1
|
Jin X, Fu C, Chen Y, Jin C, Jin G, Yan J. WNT1/ROR2 pathway enhances the Triple-Negative breast cancer invasion, migration, and Epithelial-Mesenchymal transition. J Biochem Mol Toxicol 2024; 38:e70010. [PMID: 39428718 DOI: 10.1002/jbt.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024]
Abstract
It has been evidenced that ROR2 influences the growth of many tumors, including non-small cell lung cancer, osteosarcoma, and breast cancer. This research examined the effect of the WNT1/ROR2 signaling pathway on the progression of triple-negative breast cancer (TNBC). Bioinformatics analysis results demonstrated that ROR2 had a higher messenger RNA (mRNA) expression level in TNBC tissues and was positively correlated with poor patient prognosis. Western blot analysis (WB) and quantitative reverse transcription polymerase chain reaction demonstrated that TNBC cells had relatively higher ROR2 mRNA and protein levels than normal cell lines. Transwell and Cell Counting Kit-8 (CCK-8) assay further proved that downregulating ROR2 expression dramatically slowed the MDA-MB-231 cell progression. WB detection of epithelial-mesenchymal transition (EMT)-related proteins suggested that knocking down ROR2 could alleviate the EMT tendency of cancer cells. The WNT1/ROR2 signaling pathway could be inhibited by the WNT inhibitor pyrvinium pamoate (PP). Experiments on in vitro cell functional recovery have demonstrated that PP could restore malignant phenotypes caused by ROR2 overexpression. Finally, the mouse model experiments further validated the anticancer effect of PP on TNBC. Generally speaking, the malignant progression of TNBC could be stimulated by the WNT1/ROR2 signaling pathway which can be inhibited by PP, suggesting the potential value of PP in controlling TNBC.
Collapse
Affiliation(s)
- Xin Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuj, Zhejiang, China
| | - Chunlan Fu
- Department of Hematology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuj, Zhejiang, China
| | - Yusa Chen
- Department of Pathology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuj, Zhejiang, China
| | - Canguang Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuj, Zhejiang, China
| | - Gaopei Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuj, Zhejiang, China
| | - Junfeng Yan
- Department of Breast Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuj, Zhejiang, China
| |
Collapse
|
2
|
Suresh S, Vellapandian C. Cyanidin Ameliorates Bisphenol A-Induced Alzheimer's Disease Pathology by Restoring Wnt/β-Catenin Signaling Cascade: an In Vitro Study. Mol Neurobiol 2024; 61:2064-2080. [PMID: 37843801 DOI: 10.1007/s12035-023-03672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing memory loss and cognitive decline, linked to amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein accumulation in the brain. Environmental pollutant bisphenol A (BPA) has been implicated in AD pathology due to its neurotoxic effects. This study aims to evaluate cyanidin from flower bracts of Musa acuminata Colla (red variety; AAA group) for its neuroprotective properties against BPA-induced AD pathology. The extraction of cyanidin was optimized using 70% ethanol in acidified water, showing promising anti-acetylcholinesterase activity. Cyanidin was effectively purified from the resultant extract and characterized using spectroscopic techniques. Two gradient doses of cyanidin (90 and 10 µg/ml) were determined based on cell viability assay. The role of cyanidin in promoting nerve growth and differentiation was assessed in PC12 cells for up to 72 h. A discernible and statistically significant difference was assessed in neurite extension at both doses at 72 h, followed by pre-treatment with cyanidin. BPA stimulation significantly increased the p-tau expression compared to the control (p < 0.0001). Pre-treatment with cyanidin reduced the tau expression; however, a significant difference was observed compared to control cells (p = 0.0003). Cyanidin significantly enhanced the mRNA expression of Wnt3a (p < 0.0001), β-catenin (p = 0.0004), and NeuroD1 (p = 0.0289), and decreased the expression of WIF1(p = 0.0040) and DKK1 (p < 0.0001), which are Wnt antagonist when compared to cells stimulated with BPA. Conclusively, our finding suggests that cyanidin could agonize nerve growth factor and promote neuronal differentiation, reduce tau-hyperphosphorylation by restoring the Wnt/β-catenin signaling cascade, and thereby render its neuroprotective potential against BPA-induced AD pathology.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Doucet D, Brubaker C, Turner D, Gregory CA. Factors affecting the role of canonical Wnt inhibitor Dickkopf-1 in cancer progression. Front Oncol 2023; 13:1114822. [PMID: 37007131 PMCID: PMC10050559 DOI: 10.3389/fonc.2023.1114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundThe canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has the capacity to modulate homeostasis between canonical and non-canonical Wnt pathways and also signal independently of Wnt. The specific effects of Dkk-1 activity on tumor physiology are therefore unpredictable with examples of Dkk-1 serving as either a driver or suppressor of malignancy. Given that Dkk-1 blockade may serve as a potential treatment for some types of cancer, we questioned whether it is possible to predict the role of Dkk-1 on tumor progression based on the tissue origin of the tumor.MethodsOriginal research articles that described Dkk-1 in terms a tumor suppressor or driver of cancer growth were identified. To determine the association between tumor developmental origin and the role of Dkk-1, a logistic regression was performed. The Cancer Genome Atlas database was interrogated for survival statistics based on tumor Dkk-1 expression.ResultsWe report that Dkk-1 is statistically more likely to serve as a suppressor in tumors arising from the ectoderm (p = 0.0198) or endoderm (p = 0.0334) but more likely to serve as a disease driver in tumors of mesodermal origin (p = 0.0155). Survival analyses indicated that in cases where Dkk-1 expression could be stratified, high Dkk-1 expression is usually associated with poor prognosis. This in part may be due to pro-tumorigenic role Dkk-1 plays on tumor cells but also through its influence on immunomodulatory and angiogenic processes in the tumor stroma.ConclusionDkk-1 has a context-specific dual role as a tumor suppressor or driver. Dkk-1 is significantly more likely to serve as a tumor suppressor in tumors arising from ectoderm and endoderm while the converse is true for mesodermal tumors. Patient survival data indicated high Dkk-1 expression is generally a poor prognostic indicator. These findings provide further support for the importance of Dkk-1 as a therapeutic cancer target in some cases.
Collapse
Affiliation(s)
- Dakota Doucet
- Medical Sciences Program, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Connor Brubaker
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Donald Turner
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
- *Correspondence: Carl A. Gregory,
| |
Collapse
|
4
|
Wnt Inhibitory Factor 1 Binds to and Inhibits the Activity of Sonic Hedgehog. Cells 2021; 10:cells10123496. [PMID: 34944004 PMCID: PMC8699845 DOI: 10.3390/cells10123496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
The hedgehog (Hh) and Wnt pathways, crucial for the embryonic development and stem cell proliferation of Metazoa, have long been known to have similarities that argue for their common evolutionary origin. A surprising additional similarity of the two pathways came with the discovery that WIF1 proteins are involved in the regulation of both the Wnt and Hh pathways. Originally, WIF1 (Wnt Inhibitory Factor 1) was identified as a Wnt antagonist of vertebrates, but subsequent studies have shown that in Drosophila, the WIF1 ortholog serves primarily to control the distribution of Hh. In the present, work we have characterized the interaction of the human WIF1 protein with human sonic hedgehog (Shh) using Surface Plasmon Resonance spectroscopy and reporter assays monitoring the signaling activity of human Shh. Our studies have shown that human WIF1 protein binds human Shh with high affinity and inhibits its signaling activity efficiently. Our observation that the human WIF1 protein is a potent antagonist of human Shh suggests that the known tumor suppressor activity of WIF1 may not be ascribed only to its role as a Wnt inhibitor.
Collapse
|
5
|
Kleeman SO, Leedham SJ. Not All Wnt Activation Is Equal: Ligand-Dependent versus Ligand-Independent Wnt Activation in Colorectal Cancer. Cancers (Basel) 2020; 12:E3355. [PMID: 33202731 PMCID: PMC7697568 DOI: 10.3390/cancers12113355] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling is ubiquitously activated in colorectal tumors and driver mutations are identified in genes such as APC, CTNNB1, RNF43 and R-spondin (RSPO2/3). Adenomatous polyposis coli (APC) and CTNNB1 mutations lead to downstream constitutive activation (ligand-independent), while RNF43 and RSPO mutations require exogenous Wnt ligand to activate signaling (ligand-dependent). Here, we present evidence that these mutations are not equivalent and that ligand-dependent and ligand-independent tumors differ in terms of underlying Wnt biology, molecular pathogenesis, morphology and prognosis. These non-overlapping characteristics can be harnessed to develop biomarkers and targeted treatments for ligand-dependent tumors, including porcupine inhibitors, anti-RSPO3 antibodies and asparaginase. There is emerging evidence that these therapies may synergize with immunotherapy in ligand-dependent tumors. In summary, we propose that ligand-dependent tumors are an underappreciated separate disease entity in colorectal cancer.
Collapse
Affiliation(s)
- Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Simon J. Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
6
|
Kleeman SO, Koelzer VH, Jones HJ, Vazquez EG, Davis H, East JE, Arnold R, Koppens MA, Blake A, Domingo E, Cunningham C, Beggs AD, Pestinger V, Loughrey MB, Wang LM, Lannagan TR, Woods SL, Worthley D, Consortium SC, Tomlinson I, Dunne PD, Maughan T, Leedham SJ. Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification. Gut 2020; 69:1092-1103. [PMID: 31563876 PMCID: PMC7212029 DOI: 10.1136/gutjnl-2019-319126] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (Adenomatous polyposis coli, β-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (RNF43, RSPO-fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of RSPO may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (AXIN2, NKD1) occurring even in CIMP-negative LD cancers. AXIN2 mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential AXIN2 expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors.
Collapse
Affiliation(s)
- Sam O Kleeman
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zurich, Switzerland
| | - Helen Js Jones
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
- Oxford Colorectal Surgery Department, Nuffield Department of Surgery, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Ester Gil Vazquez
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Hayley Davis
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Roland Arnold
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Martijn Aj Koppens
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Chris Cunningham
- Oxford Colorectal Surgery Department, Nuffield Department of Surgery, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Andrew D Beggs
- Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, Birminghaam, United Kingdom
| | - Valerie Pestinger
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Tamsin Rm Lannagan
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Susan L Woods
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel Worthley
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Timothy Maughan
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans 2020; 48:1187-1198. [DOI: 10.1042/bst20200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
The Wnt/β-catenin signaling pathway plays fundamental roles during development, stem cell differentiation, and homeostasis, and its abnormal activation can lead to diseases. In recent years, it has become clear that this pathway integrates signals not only from Wnt ligands but also from other proteins and signaling routes. For instance, Wnt/β-catenin signaling involves YAP and TAZ, which are transcription factors with crucial roles in mechanotransduction. On the other hand, Wnt/β-catenin signaling is also modulated by integrins. Therefore, mechanical signals might similarly modulate the Wnt/β-catenin pathway. However, and despite the relevance that mechanosensitive Wnt/β-catenin signaling might have during physiology and diseases such as cancer, the role of mechanical cues on Wnt/β-catenin signaling has received less attention. This review aims to summarize recent evidence regarding the modulation of the Wnt/β-catenin signaling by a specific type of mechanical signal, the stiffness of the extracellular matrix. The review shows that mechanical stiffness can indeed modulate this pathway in several cell types, through differential expression of Wnt ligands, receptors and inhibitors, as well as by modulating β-catenin levels. However, the specific mechanisms are yet to be fully elucidated.
Collapse
|
8
|
Astudillo P. Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol 2020; 8:110. [PMID: 32195251 PMCID: PMC7064718 DOI: 10.3389/fcell.2020.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains an important health challenge, accounting for a significant number of cancer-related deaths worldwide. Therefore, a deeper understanding of the molecular mechanisms involved in gastric cancer establishment and progression is highly desirable. The Wnt pathway plays a fundamental role in development, homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion and migration, although the molecular mechanisms explaining these roles have not been fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric cancer cell lines seem to exhibit little expression of this ligand, thus raising the question about the source of this ligand in vivo. This review summarizes available research about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a promotes invasion and migration by modulating integrin adhesion turnover. Disheveled, a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related effects of Wnt5a in gastric cancer cells, and several studies provide growing support for a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer cells, such as cell survival and induction of gene expression. On the other hand, the available evidence suggests that Wnt5a might be expressed by cells residing in the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion and signaling might be established. This review analyzes the possible functions of Wnt5a in this pathological context and discusses potential links to mechanosensing and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
9
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
10
|
Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med (Maywood) 2017; 242:1735-1745. [PMID: 28920469 PMCID: PMC5714149 DOI: 10.1177/1535370217732737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Collapse
Affiliation(s)
- Oksana O Piven
- Institute of Molecular Biology and Genetic, Kyiv 0314, Ukraine
| | - Cecilia L Winata
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany
| |
Collapse
|
11
|
Yang G, Fang W, Liu T, He F, Chen X, Zhou Y, Guan X. Gene expression profiling of bone marrow-derived stromal cells seeded onto a sandblasted, large-grit, acid-etched-treated titanium implant surface: The role of the Wnt pathway. Arch Oral Biol 2016; 61:71-8. [DOI: 10.1016/j.archoralbio.2015.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/31/2015] [Accepted: 10/11/2015] [Indexed: 02/01/2023]
|
12
|
Wnts grasp the WIF domain of Wnt Inhibitory Factor 1 at two distinct binding sites. FEBS Lett 2015; 589:3044-51. [PMID: 26342861 DOI: 10.1016/j.febslet.2015.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022]
Abstract
Wnts have a structure resembling a hand with "thumb" and "index" fingers that grasp the cysteine rich domains of Frizzled receptors at two distinct binding sites. In the present work we show that the WIF domain of Wnt Inhibitory Factor 1 is also bound by Wnts at two sites. Using C-terminal domains of Wnt5a and Wnt7a and arginine-scanning mutagenesis of the WIF domain we demonstrate that, whereas the N-terminal, lipid-modified "thumb" of Wnts interacts with the alkyl-binding site of the WIF domain, the C-terminal domain of Wnts (Wnt-CTD) binds to a surface on the opposite side of the WIF domain.
Collapse
|
13
|
Piven OO, Palchevska OL, Lukash LL. Role of Wnt/β-catenin signaling in embryonic cardiogenesis, postnatal formation and reconstruction of myocardium. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wang H, Wang X, Hu R, Yang W, Liao A, Zhao C, Zhang J, Liu Z. Methylation of SFRP5 is related to multidrug resistance in leukemia cells. Cancer Gene Ther 2014; 21:83-9. [DOI: 10.1038/cgt.2013.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/21/2013] [Indexed: 12/20/2022]
|
15
|
Abstract
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo, 104-0045, Japan
| | | |
Collapse
|
16
|
Dayma K, Ramadhas A, Sasikumar K, Radha V. Reciprocal Negative Regulation between the Guanine Nucleotide Exchange Factor C3G and β-Catenin. Genes Cancer 2013; 3:564-77. [PMID: 23486661 DOI: 10.1177/1947601912471189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/15/2012] [Indexed: 11/15/2022] Open
Abstract
The guanine nucleotide exchange factor C3G (RAPGEF1) regulates proliferation, migration, and differentiation of cells and is essential for mammalian embryonic development. The molecular effectors of C3G dependent functions are poorly understood. Here we report that C3G functions as a negative regulator of β-catenin, a major player in pathways known to be deregulated in human cancers. In mammalian cells, C3G is present in a complex with cellular β-catenin. The proline rich Crk binding region of C3G and residues 90-525 of β-catenin are sufficient for the interaction. Knockdown of cellular C3G stimulated, and its overexpression repressed, β-catenin/TCF transcription activity. C3G acts by destabilizing β-catenin protein and inhibiting its nuclear accumulation. Nuclear extracts of C3G overexpressing cells showed reduced binding to TCF consensus oligos. C3G exerts its effects independent of its function as an exchange factor. It also inhibits stability and activity of an N-terminal deletion construct of β-catenin that is not subject to GSK3β dependent phosphorylation, suggesting that C3G exerts its effect independent of GSK3β. β-catenin repression by C3G was not significantly altered in the presence of proteasome inhibitors, MG132 or lactacystin, suggesting that alternate mechanisms are engaged by C3G to cause β-catenin turnover. C3G expression represses β-catenin target gene expression, and stable clones of MCF-7 breast cancer cells expressing C3G showed reduced migration. Activation of cellular β-catenin or expression of constitutively active β-catenin resulted in reduced C3G expression, indicating that C3G gene expression is negatively regulated by β-catenin. Our results identify a novel property of C3G in functioning as a negative regulator of β-catenin signaling by promoting its degradation. In addition, we show that β-catenin inhibits C3G expression, forming a feedback loop.
Collapse
Affiliation(s)
- Kunal Dayma
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
17
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
18
|
Wang K, Li N, Yeung C, Li J, Wang H, Cooper T. Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research. ACTA ACUST UNITED AC 2012; 19:57-71. [DOI: 10.1093/molehr/gas051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Bányai L, Kerekes K, Patthy L. Characterization of a Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1. FEBS Lett 2012; 586:3122-6. [PMID: 22986341 DOI: 10.1016/j.febslet.2012.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 11/26/2022]
Abstract
A Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1 was localized by structure-guided arginine-scanning mutagenesis in combination with surface plasmon resonance assays. Our observation that substitution of some residues of WIF resulted in an increased affinity for Wnt5a, but decreased affinity for Wnt3a, suggests that these residues may define the specificity spectrum of WIF for Wnts. These results hold promise for a more specific targeting of Wnt family members with WIF variants in various forms of cancer.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
20
|
Abstract
Antibodies to receptors can block or mimic hormone action. Taking advantage of receptor isoforms, co-receptors, and other receptor modulating proteins, antibodies and other designer ligands can enhance tissue specificity and provide new approaches to the therapy of diabetes and other diseases.
Collapse
Affiliation(s)
- Siegfried Ussar
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
21
|
King TD, Zhang W, Suto MJ, Li Y. Frizzled7 as an emerging target for cancer therapy. Cell Signal 2012; 24:846-51. [PMID: 22182510 PMCID: PMC3268941 DOI: 10.1016/j.cellsig.2011.12.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 02/09/2023]
Abstract
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.
Collapse
Affiliation(s)
- Taj D. King
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Wei Zhang
- Department of Medicinal Chemistry, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Mark J. Suto
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
- Department of Medicinal Chemistry, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Yonghe Li
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| |
Collapse
|
22
|
Sastre-Perona A, Santisteban P. Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne) 2012; 3:31. [PMID: 22645520 PMCID: PMC3355838 DOI: 10.3389/fendo.2012.00031] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Aberrant activation of Wnt signaling is involved in the development of several epithelial tumors. Wnt signaling includes two major types of pathways: (i) the canonical or Wnt/β-catenin pathway; and (ii) the non-canonical pathways, which do not involve β-catenin stabilization. Among these pathways, the Wnt/β-catenin pathway has received most attention during the past years for its critical role in cancer. A number of publications emphasize the role of the Wnt/β-catenin pathway in thyroid cancer. This pathway plays a crucial role in development and epithelial renewal, and components such as β-catenin and Axin are often mutated in thyroid cancer. Although it is accepted that altered Wnt signaling is a late event in thyroid cell transformation that affects anaplastic thyroid tumors, recent data suggest that it is also altered in papillary thyroid carcinoma (PTC) with RET/PTC mutations. Therefore, the purpose of this review is to summarize the main relevant data of Wnt signaling in thyroid cancer, with special emphasis on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
- *Correspondence: Pilar Santisteban, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain. e-mail:
| |
Collapse
|
23
|
Thanendrarajan S, Kim Y, Schmidt-Wolf IGH. Understanding and Targeting the Wnt/β-Catenin Signaling Pathway in Chronic Leukemia. LEUKEMIA RESEARCH AND TREATMENT 2011; 2011:329572. [PMID: 23213540 PMCID: PMC3504253 DOI: 10.4061/2011/329572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/14/2011] [Indexed: 12/28/2022]
Abstract
It has been revealed that the Wnt/β-catenin signaling pathway plays an important role in the development of solid tumors and hematological malignancies, particularly in B-cell neoplasia and leukemia. In the last decade there have been made experimental approaches targeting the Wnt pathway in chronic leukemia. In this paper we provide an overview about the current state of knowledge regarding the Wnt/β-catenin signaling pathway in chronic leukemia with special focus on therapeutic options and strategies.
Collapse
Affiliation(s)
- S Thanendrarajan
- Department of Internal Medicine III (Hematology and Oncology), Center for Integrated Oncology (CIO), University of Bonn, Sigmund-Freud Stra β e 25, 53127 Bonn, Germany
| | | | | |
Collapse
|