1
|
Garcia-Mouronte E, Pérez-González LA, Naharro-Rodriguez J, Fernández Guarino M. Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants. Life (Basel) 2024; 14:822. [PMID: 39063576 PMCID: PMC11277730 DOI: 10.3390/life14070822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The detrimental effects of ultraviolet radiation (UVR) on human skin are well-documented, encompassing DNA damage, oxidative stress, and an increased risk of carcinogenesis. Conventional photoprotective measures predominantly rely on filters, which scatter or absorb UV radiation, yet fail to address the cellular damage incurred post-exposure. To fill this gap, antioxidant molecules and DNA-repair enzymes have been extensively researched, offering a paradigm shift towards active photoprotection capable of both preventing and reversing UV-induced damage. In the current review, we focused on "active photoprotection", assessing the state-of-the-art, latest advancements and scientific data from clinical trials and in vivo models concerning the use of DNA-repair enzymes and naturally occurring antioxidant molecules.
Collapse
Affiliation(s)
- Emilio Garcia-Mouronte
- Dermatology Department, Hospital Universitario Ramon y Cajal, Carretera M-607 km 9.1, 28034 Madrid, Spain; (L.A.P.-G.); (M.F.G.)
| | | | - Jorge Naharro-Rodriguez
- Dermatology Department, Hospital Universitario Ramon y Cajal, Carretera M-607 km 9.1, 28034 Madrid, Spain; (L.A.P.-G.); (M.F.G.)
| | | |
Collapse
|
2
|
Rodríguez-Luna A, Zamarrón A, Juarranz Á, González S. Clinical Applications of Polypodium leucotomos (Fernblock ®): An Update. Life (Basel) 2023; 13:1513. [PMID: 37511888 PMCID: PMC10381169 DOI: 10.3390/life13071513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Exposure to sun radiation leads to higher risk of sunburn, pigmentation, immunosuppression, photoaging and skin cancer. In addition to ultraviolet radiation (UVR), recent research indicates that infrared radiation (IR) and visible light (VIS) can play an important role in the pathogenesis of some of these processes. Detrimental effects associated with sun exposure are well known, but new studies have shown that DNA damage continues to occur long after exposure to solar radiation has ended. Regarding photoprotection strategies, natural substances are emerging for topical and oral photoprotection. In this sense, Fernblock®, a standardized aqueous extract of the fern Polypodium Leucotomos (PLE), has been widely administered both topically and orally with a strong safety profile. Thus, this extract has been used extensively in clinical practice, including as a complement to photodynamic therapy (PDT) for treating actinic keratoses (AKs) and field cancerization. It has also been used to treat skin diseases such as photodermatoses, photoaggravated inflammatory conditions and pigmentary disorders. This review examines the most recent developments in the clinical application of Fernblock® and assesses how newly investigated action mechanisms may influence its clinical use.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), 28933 Alcorcón, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid (UAM), 28049 Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, 28805 Madrid, Spain
| |
Collapse
|
3
|
Calzari P, Vaienti S, Nazzaro G. Uses of Polypodium leucotomos Extract in Oncodermatology. J Clin Med 2023; 12:jcm12020673. [PMID: 36675602 PMCID: PMC9861608 DOI: 10.3390/jcm12020673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The effects of UV radiation on the skin and its damage mechanisms are well known. New modalities of exogenous photoprotection have been studied. It was demonstrated that Polypodium leucotomos extract acts as an antioxidant, photoprotectant, antimutagenic, anti-inflammatory, and immunoregulator. It is effective when taken orally and/or applied topically to support the prevention of skin cancers. It also has an important role in preventing photoaging. This review aims to report the mechanisms through which Polypodium leucotomos acts and to analyze its uses in oncodermatology with references to in vitro and in vivo studies. Additionally, alternative uses in non-neoplastic diseases, such as pigmentary disorders, photosensitivity, and atopic dermatitis, have been considered.
Collapse
Affiliation(s)
- Paolo Calzari
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Silvia Vaienti
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 30127 Verona, Italy
| | - Gianluca Nazzaro
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Dermatology Unit, Foundation IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
4
|
Tarshish E, Hermoni K, Sharoni Y, Muizzuddin N. Effect of Lumenato oral supplementation on plasma carotenoid levels and improvement of visual and experiential skin attributes. J Cosmet Dermatol 2022; 21:4042-4052. [PMID: 35020247 PMCID: PMC9786813 DOI: 10.1111/jocd.14724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cellular metabolism and exposure to solar irradiation result in generation of free radicals which are destructive and can lead to premature aging. Antioxidants and free radical scavengers such as carotenoids successfully protect from these free radicals by quenching and neutralizing them thereby strengthening skin barrier which leads to improved skin moisturization, desquamation, and a more youthful look. This study was designed to evaluate the consumer-perceived efficacy of an oral supplement (Lumenato™) containing a mix of tomato carotenoids and oil-soluble vitamins in improving skin appearance after 12 weeks of supplement use. MATERIALS AND METHODS Plasma levels of phytoene, phytofluene, zeta-carotene, and lycopene were quantitated before and after 1-, 2-, 3-, and 4-week administration of Lumenato by 24 healthy volunteers. Part II of the study addressed skin visual attributes as assessed by validated tools (questionnaires). A total of 60 females, aged 35 to 55 years, completed part II of the study. The subjects answered questionnaires pertaining to their assessment of skin appearance before and after 12 weeks of taking the supplement. RESULTS There was a significant increase (p < 0.001) in plasma levels of phytoene, phytofluene, and zeta-carotene after 1- to 4-week treatment with Lumenato. After 12 weeks of using the supplement, the score of different skin parameters was reported to significantly improve (p < 0.001). Improvement was recorded in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles. A significant (p < 0.001) improvement in overall skin condition after using the supplement was observed. The subjects noticed statistically significant (p < 0.001) improvement in skin elasticity, firmness, brightness, skin tone, reduction in dark spots and periorbital dark circles, skin hydration, texture and fine lines and wrinkles after 12 weeks of using the supplement. The overall skin condition also exhibited a significant improvement (p < 0.001). Self-assessed improvement of the face was identified at the first time point (4 weeks) and improved significantly (p < 0.001) for the 12 weeks of use. Interestingly, these improvements persisted even after treatment was stopped. CONCLUSION Based on the confines and conditions of this study, the use of oral supplement containing a mix of tomato carotenoids significantly increased plasma levels of phytoene, phytofluene, and zeta-carotene, and continuous use resulted in improved facial skin attributes which were palpable by the consumers and continued even after treatment was stopped.
Collapse
Affiliation(s)
| | | | - Yoav Sharoni
- Department of Clinical Biochemistry and PharmacologyFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | |
Collapse
|
5
|
González S, Aguilera J, Berman B, Calzavara-Pinton P, Gilaberte Y, Goh CL, Lim HW, Schalka S, Stengel F, Wolf P, Xiang F. Expert Recommendations on the Evaluation of Sunscreen Efficacy and the Beneficial Role of Non-filtering Ingredients. Front Med (Lausanne) 2022; 9:790207. [PMID: 35433750 PMCID: PMC9008233 DOI: 10.3389/fmed.2022.790207] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
A variety of non-filtering agents have been introduced to enhance sunscreen photoprotection. Most of those agents have only weak erythema protective properties but may be valuable and beneficial in supporting protection against other effects of UV radiation, such as photoimmunosuppression, skin aging, and carcinogenesis, as well as photodermatoses. The question arises how to measure and evaluate this efficacy since standard SPF testing is not appropriate. In this perspective, we aim to provide a position statement regarding the actual value of SPF and UVA-PF to measure photoprotection. We argue whether new or additional parameters and scales can be used to better indicate the protection conferred by these products against the detrimental effects of natural/artificial, UV/visible light beyond sunburn, including DNA damage, photoimmunosuppression and pigmentation, and the potential benefits of the addition of other ingredients beyond traditional inorganic and organic filters to existing sunscreens. Also, we debate the overall usefulness of adding novel parameters that measure photoprotection to reach two tiers of users, that is, the general public and the medical community; and how this can be communicated to convey the presence of additional beneficial effects deriving from non-filtering agents, e.g., biological extracts. Finally, we provide a perspective on new challenges stemming from environmental factors, focusing on the role of the skin microbiome and the role of air pollutants and resulting needs for photoprotection.
Collapse
Affiliation(s)
- Salvador González
- Medicine and Medical Specialties Department, University of Alcalá de Henares, Madrid, Spain
- *Correspondence: Salvador González,
| | - José Aguilera
- Dermatological Photobiology Laboratory, Medical Research Center, School of Medicine, University of Málaga, Málaga, Spain
| | - Brian Berman
- Department of Dermatology and Cutaneous Surgery, University of Miami-Florida, Miami, FL, United States
| | | | - Yolanda Gilaberte
- Department of Dermatology, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
| | | | - Henry W. Lim
- Department of Dermatology, Henry Ford Health System, Detroit, MI, United States
| | - Sergio Schalka
- Photoprotection Laboratory, Medicine Skin Research Center, São Paulo, Brazil
| | | | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Flora Xiang
- Department of Dermatology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Implications of Oxidative Stress in the Pathogenesis and Treatment of Hyperpigmentation Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7881717. [PMID: 35087618 PMCID: PMC8789419 DOI: 10.1155/2022/7881717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress represents an imbalance between the generation of reactive oxygen and nitrogen species and the ability of antioxidant systems to decompose those products. Oxidative stress is implicated in the pathogenesis of hyperpigmentation, hypopigmentation, melanoma, and other skin diseases. Regulatory networks involving oxidative stress and related pathways are widely represented in hypopigmentation diseases, particularly vitiligo. However, there is no complete review into the role of oxidative stress in the pathogenesis of hyperpigmentation disorders, especially regarding associations involving oxidative stress and cellular signaling pathways. Here, we review oxidative and antioxidant systems, oxidative stress-induced signal transduction mechanisms, and effects of antioxidant drugs used in preclinical and clinical settings in hyperpigmentation disorders.
Collapse
|
7
|
Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramírez-Cabrera MA, Ramirez-Estrada K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. PLANTS (BASEL, SWITZERLAND) 2022; 11:220. [PMID: 35050108 PMCID: PMC8779981 DOI: 10.3390/plants11020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Human skin works as a barrier against the adverse effects of environmental agents, including ultraviolet radiation (UVR). Exposure to UVR is associated with a variety of harmful effects on the skin, and it is one of the most common health concerns. Solar UVR constitutes the major etiological factor in the development of cutaneous malignancy. However, more than 90% of skin cancer cases could be avoided with appropriate preventive measures such as regular sunscreen use. Plants, constantly irradiated by sunlight, are able to synthesize specialized molecules to fight against UVR damage. Phenolic compounds, alkaloids and carotenoids constitute the major plant secondary metabolism compounds with relevant UVR protection activities. Hence, plants are an important source of molecules used to avoid UVR damage, reduce photoaging and prevent skin cancers and related illnesses. Due to its significance, we reviewed the main plant secondary metabolites related to UVR protection and its reported mechanisms. In addition, we summarized the research in Mexican plants related to UV protection. We presented the most studied Mexican plants and the photoprotective molecules found in them. Additionally, we analyzed the studies conducted to elucidate the mechanism of photoprotection of those molecules and their potential use as ingredients in sunscreen formulas.
Collapse
Affiliation(s)
- Ana Mariel Torres-Contreras
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Antoni Garcia-Baeza
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Heriberto Rafael Vidal-Limon
- Centro de Biotecnología FEMSA, Instituto Tecnológico de Monterrey, Avenida Junco de la Vega, Col. Tecnológico, Montrerrey 65849, Mexico;
| | - Isaias Balderas-Renteria
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| | - Mónica A. Ramírez-Cabrera
- Laboratorio de Farmacología Molecular y Modelos Biológicos, División de Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Guerrero s/n, Col. Treviño, Monterrey 64570, Mexico;
| | - Karla Ramirez-Estrada
- Laboratory of Cell Metabolism, Faculty of Chemistry, Autonomous University of Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico; (A.M.T.-C.); (A.G.-B.); (I.B.-R.)
| |
Collapse
|
8
|
Lyons AB, Zubair R, Kohli I, Nahhas AF, Braunberger TL, Mokhtari M, Ruvolo E, Lim HW, Hamzavi IH. Mitigating Visible Light and Long Wavelength UVA1-induced Effects with Topical Antioxidants. Photochem Photobiol 2021; 98:455-460. [PMID: 34549819 DOI: 10.1111/php.13525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
The role of topical antioxidants (AOs) on visible light plus ultraviolet A1 (VL+UVA1)-induced skin changes were evaluated. Twenty subjects with skin phototypes (SPTs) I-VI had placebo and concentrations of an AO blend applied to their back (AO 0.5%, 1.0% and 2.0%). Treated and control sites were irradiated with VL+UVA1. Colorimetric and diffuse reflectance spectroscopy (DRS) assessments were performed immediately, 24 h and 7 days after irradiation. Subjects with SPT I-III had erythema that faded within 24 h, while SPT IV-VI had persistent pigmentation. SPT I-III demonstrated significantly less erythema at the 2% AO site while SPT IV-VI demonstrated significantly less immediate pigmentation at 2% AO site and less pigmentation (approaching significance, P = 0.07) on day 7 compared with control. Immunohistochemistry from biopsies of 2% AO and placebo at 24 h did not demonstrate a significant change in COX-2 or MART-1 for any SPT. There was a decrease in cyclin D1 for SPT IV-VI which was approaching significance (P = 0.06) but not for SPT I-III. The results indicate that topical AO inhibits erythema in SPT I-III and reduces pigmentation in SPT IV-VI caused by VL+UVA1. AO may help prevent worsening of pigmentary disorders and should be incorporated into photoprotection.
Collapse
Affiliation(s)
- Alexis B Lyons
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI
| | - Raheel Zubair
- Graduate Medical Education, Broward Health Medical Center, Fort Lauderdale, FL
| | - Indermeet Kohli
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI.,Department of Physics and Astronomy, Wayne State University, Detroit, MI
| | - Amanda F Nahhas
- Department of Dermatology, Beaumont-Farmington Hills, Farmington Hills, MI
| | - Taylor L Braunberger
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI
| | | | | | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI
| | - Iltefat H Hamzavi
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Hospital, Detroit, MI
| |
Collapse
|
9
|
Pourang A, Dourra M, Ezekwe N, Kohli I, Hamzavi I, Lim HW. The potential effect of Polypodium leucotomos extract on ultraviolet- and visible light-induced photoaging. Photochem Photobiol Sci 2021; 20:1229-1238. [PMID: 34449075 DOI: 10.1007/s43630-021-00087-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Photoaging induced by both ultraviolet and visible light has been shown to lead to increased inflammation and dysregulation of the extracellular matrix. Standardized extract of the Polypodium leucotomos fern, PLE, possesses anti-inflammatory and antioxidant properties, and has been shown to potentially mitigate photoaging through various mechanisms. This comprehensive review presents the data available on the effects of P. leucotomos extract on UV and VL-induced photoaging in vitro as well as in vivo in murine and human models.
Collapse
Affiliation(s)
- Aunna Pourang
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Mohsen Dourra
- College of Medicine, Michigan State University, East Lansing, MI, USA
| | - Nneamaka Ezekwe
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Indermeet Kohli
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Iltefat Hamzavi
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health System, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
10
|
Pihl C, Togsverd-Bo K, Andersen F, Haedersdal M, Bjerring P, Lerche CM. Keratinocyte Carcinoma and Photoprevention: The Protective Actions of Repurposed Pharmaceuticals, Phytochemicals and Vitamins. Cancers (Basel) 2021; 13:cancers13153684. [PMID: 34359586 PMCID: PMC8345172 DOI: 10.3390/cancers13153684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Keratinocyte carcinoma is the most common type of cancer. Sun exposure and ultraviolet radiation are significant contributors to the development of carcinogenesis, mediated by DNA damage, increased oxidative stress, inflammation, immunosuppression and dysregulated signal transduction. Photoprevention involves using different compounds to delay or prevent ultraviolet radiation-induced skin cancer. In this review, we look at new avenues for systemic photoprevention that are based on pharmaceuticals, plant-derived phytochemicals and vitamins. We also investigate the mechanisms underlying these strategies for preventing the onset of carcinogenesis. Abstract Ultraviolet radiation (UVR) arising from sun exposure represents a major risk factor in the development of keratinocyte carcinomas (KCs). UVR exposure induces dysregulated signal transduction, oxidative stress, inflammation, immunosuppression and DNA damage, all of which promote the induction and development of photocarcinogenesis. Because the incidence of KCs is increasing, better prevention strategies are necessary. In the concept of photoprevention, protective compounds are administered either topically or systemically to prevent the effects of UVR and the development of skin cancer. In this review, we provide descriptions of the pathways underlying photocarcinogenesis and an overview of selected photoprotective compounds, such as repurposed pharmaceuticals, plant-derived phytochemicals and vitamins. We discuss the protective potential of these compounds and their effects in pre-clinical and human trials, summarising the mechanisms of action involved in preventing photocarcinogenesis.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence:
| | - Katrine Togsverd-Bo
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Flemming Andersen
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
- Private Hospital Molholm, 7100 Vejle, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, 9100 Aalborg, Denmark; (F.A.); (P.B.)
| | - Catharina Margrethe Lerche
- Department of Dermatology, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark; (K.T.-B.); (M.H.); (C.M.L.)
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Souza de Carvalho VM, Covre JL, Correia-Silva RD, Lice I, Corrêa MP, Leopoldino AM, Gil CD. Bellis perennis extract mitigates UVA-induced keratinocyte damage: Photoprotective and immunomodulatory effects. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112247. [PMID: 34175580 DOI: 10.1016/j.jphotobiol.2021.112247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/23/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022]
Abstract
A need exists for further research elucidating the benefits of environmentally safe photoprotective agents against ultraviolet (UV) exposure, and plant extracts represent a human-friendly alternative formulation. This study was designed to evaluate the potential use of Bellis perennis extract (BPE), from the Asteraceae family, known as the common daisy or the English daisy, in cosmeceuticals as a photoprotective factor, using an in vitro model of UVA-induced keratinocyte damage. Human skin keratinocytes (HaCaT cell line) were incubated with BPE at 0.01, 0.1, or 1% in Dulbecco's Modified Eagle Medium (DMEM), and after 15 min they were submitted to UVA radiation at 5, 10, and 15 J/cm2 doses, respectively. For comparative purposes, Polypodium leucotomos extract (PLE), known as the fern, was used as a positive control in assessing the photoprotective effect. After 24 h of UVA exposure, cell viability (MTT and LDH assays), levels of cleaved caspase-3, cyclooxygenase-2, IL-6, reactive oxygen species (ROS) and antioxidant enzyme (catalase, SOD, and glutathione peroxidase) activity were determined. UVA radiation at 5, 10, and 15 J/cm2 doses reduced cell viability to 63%, 43%, and 23%, respectively; we selected 10 J/cm2 for our purposes. After 24 h of UVA exposure, treatment with 1% BPE and 1% PLE significantly recovered cell viability (p < 0.05). Furthermore, treatment was associated with lower cleaved caspase-3 and ROS levels, higher catalase activity, and lower IL-6 levels in the treated UVA keratinocytes compared with the untreated UVA group (p < 0.01). Our results demonstrate photoprotective and immunomodulatory effects of BPE in skin keratinocytes and support its use as a bioactive agent in cosmetic formulations to prevent skin damage caused by exposure to the UV light.
Collapse
Affiliation(s)
- Vivian Maria Souza de Carvalho
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Joyce L Covre
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Rebeca D Correia-Silva
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Izabella Lice
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil
| | - Mab P Corrêa
- Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, Programa de Pós-Graduação em Biociências, São José do Rio Preto, SP, Brazil
| | - Andréia M Leopoldino
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, SP, Brazil
| | - Cristiane D Gil
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Morfologia e Genética, São Paulo, SP, Brazil; Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, Programa de Pós-Graduação em Biociências, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
12
|
|
13
|
Parrado C, Nicolas J, Juarranz A, Gonzalez S. The role of the aqueous extract Polypodium leucotomos in photoprotection. Photochem Photobiol Sci 2020; 19:831-843. [PMID: 33856681 DOI: 10.1039/d0pp00124d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022]
Abstract
Solar radiation in the ultraviolet (UV), visible (VIS), and infrared (IR) ranges produces different biological effects in humans. Most of these, particularly those derived from ultraviolet radiation (UVR) are harmful to the skin, and include cutaneous aging and increased risk of cutaneous diseases, particularly skin cancer. Pharmacological photoprotection is mostly topical, but it can also be systemic. Oral photoprotectives constitute a new generation of drugs to combat the deleterious effects of solar radiation. Among these, an extract of Polypodium leucotomos (PL/Fernblock®, IFC Group, Spain) contains a high content of phenolic compounds that endow it with antioxidant activity. PL can administered orally or topically and is completely safe. PL complements and enhances endogenous antioxidant systems by neutralizing superoxide anions, hydroxyl radicals, and lipoperoxides. In addition to its antioxidant activity, PL also improves DNA repair and modulates immune and inflammatory responses. These activities are likely due to its ability to inhibit the generation and release of reactive oxygen species (ROS) by UVR, VIS, and IR radiation. PL also prevents direct DNA damage by accelerating the removal of induced photoproducts and decreasing UV-induced mutations. Oral PL increases the expression of active p53, decreases cell proliferation, and inhibits UV-induced COX-2 enzyme levels. PL has been used to treat skin diseases such as photodermatoses and pigmentary disorders and recently as a complement of photodynamic phototherapy in actinic keratoses. The photoprotective capability of PL has been proven in a multitude of in vitro and in vivo studies, which include animal models and clinical trials with human subjects. Based on this evidence, PL is a new generation photoprotector with antioxidant and anti-inflammatory properties that also protects DNA integrity and enhances the immune response.
Collapse
Affiliation(s)
- Concepción Parrado
- Department of Histology and Pathology, Faculty of Medicine, University of Málaga, Málaga, Spain
| | - Jimena Nicolas
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, Spain
| | - Angeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, Spain
| | - Salvador Gonzalez
- Medicine and Medical Specialties Department, Alcala University, Madrid, Spain.
| |
Collapse
|
14
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
15
|
da Silva ACP, Paiva JP, Diniz RR, Dos Anjos VM, Silva ABSM, Pinto AV, Dos Santos EP, Leitão AC, Cabral LM, Rodrigues CR, de Pádula M, Santos BAMC. Photoprotection assessment of olive (Olea europaea L.) leaves extract standardized to oleuropein: In vitro and in silico approach for improved sunscreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:162-171. [PMID: 30884286 DOI: 10.1016/j.jphotobiol.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 03/09/2019] [Indexed: 11/25/2022]
Abstract
Olive leaves contain higher amount of polyphenols than olive oil and represent a waste product from olive harvest and pruning of olive trees. The most abundant compound in olive leaves is oleuropein. Benefits of the topical application of olive leaves extract were previously reported, but little information is available on its photoprotective potential and the result of the association of this extract with organic UV filters in topical sunscreen formulations. The olive leaves extract photoprotective potential is less explored for both oral and topical photoprotection in comparison with other plants extracts and polyphenols, such as Polypodium leucotomos extract and resveratrol. There are increasing efforts towards developing more efficient sunscreens and a photoprotection assessement along with a better understanding of the photochemistry of naturally occurring sunscreens could aid the design of new and improved commercial sunscreen formulations. This study was designed to investigate the photoprotective potential of olive leaves extract standardized for oleuropein performing a set of in vitro and in silico tools as an innovative approach, highlighting yeast assays, in vitro Sun Protection Factor (SPF) and molecular modelling studies of UV absorption. This study supports the use of olive leaves extract for photoprotection, as an effective photoprotective, anti-mutagenic and antioxidant active, also showing a synergistic effect in association with UV filters with an improvement on in vitro SPF of sunscreen formulations.
Collapse
Affiliation(s)
- Anne C P da Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Juliana P Paiva
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Vitor M Dos Anjos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Ana Beatriz S M Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alicia Viviana Pinto
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Elisabete P Dos Santos
- Laboratório de Desenvolvimento Galênico (LADEG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Carlos R Rodrigues
- Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Bianca Aloise M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil.
| |
Collapse
|
16
|
GOMI Y, NISHIMURA Y, KURATA N, IWASE M, SHINYA K, KIUCHI Y. Inhibitory Effect of Polypodium Leucotomos Extract on Cytochrome P450 3A-mediated Midazolam Metabolism. ACTA ACUST UNITED AC 2019. [DOI: 10.15369/sujms.31.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yurika GOMI
- Department of Pharmacology, Showa University School of Medicine
- Department of Dermatology, Showa University School of Medicine
| | - Yuki NISHIMURA
- Department of Pharmacology, Showa University School of Medicine
| | | | - Mariko IWASE
- Department of Pharmacology, Showa University School of Medicine
| | - Koichiro SHINYA
- Department of Pharmacology, Showa University School of Medicine
- Department of Dermatology, Showa University School of Medicine
| | - Yuji KIUCHI
- Department of Pharmacology, Showa University School of Medicine
| |
Collapse
|
17
|
Nahhas AF, Abdel-Malek ZA, Kohli I, Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:420-428. [PMID: 30198587 DOI: 10.1111/phpp.12423] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an integral element that influences a variety of biochemical reactions throughout the body and is known to play a notable role in melanogenesis. Exogenous triggers of oxidative stress, such as ultraviolet radiation (UVR) and visible light (VL), lead to pigment formation through somewhat different pathways, but both share a common endpoint-the potential to generate cosmetically undesirable hyperpigmentation. Though organic and inorganic sunscreens are available to protect against the UVR portion of the electromagnetic spectrum, coverage is lacking to protect against the VL spectrum. In this manuscript, we review the phases of tanning, pathways of melanogenesis triggered by UVR and VL, and the associated impact of oxidative stress. We also discuss the known intrinsic mechanisms and paracrine regulation of melanocytes that influence their response to UVR. Understanding these mechanisms and their role in UVR-induced hyperpigmentation should potentially lead to identification of useful targets that can be coupled with antioxidant therapy to alleviate this effect.
Collapse
Affiliation(s)
- Amanda F Nahhas
- Department of Dermatology, Beaumont-Farmington Hills, Farmington Hills, Michigan.,Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
18
|
Parrado C, Philips N, Gilaberte Y, Juarranz A, González S. Oral Photoprotection: Effective Agents and Potential Candidates. Front Med (Lausanne) 2018; 5:188. [PMID: 29998107 PMCID: PMC6028556 DOI: 10.3389/fmed.2018.00188] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Electromagnetic radiation in the ultraviolet, visible, and infrared ranges produces biologic effects in humans. Where some of these effects are beneficial, others are harmful to the skin, particularly those stemming from ultraviolet radiation (UVR). Pharmacological photoprotection can be topical or systemic. Systemic photoprotection is often administered orally, complementing topical protection. New and classic oral agents (e.g., essential micronutrients as vitamins, minerals, polyphenols, carotenoids) are endowed with photoprotective and anti-photocarcinogenic properties. These substances bear the potential to increase systemic protection against the effects of electromagnetic radiation in the UV, visible, and infrared ranges. Protective mechanisms vary and include anti-oxidant, anti-inflammatory, and immunomodulatory effects. As such, they provide protection against UVR and prevent photo-induced carcinogenesis and aging. In this review, we present state of the art approaches regarding the photoprotective effects of vitamins and vitamin derivatives, dietary botanical, and non-botanical agents. A growing body of data supports the beneficial effects of oral photoprotection on the health of the skin. More studies will likely confirm and expand the positive impact of oral dietary botanicals as complementary measures for photoprotection.
Collapse
Affiliation(s)
- Concepción Parrado
- Department of Histology and Pathology, University of Málaga, Málaga, Spain
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, Teaneck, NJ, United States
| | - Yolanda Gilaberte
- Dermatology Service, Hospital Miguel Servet, Zaragoza, Spain.,Dermatology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Angeles Juarranz
- Biology Department, Instituto Ramón y Cajal de Investigación Sanitaria, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador González
- Medicine and Medical Specialties Department, Instituto Ramón y Cajal de Investigación Sanitaria, Alcalá University Madrid, Madrid, Spain
| |
Collapse
|
19
|
Murbach TS, Glávits R, Hirka G, Endres JR, Clewell AE, Szakonyiné IP. A 28-day oral toxicology study of an aqueous extract of Polypodium leucotomos (Fernblock ®). Toxicol Rep 2017; 4:494-501. [PMID: 28959679 PMCID: PMC5615158 DOI: 10.1016/j.toxrep.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/16/2017] [Accepted: 09/11/2017] [Indexed: 01/30/2023] Open
Abstract
The NOAEL study was 5000 mg/kg bw/d—the highest dose tested. No target organs or treatment-related toxicological effects were identified. Our results are relevant to the evaluation of the safety of human ingestion of Fernblock®.
Fernblock® is a standardized commercial aqueous extraction of the leaves of the tropical fern Polypodium leucotomos promoted as an orally active photoprotective substance. In a previous battery of toxicological tests on Fernblock®, no genotoxicy was observed and no oral toxicity was observed up to 1200 mg/kg bw/day. The current study was conducted in Hsd.Han Wistar rats using doses of 0, 2000, 3500, and 5000 mg/kg bw/day Fernblock® by gavage for 28 consecutive days. No mortality or toxic effects were observed and no target organs were identified. The no observed adverse effect level was determined to be 5000 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA, 98112, USA
| | - Róbert Glávits
- Toxi-Coop Zrt., Magyar Jakobinusok tere 4/B, H-1122 Budapest, Hungary
| | - Gábor Hirka
- Toxi-Coop Zrt., Magyar Jakobinusok tere 4/B, H-1122 Budapest, Hungary
| | - John R Endres
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA, 98112, USA
| | - Amy E Clewell
- AIBMR Life Sciences, Inc., 2800 East Madison Street, Suite 202, Seattle, WA, 98112, USA
| | | |
Collapse
|
20
|
Parrado C, Mascaraque M, Gilaberte Y, Juarranz A, Gonzalez S. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review. Int J Mol Sci 2016; 17:ijms17071026. [PMID: 27367679 PMCID: PMC4964402 DOI: 10.3390/ijms17071026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.
Collapse
Affiliation(s)
- Concepcion Parrado
- Pathology Department, School of Medicine, Universidad de Málaga, Malaga 29071, Spain.
| | - Marta Mascaraque
- Biology Department, Sciences School, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | | | - Angeles Juarranz
- Biology Department, Sciences School, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Salvador Gonzalez
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
- Medicine Department, Alcalá University, Madrid 28805, Spain.
| |
Collapse
|
21
|
Murbach TS, Béres E, Vértesi A, Glávits R, Hirka G, Endres JR, Clewell AE, Szakonyiné IP. A comprehensive toxicological safety assessment of an aqueous extract of Polypodium leucotomos (Fernblock(®)). Food Chem Toxicol 2015; 86:328-41. [PMID: 26585922 DOI: 10.1016/j.fct.2015.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 12/01/2022]
Abstract
A battery of toxicological studies was conducted in accordance with internationally accepted standards to investigate the genotoxicity and repeated-dose oral toxicity of Fernblock(®), a commercial aqueous extraction of the leaves of the tropical fern Polypodium leucotomos used for its oral and topical photoprotective properties. No evidence of mutagenicity was observed in a bacterial reverse mutation test or in vitro mammalian chromosomal aberration test nor was any genotoxic activity observed in an in vivo mouse micronucleus test. Two repeated-dose oral toxicity studies were conducted in male and female Wistar rats. In the first study, no mortality or toxic effects were observed and no target organs were identified at doses administered for 14 days by gavage up to the maximum dose of 5000 mg/kg bw/day. Based on these results, a 90-day study was conducted at 0, 300, 600, and 1200 mg/kg bw/day. No mortality or treatment-related adverse effects were observed and no target organs were identified. The NOAEL from the 90-day study was determined to be 1200 mg/kg bw/day, the highest dose tested.
Collapse
Affiliation(s)
- Timothy S Murbach
- AIBMR Life Sciences, Inc., 4117 South Meridian, Puyallup, WA 98373, USA.
| | - Erzsébet Béres
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - Adél Vértesi
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - Róbert Glávits
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - Gábor Hirka
- Toxi-Coop Zrt., Deres u. 10/A, H-1124 Budapest, Hungary.
| | - John R Endres
- AIBMR Life Sciences, Inc., 4117 South Meridian, Puyallup, WA 98373, USA.
| | - Amy E Clewell
- AIBMR Life Sciences, Inc., 4117 South Meridian, Puyallup, WA 98373, USA.
| | | |
Collapse
|
22
|
Zúñiga-González GM, Gómez-Meda BC, Zamora-Perez AL, Martínez-González MA, Muñoz de Haro IA, Pérez-Navarro AE, Armendáriz-Borunda J, Gallegos-Arreola MP. Micronucleated erythrocytes in newborns of rat dams exposed to ultraviolet-A light during pregnancy; protection by ascorbic acid supplementation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 782:36-41. [DOI: 10.1016/j.mrgentox.2015.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022]
|
23
|
Bosch R, Philips N, Suárez-Pérez JA, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, González S. Mechanisms of Photoaging and Cutaneous Photocarcinogenesis, and Photoprotective Strategies with Phytochemicals. Antioxidants (Basel) 2015; 4:248-68. [PMID: 26783703 PMCID: PMC4665475 DOI: 10.3390/antiox4020248] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 01/10/2023] Open
Abstract
Photoaging and photocarcinogenesis are primarily due to solar ultraviolet (UV) radiation, which alters DNA, cellular antioxidant balance, signal transduction pathways, immunology, and the extracellular matrix (ECM). The DNA alterations include UV radiation induced thymine-thymine dimers and loss of tumor suppressor gene p53. UV radiation reduces cellular antioxidant status by generating reactive oxygen species (ROS), and the resultant oxidative stress alters signal transduction pathways such as the mitogen-activated protein kinase (MAPK), the nuclear factor-kappa beta (NF-κB)/p65, the janus kinase (JAK), signal transduction and activation of transcription (STAT) and the nuclear factor erythroid 2-related factor 2 (Nrf2). UV radiation induces pro-inflammatory genes and causes immunosuppression by depleting the number and activity of the epidermal Langerhans cells. Further, UV radiation remodels the ECM by increasing matrixmetalloproteinases (MMP) and reducing structural collagen and elastin. The photoprotective strategies to prevent/treat photoaging and photocarcinogenesis include oral or topical agents that act as sunscreens or counteract the effects of UV radiation on DNA, cellular antioxidant balance, signal transduction pathways, immunology and the ECM. Many of these agents are phytochemical derivatives and include polyphenols and non-polyphenols. The flavonoids are polyphenols and include catechins, isoflavones, proanthocyanidins, and anthocyanins, whereas the non-flavonoids comprise mono phenolic acids and stilbenes. The natural sources of polyphenols include tea, cocoa, grape/wine, soy, pomegranate, and Polypodium leucotomos. The non-phenolic phytochemicals include carotenoids, caffeine and sulphoraphance (SFN). In addition, there are other phytochemical derivatives or whole extracts such as baicalin, flavangenol, raspberry extract, and Photomorphe umbellata with photoprotective activity against UVB radiation, and thereby carcinogenesis.
Collapse
Affiliation(s)
- Ricardo Bosch
- Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain.
- Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain.
| | - Neena Philips
- School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA.
| | - Jorge A Suárez-Pérez
- Department of Dermatology, Virgen de la Victoria University Hospital, Málaga 29010, Spain.
- Dermatology and Medicine Department, University of Málaga, Málag 29071, Spain.
| | - Angeles Juarranz
- Biology Department, Universidad Autónoma de Madrid, Madrid 28903, Spain.
| | - Avani Devmurari
- School of Natural Sciences, Fairleigh Dickinson University, 1000 River Road, Teaneck, NJ 07666, USA.
| | | | - Salvador González
- Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10022, USA.
- Ramon y Cajal Hospital, Alcala University, Madrid 28034, Spain.
| |
Collapse
|
24
|
Current knowledge in Polypodium leucotomos effect on skin protection. Arch Dermatol Res 2014; 307:199-209. [DOI: 10.1007/s00403-014-1535-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
25
|
El-Haj N, Goldstein N. Sun protection in a pill: the photoprotective properties ofPolypodium leucotomosextract. Int J Dermatol 2014; 54:362-6. [DOI: 10.1111/ijd.12611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nura El-Haj
- School of Medicine; Trinity College Dublin; Dublin Ireland
| | - Norman Goldstein
- Department of Dermatology; Mount Sinai Medical Center; New York NY USA
| |
Collapse
|
26
|
Parrado C, Juarranz A, Gilaberte Y, Philips N, Gonzalez S. Fern Extract, Oxidative Stress, and Skin Cancer. Cancer 2014. [DOI: 10.1016/b978-0-12-405205-5.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Rodríguez-Yanes E, Juarranz Á, Cuevas J, Gonzalez S, Mallol J. Polypodium leucotomos decreases UV-induced epidermal cell proliferation and enhances p53 expression and plasma antioxidant capacity in hairless mice. Exp Dermatol 2012; 21:638-40. [PMID: 22776002 DOI: 10.1111/j.1600-0625.2012.01544.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A single dose of ultraviolet radiation (UVR) induces significant changes in blood and skin of hairless mice. Oral administration of a hydrophilic extract of the fern Polypodium leucotomos (PL, 300 mg/kg during 5 days before UVR and for two additional days after irradiation) modulates some of the effects of UVR. Most significantly, PL administration reduced the number of proliferating cells by 13%, increased the number of p53(+) cells by 63%, enhanced the antioxidant plasma capacity (ORAC) by 30% and reinforced the network of dermal elastic fibres. Western blot analysis of skin antioxidant-related enzymes failed to demonstrate significant changes caused by PL. Thus, the beneficial effect of PL likely owes to its antioxidant and anti-ROS properties rather than its modulation of the expression of endogenous antioxidant systems. These data provide mechanistic clues for its efficacy as a systemic photoprotective agent with antioxidant and anti-photo-ageing properties.
Collapse
|
28
|
Li N, Li SX, Guo ZY, Zhuang ZF, Li R, Xiong K, Chen SJ, Liu SH. Micro-Raman spectroscopy study of the effect of Mid-Ultraviolet radiation on erythrocyte membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 112:37-42. [PMID: 22561009 DOI: 10.1016/j.jphotobiol.2012.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 12/14/2022]
Abstract
Mid-Ultraviolet (UVB) has a significant influence on human health. In this study, human erythrocytes were exposed to UVB to investigate the effects of UVB radiation on erythrocytes membrane. And Micro-Raman spectroscopy was employed to detect the damage. Principal component analysis (PCA) was used to classify the control erythrocytes and the irradiated erythrocytes. Results showed that the erythrocytes membrane was damaged by Mid-Ultraviolet (UVB) radiation. The intensity of the Raman peaks at 1126 cm(-1) and 1082 cm(-1) were used to calculate the Longitudinal Order-Parameters in Chains (S(trans)) which can present the liquidity and ionic permeability of erythrocyte membrane. After UVB radiation for 30 min, both the liquidity and ionic permeability decreased. At the same time, the intensity of the peaks at 1302 cm(-1) (α-helix), 1254 cm(-1) (random coil), 1452 cm(-1) and 1430 cm(-1) (CH(2)/CH(3) stretch) have also changed which indicated the membrane protein also been damaged by UVB. In the whole process of radiation, the more UVB radiation dose the more damage on the erythrocyte membrane.
Collapse
Affiliation(s)
- N Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Svobodová AR, Galandáková A, Sianská J, Doležal D, Ulrichová J, Vostálová J. Acute exposure to solar simulated ultraviolet radiation affects oxidative stress-related biomarkers in skin, liver and blood of hairless mice. Biol Pharm Bull 2011; 34:471-9. [PMID: 21467631 DOI: 10.1248/bpb.34.471] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ultraviolet (UV) region of solar radiation is a critical factor in the initiation and development of a number of skin diseases. However, it is not only skin which is directly exposed to solar light that is affected by UV radiation, through low molecular weight mediators, generated upon irradiation, "non-skin" tissues can also be affected. The aim of this study was to examine in detail, the acute effects of UVA and UVB wavebands on hairless mice. Female SKH-1 hairless mice were exposed to a single dose of UVB (200, 800 mJ/cm(2)) or UVA (10, 20 J/cm(2)) using a solar simulator. The effects on haematological parameters, activity and/or expression of antioxidant enzymes, level of glutathione (GSH), markers of oxidative damage (lipid peroxidation and carbonylated proteins) were analysed in erythrocytes, plasma, liver and whole skin homogenates. No macroscopic changes were observed either 4 or 24 h after UVA/UVB exposure. The blood count showed a significant increase in leukocyte number and reduction of platelets 4 h following UVA and UVB irradiation, which disappeared 24 h after irradiation except for the higher UVA dose. Changes in oxidative stress-related parameters, particularly activity of catalase (CAT) and superoxide dismutase (SOD) and level of GSH and lipid peroxidation products, were found in skin, erythrocytes and liver. The expression of several enzymes (CAT, SOD, glutathione transferase (GST), nicotinamide adenine dinucleotide (phosphate) quinone oxidoreductase (NQO1) and hem oxygenase-1 (HO-1)) in skin was affected following UVA and UVB radiation. Increase in carbonylated proteins was found in plasma and skin samples.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Czech Republic.
| | | | | | | | | | | |
Collapse
|
30
|
Fernblock, a nutriceutical with photoprotective properties and potential preventive agent for skin photoaging and photoinduced skin cancers. Int J Mol Sci 2011; 12:8466-75. [PMID: 22272084 PMCID: PMC3257081 DOI: 10.3390/ijms12128466] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/31/2011] [Accepted: 11/21/2011] [Indexed: 12/29/2022] Open
Abstract
Many phytochemicals are endowed with photoprotective properties, i.e., the capability to prevent the harmful effects of excessive exposure to ultraviolet (UV) light. These effects include photoaging and skin cancer, and immunosuppression. Photoprotection is endowed through two major modes of action: UV absorption or reflection/scattering; and tissue repair post-exposure. We and others have uncovered the photoprotective properties of an extract of the fern Polypodium leucotomos (commercial name Fernblock). Fernblock is an all-natural antioxidant extract, administered both topically (on the skin) or orally. It inhibits generation of reactive oxygen species (ROS) production induced by UV including superoxide anion. It also prevents damage to the DNA, inhibits UV-induced AP1 and NF-κB, and protects endogenous skin natural antioxidant systems, i.e., CAT, GSH, and GSSR. Its photoprotective effects at a cellular level include a marked decrease of UV-mediated cellular apoptosis and necrosis and a profound inhibition of extracellular matrix remodeling. These molecular and cellular effects translate into long-term inhibition of photoaging and carcinogenesis that, together with its lack of toxicity, postulate its use as a novel-generation photoprotective nutriceutical of phytochemical origin.
Collapse
|
31
|
Abstract
The interaction of free radicals with antioxidants is a topic of increasing interest in the development of prevention strategies against skin ageing. Carotenoids can serve as marker substances for the complete antioxidative network of human skin. Recently, it has become possible to measure the carotenoids non-invasively and online using resonance Raman spectroscopy. This method has been used in various studies to investigate the interaction of carotenoid antioxidants and free radicals in human skin. In this review, the results of the selected studies are summarized and compared. It could be demonstrated that the carotenoid concentration of the skin reflects the lifestyle of individuals. A high level of carotenoids can be achieved with a healthy diet rich, for instance, in fruit and vegetables. Stress factors such as illness, UV and IR radiation of the sun, and smoking and alcohol consumption reduce the concentration of the carotenoids in the skin. It could be demonstrated that premature skin ageing was less in people with a high level of antioxidants in their tissue. Consequently, the furrows and wrinkles were not so deep and dense as in the skin of individuals with a low antioxidant level. The measurements are highly suited for the development of anti-ageing strategies and can be efficiently used in the medical diagnostics and therapy control.
Collapse
Affiliation(s)
- Juergen Lademann
- Center of Experimental and Cutaneous Physiology (CCP), Department of Dermatology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Gonzalez S, Gilaberte Y, Philips N. Mechanistic insights in the use of a Polypodium leucotomos extract as an oral and topical photoprotective agent. Photochem Photobiol Sci 2010; 9:559-63. [DOI: 10.1039/b9pp00156e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|