG 36570-000,Brazil
| | - André Souza
- 3Department of Animal Biology,Federal University of Viçosa,Viçosa,MG 36570-000,Brazil
| | - Evelise A Soares
- 4Department of Anatomy,Federal University of Alfenas,Alfenas,MG 37130-000,Brazil
| | - Reggiani V Gonçalves
- 3Department of Animal Biology,Federal University of Viçosa,Viçosa,MG 36570-000,Brazil
| |
Collapse
|
15
|
Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing. Colloids Surf B Biointerfaces 2015; 130:182-91. [DOI: 10.1016/j.colsurfb.2015.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023]
|
16
|
Fosen KM, Thom SR. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid Redox Signal 2014; 21:1634-47. [PMID: 24730726 PMCID: PMC4175035 DOI: 10.1089/ars.2014.5940] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. RECENT ADVANCES This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. CRITICAL ISSUES Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. FUTURE DIRECTIONS Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed.
Collapse
Affiliation(s)
- Katina M. Fosen
- Department of Emergency Medicine, Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania
| | - Stephen R. Thom
- Department of Emergency Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
17
|
Deficiency of endothelial nitric oxide signaling pathway exacerbates peritoneal fibrosis in mice. Clin Exp Nephrol 2014; 19:567-75. [DOI: 10.1007/s10157-014-1029-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/02/2014] [Indexed: 01/13/2023]
|
18
|
Paraguassú GM, Xavier FCA, Cangussu MCT, Ramalho MJP, Cury PR, dos Santos JN, Pinheiro ALB, Ramalho LMP. Effect of Laser Phototherapy (λ660 nm) on Type I and III Collagen Expression During Wound Healing in Hypothyroid Rats: An Immunohistochemical Study in a Rodent Model. Photomed Laser Surg 2014; 32:281-8. [DOI: 10.1089/pho.2013.3604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gardênia Matos Paraguassú
- Department of Propedeutics and Dental Clinic, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Flávia Calo Aquino Xavier
- Department of Propedeutics and Dental Clinic, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Patrícia Ramos Cury
- Department of Periodontics, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Jean Nunes dos Santos
- Department of Propedeutics and Dental Clinic, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Luciana Maria Pedreira Ramalho
- Department of Propedeutics and Dental Clinic, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
- Center of Biophotonics, School of Dentistry, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
19
|
Dong Y, Hassan WU, Kennedy R, Greiser U, Pandit A, Garcia Y, Wang W. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomater 2014; 10:2076-85. [PMID: 24389319 DOI: 10.1016/j.actbio.2013.12.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 01/08/2023]
Abstract
Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.
Collapse
Affiliation(s)
- Yixiao Dong
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Waqar U Hassan
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Robert Kennedy
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Udo Greiser
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | - Yolanda Garcia
- Anatomy Department, National University of Ireland, Galway, Ireland.
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Mendes DAGB, Horinouchi CDDS, Prudente ADS, Soley BDS, Assreuy J, Otuki MF, Cabrini DA. In vivo participation of nitric oxide in hyperproliferative epidermal phenomena in mice. Eur J Pharmacol 2012; 687:1-8. [DOI: 10.1016/j.ejphar.2012.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 03/14/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
21
|
Zogaib FG, Monte-Alto-Costa A. Moderate intensity physical training accelerates healing of full-thickness wounds in mice. Braz J Med Biol Res 2011; 44:1025-35. [PMID: 21881807 DOI: 10.1590/s0100-879x2011007500115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 08/23/2011] [Indexed: 11/22/2022] Open
Abstract
Physical training influences the cells and mediators involved in skin wound healing. The objective of this study was to determine the changes induced by different intensities of physical training in mouse skin wound healing. Ninety male C57BL6 mice (8 weeks old, 20-25 g) were randomized into three physical training groups: moderate (70% VO2max), high (80% VO2max), and strenuous intensity (90% VO2max). Animals trained on a motorized treadmill for 8 weeks (E lesion: physical training until the day of excisional lesion, N = 10) or 10 weeks (E euthan: physical training for 2 additional weeks after excisional lesion until euthanasia, N = 10), five times/week, for 45 min. Control groups (CG) trained on the treadmill three times/week only for 5 min (N = 10). In the 8th week, mice were anesthetized, submitted to a dorsal full-thickness excisional wound of 1 cm², and sacrificed 14 days after wounding. Wound areas were measured 4, 7, and 14 days after wounding to evaluate contraction (d4, d7 and d14) and re-epithelialization (d14). Fragments of lesion and adjacent skin were processed and submitted to routine histological staining. Immunohistochemistry against alpha-smooth muscle actin (α-SMA) was performed. Moderate-intensity training (M) until lesion (M/E lesion) led to better wound closure 7 days after wounding compared to controls and M/E euthan (P < 0.05), and both moderate-intensity groups showed better re-epithelialization rates than controls (M/E lesion = 85.9%, M/E euthan = 96.4% and M/CG = 79.9%; P < 0.05). Sections of M/E lesion and M/E euthan groups stained with hematoxylin-eosin, Picrosirius red and α-SMA showed the most mature granulation tissues among all trained groups and controls. Thus, moderate-intensity physical training improves skin wound healing.
Collapse
Affiliation(s)
- F G Zogaib
- Laboratório de Reparo Tecidual Cutâneo, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
22
|
Santuzzi CH, Buss HF, Pedrosa DF, Freire MOVM, Nogueira BV, Gonçalves WLS. Uso combinado da laserterapia de baixa potência e da inibição da ciclooxigenase-2 na reepitelização de ferida incisional em pele de camundongos: um estudo pré-clínico. An Bras Dermatol 2011; 86:278-83. [DOI: 10.1590/s0365-05962011000200011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/24/2010] [Indexed: 11/21/2022] Open
Abstract
FUNDAMENTOS: A laserterapia de baixa potência e os inibidores seletivos da ciclooxigenase-2 (ICOX2) vem sendo muito utilizados para modular a resposta inflamatória, entretanto, os seus efeitos na reepitelização de feridas não são bem compreendidos. OBJETIVO: Avaliar os efeitos isolados e combinados da laserterapia de baixa potência e da ICOX2 na reepitelização de ferida incisional na pele de camundongos. MÉTODO: Foi induzida uma ferida de 1 cm no dorso de cada camundongo, que foram divididos em quatro grupos (N=20): Controle, Laserterapia, Tratados com celecoxib e Terapia conjugada. Os animais dos grupos celecoxib e Terapia conjugada foram tratados com celecoxib por 10 dias antes da incisão cutânea. As feridas experimentais foram irradiadas com laserterapia de baixa potência He-Ne (632nm, dose: 4J/cm2) em varredura, por 12 segundos durante três dias consecutivos nos grupos Laserterapia e Terapia conjugada. Os animais foram sacrificados no 3º dia de pós-operatório. Amostras das feridas foram coletadas e coradas (Tricromio de Masson) para análise histomorfométrica. RESULTADOS: Tanto o grupo Laserterapia, quanto o grupo celecoxib, mostrou aumento da reepitelização cutânea em relação ao grupo Controle, entretanto, o grupo Terapia conjugada não apresentou diferenças. Quanto à queratinização o grupo Laserterapia e Terapia conjugada apresentaram redução dos queratinócitos, comparados com o grupo Controle. CONCLUSÕES: Os resultados mostram que o uso da laserterapia de baixa potência e da ICOX2 isoladamente aumentam as células epiteliais, mas somente a laserterapia de baixa potência reduziu os queratinócitos cutâneos. O tratamento conjugado restabelece a reepitelização inata e dimunui a queratinização, embora ocorra uma acelerada contração da ferida com melhora na organização da ferida na pele de camundongos.
Collapse
|
23
|
Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds. J Tissue Eng Regen Med 2010; 5:612-9. [DOI: 10.1002/term.353] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 07/12/2010] [Indexed: 11/08/2022]
|
24
|
Lodillinsky C, Langle Y, Guionet A, Góngora A, Baldi A, Sandes EO, Casabé A, Eiján AM. Bacillus Calmette Guerin induces fibroblast activation both directly and through macrophages in a mouse bladder cancer model. PLoS One 2010; 5:e13571. [PMID: 21042580 PMCID: PMC2962635 DOI: 10.1371/journal.pone.0013571] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/04/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. METHODOLOGY/PRINCIPAL FINDINGS We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. CONCLUSIONS/SIGNIFICANCE Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy.
Collapse
Affiliation(s)
- Catalina Lodillinsky
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - Yanina Langle
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - Ariel Guionet
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - Adrián Góngora
- Molecular Pathology and Pharmacology Laboratory, Institute of Biology and Experimental Medicine (IBYME)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Alberto Baldi
- Molecular Pathology and Pharmacology Laboratory, Institute of Biology and Experimental Medicine (IBYME)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | - Eduardo O. Sandes
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Casabé
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - Ana María Eiján
- Research Area, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Cerovecki T, Bojanic I, Brcic L, Radic B, Vukoja I, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157 (PL 14736) improves ligament healing in the rat. J Orthop Res 2010; 28:1155-1161. [PMID: 20225319 DOI: 10.1002/jor.21107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/21/2009] [Indexed: 02/04/2023]
Abstract
We improved medial collateral ligament (MCL) healing throughout 90 days after surgical transection. We introduced intraperitoneal, per-oral (in drinking water) and topical (thin cream layer) peptide therapy always given alone, without a carrier. Previously, as an effective peptide therapy, stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, an anti-ulcer peptide effective in inflammatory bowel disease therapy (PL 14736)) particularly improved healing of transected tendon and muscle and wound healing effect including the expression of the early growth response 1 (egr-1) gene. After MCL transection BPC 157 was effective in rats when given once daily intraperitoneally (10 microg or 10 ng/kg) or locally as a thin layer (1.0 microg dissolved in distilled water/g commercial neutral cream) at the site of injury, first application 30 min after surgery and the final application 24 h before sacrifice. Likewise, BPC 157 was effective given per-orally (0.16 microg/ml in the drinking water (12 ml/day/rat)) until sacrifice. Commonly, BPC 157 microg-ng-rats exhibited consistent functional, biomechanical, macroscopic and histological healing improvements. Thus, we suggest BPC 157 improved healing of acute ligament injuries in further ligament therapy.
Collapse
|
26
|
Collard E, Roy S. Improved function of diabetic wound-site macrophages and accelerated wound closure in response to oral supplementation of a fermented papaya preparation. Antioxid Redox Signal 2010; 13:599-606. [PMID: 20095880 PMCID: PMC2935338 DOI: 10.1089/ars.2009.3039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carica papaya Linn is widely known as a medicinal fruit. We sought to study a standardized fermented papaya preparation (FPP) for its effects on wound healing in adult obese diabetic (db/db) mice. FPP blunted the gain in blood glucose and improved the lipid profile after 8 weeks of oral supplementation. However, FPP did not influence weight gain during the supplementation period. FPP (0.2 g/kg body weight) supplementation for 8 weeks before wounding was effective in correcting wound closure. Studies on viable macrophages isolated from the wound site demonstrated that FPP supplementation improved respiratory-burst function as well as inducible NO production. Reactive oxygen species support numerous aspects of wound healing; NO availability in diabetic wounds is known to be compromised. Diabetic mice supplemented with FPP showed a higher abundance of CD68 as well as CD31 at the wound site, suggesting effective recruitment of monocytes and an improved proangiogenic response. This work provides the first evidence that diabetic-wound outcomes may benefit from FPP supplementation by specifically influencing the response of wound-site macrophages and the subsequent angiogenic response. Given that FPP has a long track record of safe human consumption, testing of the beneficial effects of FPP on diabetic wound-related outcomes in a clinical setting is warranted.
Collapse
Affiliation(s)
- Eric Collard
- Comprehensive Wound Center, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | |
Collapse
|
27
|
Filippin LI, Moreira AJ, Marroni NP, Xavier RM. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 2009; 21:157-63. [DOI: 10.1016/j.niox.2009.08.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 12/14/2022]
|
28
|
Patruno A, Amerio P, Pesce M, Vianale G, Di Luzio S, Tulli A, Franceschelli S, Grilli A, Muraro R, Reale M. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br J Dermatol 2009; 162:258-66. [PMID: 19799606 DOI: 10.1111/j.1365-2133.2009.09527.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extremely low frequency (ELF) electromagnetic fields (EMF) are known to produce a variety of biological effects. Clinical studies are ongoing using EMF in healing of bone fractures and skin wounds. However, little is known about the mechanisms of action of ELF-EMF. Several studies have demonstrated that expression and regulation of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) are vital for wound healing; however, no reports have demonstrated a direct action of ELF-EMF in the modulation of these inflammatory molecules in human keratinocytes. OBJECTIVES The present study analysed the effect of ELF-EMF on the human keratinocyte cell line HaCaT in order to assess the mechanisms of action of ELF-EMF and to provide further support for their therapeutic use in wound healing. METHODS Exposed HaCaT cells were compared with unexposed control cells. At different exposure times, expression of inducible NOS (iNOS), endothelial NOS (eNOS) and COX-2 was evaluated by Western blot analysis. Modulation of iNOS and eNOS was monitored by evaluation of NOS activities, production of nitric oxide (NO) and O(2)(-) and expression of activator protein 1 (AP-1). In addition, catalase activity and prostaglandin (PG) E(2) production were determined. Effects of ELF-EMF on cell growth and viability were monitored. RESULTS The exposure of HaCaT cells to ELF-EMF increased iNOS and eNOS expression levels. These ELF-EMF-dependent increased expression levels were paralled by increased NOS activities, and increased NO production. In addition, higher levels of AP-1 expression as well as a higher cell proliferation rate were associated with ELF-EMF exposure. In contrast, ELF-EMF decreased COX-2 expression, PGE(2) production, catalase activity and O(2)(-) production. CONCLUSIONS Mediators of inflammation, such as reactive nitrogen and PGE(2), and keratinocyte proliferation are critical for the tissue regenerative processes. The ability of ELF-EMF to upmodulate NOS activities, thus nitrogen intermediates, as well as cell proliferation, and to downregulate COX-2 expression and the downstream intermediate PGE(2), highlights the potential therapeutic role of ELF-EMF in wound healing processes.
Collapse
Affiliation(s)
- A Patruno
- Department of Drug Sciences, University 'G. d'Annunzio' of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saed GM, Jiang Z, Diamond MP, Abu-Soud HM. The role of myeloperoxidase in the pathogenesis of postoperative adhesions. Wound Repair Regen 2009; 17:531-9. [DOI: 10.1111/j.1524-475x.2009.00500.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Romana-Souza B, Santos JS, Desmoulière A, Monte-Alto-Costa A. Beta-adrenoceptor blockade delays granulation tissue formation in polyurethane sponge implants. J Cutan Pathol 2008; 36:522-8. [PMID: 19476519 DOI: 10.1111/j.1600-0560.2008.01110.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role of adrenoceptors in granulation tissue formation is not well understood. The aim of this study was to investigate the effects of alpha- and beta-adrenoceptor blockade on granulation tissue development using polyurethane (PU) implants in the rat. METHODS Animals were treated orally with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist) or phentolamine (alpha1- and alpha2-antagonist) until euthanasia. The control group received only water. All animals received subcutaneous implants of PU sponges. After 14 days, implants were collected, formalin-fixed and paraffin-embedded. Sections were stained with hematoxylin and eosin and Sirius red and immunostained for CD68 and alpha-smooth muscle actin. RESULTS The number of inflammatory cells and the volume density of myofibroblasts and blood vessels were lower in the control group than in the propranolol- and atenolol-treated groups. The collagen fiber score was greater in the control group than in the propranolol- and atenolol-treated groups. The inflammatory infiltrate, collagen fiber score, blood vessel density or myofibroblast differentiation was not affected by phentolamine. The percentage of fibrovascular invasion was greater in the antagonist-treated groups than in the control group. CONCLUSIONS Blockade of beta1- and beta2-adrenoceptors, but not alpha-adrenoceptors, impairs granulation tissue development in PU implants due to interference with the inflammatory response.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
31
|
Klicek R, Sever M, Radic B, Drmic D, Kocman I, Zoricic I, Vuksic T, Ivica M, Barisic I, Ilic S, Berkopic L, Vrcic H, Brcic L, Blagaic AB, Coric M, Brcic I, Rokotov DS, Anic T, Seiwerth S, Sikiric P. Pentadecapeptide BPC 157, in clinical trials as a therapy for inflammatory bowel disease (PL14736), is effective in the healing of colocutaneous fistulas in rats: role of the nitric oxide-system. J Pharmacol Sci 2008; 108:7-17. [PMID: 18818478 DOI: 10.1254/jphs.fp0072161] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We focused on the therapeutic effect of the stable gastric pentadecapeptide BPC 157 and how its action is related to nitric oxide (NO) in persistent colocutaneous fistula in rats (at 5 cm from anus, colon defect of 5 mm, skin defect of 5 mm); this peptide has been shown to be safe in clinical trials for inflammatory bowel disease (PL14736) and safe for intestinal anstomosis therapy. BPC 157 (10 microg/kg, 10 ng/kg) was applied i) in drinking water until the animals were sacrificed at post-operative day 1, 3, 5, 7, 14, 21, and 28; or ii) once daily intraperitoneally (first application 30 min following surgery, last 24 h before sacrifice) alone or with N(G)-nitro-L-arginine methyl ester (L-NAME) (5 mg/kg), L-arginine (200 mg/kg), and their combinations. Sulphasalazine (50 mg/kg) and 6-alpha-methylprednisolone (1 mg/kg) were given once daily intraperitoneally. BPC 157 accelerated parenterally or perorally the healing of colonic and skin defect, leading to the suitable closure of the fistula, macro/microscopically, biomechanically, and functionally (larger water volume sustained without fistula leaking). L-NAME aggravated the healing failure of colocutaneous fistulas, skin, and colon wounds (L-NAME groups). L-Arginine was effective only with blunted NO generation (L-NAME + L-arginine groups) but not without (L-arginine groups). All of the BPC 157 beneficial effects remained unchanged with blunted NO-generation (L-NAME + BPC 157 groups) and with NO substrate (L-arginine + BPC 157 groups) as well as L-NAME and L-arginine co-administration (L-NAME + L-arginine + BPC 157 groups). Sulphasalazine was only moderately effective, and corticosteroid even had an aggravating effect.
Collapse
Affiliation(s)
- Robert Klicek
- Department of Pharmacology, Medical School, University of Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bove PF, Hristova M, Wesley UV, Olson N, Lounsbury KM, van der Vliet A. Inflammatory levels of nitric oxide inhibit airway epithelial cell migration by inhibition of the kinase ERK1/2 and activation of hypoxia-inducible factor-1 alpha. J Biol Chem 2008; 283:17919-28. [PMID: 18424783 DOI: 10.1074/jbc.m709914200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased synthesis of NO during airway inflammation, caused by induction of nitric-oxide synthase 2 in several lung cell types, may contribute to epithelial injury and permeability. To investigate the consequence of elevated NO production on epithelial function, we exposed cultured monolayers of human bronchial epithelial cells to the NO donor diethylenetriaamine NONOate. At concentrations generating high nanomolar levels of NO, representative of inflammatory conditions, diethylenetriaamine NONOate markedly reduced wound closure in an in vitro scratch injury model, primarily by inhibiting epithelial cell migration. Analysis of signaling pathways and gene expression profiles indicated a rapid induction of the mitogen-activated protein kinase phosphatase (MPK)-1 and decrease in extracellular signal-regulated kinase (ERK)1/2 activation, as well as marked stabilization of hypoxia-inducible factor (HIF)-1alpha and activation of hypoxia-responsive genes, under these conditions. Inhibition of ERK1/2 signaling using U0126 enhanced HIF-1alpha stabilization, implicating ERK1/2 dephosphorylation as a contributing mechanism in NO-mediated HIF-1alpha activation. Activation of HIF-1alpha by the hypoxia mimic cobalt chloride, or cell transfection with a degradation-resistant HIF-1alpha mutant construct inhibited epithelial wound repair, implicating HIF-1alpha in NO-mediated inhibition of cell migration. Conversely, NO-mediated inhibition of epithelial wound closure was largely prevented after small interfering RNA suppression of HIF-1alpha. Finally, NO-mediated inhibition of cell migration was associated with HIF-1alpha-dependent induction of PAI-1 and activation of p53, both negative regulators of epithelial cell migration. Collectively, our results demonstrate that inflammatory levels of NO inhibit epithelial cell migration, because of suppression of ERK1/2 signaling, and activation of HIF-1alpha and p53, with potential consequences for epithelial repair and remodeling during airway inflammation.
Collapse
Affiliation(s)
- Peter F Bove
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta Gen Subj 2008; 1780:1348-61. [PMID: 18249195 DOI: 10.1016/j.bbagen.2008.01.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/31/2007] [Accepted: 01/14/2008] [Indexed: 12/19/2022]
Abstract
Physical trauma represents one of the most primitive challenges that threatened survival. Healing a problem wound requires a multi-faceted comprehensive approach. First and foremost, the wound environment will have to be made receptive to therapies. Second, the appropriate therapeutic regimen needs to be identified and provided while managing systemic limitations that could secondarily limit the healing response. Unfortunately, most current solutions seem to aim at designing therapeutic regimen with little or no consideration of the specific details of the wound environment and systemic limitations. One factor that is centrally important in making the wound environment receptive is correction of wound hypoxia. Recent work have identified that oxygen is not only required to disinfect wounds and fuel healing but that oxygen-dependent redox-sensitive signaling processes represent an integral component of the healing cascade. Over a decade ago, it was proposed that in biological systems oxidants are not necessarily always the triggers for oxidative damage and that oxidants such as H2O2 could actually serve as signaling messengers and drive several aspects of cellular signaling. Today, that concept is much more developed and mature. Evidence supporting the role of oxidants such as H2O2 as signaling messenger is compelling. A complete understanding of the continuum between the classical and emergent roles of oxygen requires a thorough consideration of current concepts in redox biology. The objective of this review is to describe our current understanding of how redox-sensitive processes may drive dermal tissue repair.
Collapse
Affiliation(s)
- Chandan K Sen
- Comprehensive Wound Center, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
34
|
Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. J Surg Res 2007; 149:84-93. [PMID: 18374944 DOI: 10.1016/j.jss.2007.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/24/2007] [Accepted: 10/21/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nitric oxide (NO) is an important molecule synthesized during wound repair. Studies have reported the use of NO donors on cutaneous wound repair, but their effects in different phases of healing are still not elucidated. The aim of this work was to investigate the effects of topical application of a NO donor (S-nitrosoglutathione, GSNO)-containing hydrogel on excisional wounds in the inflammatory ((inf)), proliferative ((prol)), and inflammatory and proliferative phases ((inf+prol)) of rat cutaneous wound repair. MATERIAL AND METHODS In each group (control, GSNO(inf), GSNO(prol), and GSNO(inf+prol)), excisional wounds on the dorsal surface were made and wound contraction and re-epithelialization were evaluated. Fourteen days after wounding, wounds and adjacent skin were formalin-fixed and paraffin-embedded. Collagen fibers organization, mast cells, myofibroblasts and vessels were evaluated. RESULTS Wound contraction of the GSNO(inf+prol) group was faster than control, GSNO(inf), and GSNO(prol) groups, 5 and 7 d after wounding. Topical application of GSNO accelerated re-epithelialization 14 d after wounding, mainly in GSNO(inf+prol) group. In addition, the GSNO(inf+prol) group showed improved collagen fibers maturation and tissue organization, and lower amount of inflammatory cells in the superficial and deep areas of the granulation tissue, compared with the other groups. CONCLUSIONS NO is important in all phases of rat cutaneous wound repair, but if applied on inflammatory and proliferative phases, the improvement in wound healing (accelerating wound closure, wound re-epithelialization, and granulation tissue organization) is more impressive.
Collapse
Affiliation(s)
- Thaís P Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
35
|
Amadeu TP, Seabra AB, de Oliveira MG, Costa AMA. S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol 2007; 21:629-37. [PMID: 17447976 DOI: 10.1111/j.1468-3083.2006.02032.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nitric oxide (NO) plays a key role in wound repair and S-nitrosothiols like S-nitrosoglutathione (GSNO) are well known NO donors. METHODS Animals were separated in two groups and submitted to excisional wounds on the dorsal surface at the first day. GSNO (100 microm)-containing hydrogels were topically applied on the wound bed in the GSNO group, daily, during the first 4 days. Control group was topically treated with hydrogel without GSNO for the same period. Wound contraction and re-epithelialization were measured. Animals were sacrificed 21 days after wounding. Samples of lesion and normal tissue were formalin-fixed, paraffin embedded for histological analysis. RESULTS Wound contraction, measured 14 and 21 days after wounding, was greater in the GSNO group than in the control group (P<0.05 for both). The re-epithelialized wound area, measured 14 days after wounding, was higher in the GSNO group than in the control group (P<0.05). A higher amount of inflammatory cells was observed in superficial and deep areas of the granulation tissue of the control group compared to the GSNO group. Twenty-one days after wounding, thin red-yellow collagen fibers arranged perpendicularly to the surface were found in the granulation tissue of the control group, whereas in the GSNO-treated group collagen fibers were thicker and arranged parallel to the surface. Increased number of mast cells was observed in the GSNO group compared with that in the control group. Vascularization and myofibroblast distribution were similar in both groups. CONCLUSION Topical application of GSNO-containing hydrogel during the early phases of rat cutaneous wound repair accelerates wound closure and re-epithelialization and affects granulation tissue organization.
Collapse
Affiliation(s)
- T P Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, UERJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
36
|
Nascimento AP, Costa AMA. Overweight induced by high-fat diet delays rat cutaneous wound healing. Br J Nutr 2007; 96:1069-77. [PMID: 17181882 DOI: 10.1017/bjn20061955] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prolonged wound healing is a complication that contributes to morbidity and mortality. Overweight people regularly undergo surgery and trauma, and often develop chronic wounds, but the effects of the adipose tissue excess on cutaneous wound healing are not well understood. This study tested the hypothesis that overweight induced by a high-fat diet impairs rat cutaneous wound healing. Male Wistar rats were fed with either a high-fat or a standard (control) diet. After 15 weeks, an excisional lesion was done and the animals were killed 21 d later. Wound contraction and re-epithelialization, blood pressure, glucose and retroperitoneal fat were evaluated. After killing, lesion and adjacent normal skin were formol-fixed and paraffin-embedded. Inflammatory infiltrate, myofibroblasts, collagen fibres and cellular proliferation were analysed and blood vessels were evaluated using stereological methods. There was no difference in blood pressure and glucose, but retroperitoneal fat increased in the high-fat diet group. Animals fed with the high-fat diet presented delayed wound contraction and re-epithelialization. It was found that 21 d after wounding, overweight induced by a high-fat diet increased the inflammatory infiltrate and delayed myofibroblastic differentiation, collagen deposition, epithelial and connective tissue cell proliferation, and angiogenesis. These findings support the hypothesis that a high-fat diet exerts negative effects on rat cutaneous wound healing, due mainly to the prolongation of the inflammatory phase.
Collapse
|