1
|
Mosna MJ, Garde FJ, Stinson MG, Pastore CD, Carcagno AL. The chorioallantoic membrane (CAM) model: From its origins in developmental biology to its role in cancer research. Dev Biol 2025; 519:79-95. [PMID: 39694172 DOI: 10.1016/j.ydbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Over the past century, the chick embryo model, historically employed for research in developmental biology, has become a valuable tool for cancer research. The characteristics of the chick chorioallantoic membrane (CAM) make it a convenient model for the study of cancer, leading to the establishment of the CAM assay as an alternative to traditional in vivo cancer models. In this review we will explore the characteristics of the CAM that make it suitable for cancer research, as well as its consolidation as a versatile platform in this field. We will put particular emphasis on describing the key features that make this model an important asset for studying the hallmarks of cancer and for testing a wide variety of therapeutic strategies for its treatment, and which make it a suitable host for patient-derived xenografts (PDX). Additionally, we will examine the wide spectrum of methodological approaches available to study these subjects, highlighting some innovative cases. Finally, we will discuss the advantages and disadvantages of the chick CAM as a model for cancer research and how we can improve this model to its full potential.
Collapse
Affiliation(s)
- María Jimena Mosna
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Federico J Garde
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Marcelo G Stinson
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Candela D Pastore
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Abel L Carcagno
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
2
|
Nagaiah HP, Periyakaruppan Murugesan PD, Ravindra Rupali CV, Shunmugiah KP. Pioneering Topical Ointment Intervention for Unprecedented Antimicrobial and Diabetic Wound Management with Phenylpropanoids and Nano-Silver. AAPS J 2024; 26:67. [PMID: 38862870 DOI: 10.1208/s12248-024-00936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Addressing the intertwined challenges of antimicrobial resistance and impaired wound healing in diabetic patients, an oil/water emulsion-based nano-ointment integrating phenylpropanoids-Eugenol and Cinnamaldehyde-with positively-charged silver nanoparticles was synthesized. The process began with the synthesis and characterization of nano-silver, aimed at ensuring the effectiveness and safety of the nanoparticles in biological applications. Subsequent experiments determined the minimum inhibitory concentration (MIC) against pathogens such as Streptococcus aureus, Pseudomonas aeruginosa and Candida albicans. These MIC values of all three active leads guided the strategic formulation of an ointment base, which effectively integrated the bioactive components. Evaluations of this nano-ointment revealed enhanced antimicrobial activity against both clinical and reference bacterial strains and it maintained stability after freeze-thaw cycles. Furthermore, the ointment demonstrated superior in-vitro diabetic wound healing capabilities and significantly promoted angiogenesis, as shown by enhanced blood vessel formation in the Chorioallantoic Membrane assay. These findings underscore the formulation's therapeutic potential, marking a significant advance in the use of nanotechnology for topical wound care.
Collapse
|
3
|
Shahlaei M, Saeidifar M, Zamanian A. Sustained release of sulforaphane by bioactive extracellular vesicles for neuroprotective effect on chick model. J Biomed Mater Res B Appl Biomater 2022; 110:2636-2648. [PMID: 35785470 DOI: 10.1002/jbm.b.35117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Novel studies have shown neurological treatment possibilities with extracellular vesicles (EVs) as natural particles with a special composition that are produced by different cell types. Their stability, natural structure, composition, and bioavailability make them good candidates as drug vehicles. Here, EVs were isolated from amniotic fluid (AF) through differential centrifugation, and characterized for size (<200 nm), structure, and composition, their effectiveness on the human PC12 cell line, and brain of chick embryos exposed to sodium valproate (animal autistic model). Sulforaphane (SFN) was employed as a bioactive compound and then encapsulated into Evs using three methods including passive (incubation), active (sonication), and active-passive (sonication-incubation). Further, the loading and in vitro releases of SFN fitted the Korsmeyer-Peppas (R2 = 0.99) kinetic model by non-Fickian diffusion case II (n = 0.44, passive loading) and Fickian diffusion case I (n = 0.41, active and active-passive loading). SFN-loaded EVs (SFN@EVs; 11 μM: 103 nM) stimulated hPC-12 cell proliferation. The gene expression analysis revealed that SFN@EVs could upregulate Nrf2 and reduce IL-6 expression. Eventually, histopathological results of the coronal cross-section of the chick embryos brain showed treatment with SFN@EVs. This treatment illustrated normality in the gray and white matter and the orientation of the bipolar neurons. Our findings showed EVs' potentially acting as a gene expression regulator in autism spectrum disorder.
Collapse
Affiliation(s)
- Mona Shahlaei
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre, Karaj, Iran
| |
Collapse
|
4
|
Joniová J, Wagnières G. The Chicken Embryo Chorioallantoic Membrane as an In Vivo Model for Photodynamic Therapy. Methods Mol Biol 2022; 2451:107-125. [PMID: 35505014 DOI: 10.1007/978-1-0716-2099-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For many decades the chicken embryo chorioallantoic membrane (CAM) has been used for research as an in vivo model in a large number of different fields, including toxicology, bioengineering, and cancer research. More specifically, the CAM is also a suitable and convenient model system in the field of photodynamic therapy (PDT), mainly due to the easy access of its membrane and the possibility of grafting or growing tumors on the membrane and, interestingly, to study the PDT effects on its dense vascular network. In addition, the CAM is simple to handle and cheap. Since the CAM is not innervated until later stages of the embryo development, its use in research is simplified compared to other in vivo models as far as ethical and regulatory issues are concerned. In this review different incubation and drug administration protocols of relevance for PDT are presented. Moreover, data regarding the propagation of light at different wavelengths and CAM development stages are provided. Finally, the effects induced by photobiomodulation on the CAM angiogenesis and its impact on PDT treatment outcome are discussed.
Collapse
Affiliation(s)
- Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Das B, Bisht P, Kinchington PR, Goldstein RS. Locked-nucleotide antagonists to varicella zoster virus small non-coding RNA block viral growth and have potential as an anti-viral therapy. Antiviral Res 2021; 193:105144. [PMID: 34303746 DOI: 10.1016/j.antiviral.2021.105144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Herpes zoster (HZ) remains a significant health burden with millions of cases in North America and Europe annually. HZ is frequently followed by long-term pain or post-herpetic neuralgia (PHN). Although effective vaccines for HZ are available, currently used nucleotide analogues often have limited effectiveness against HZ and especially PHN, so there remains a need for additional antiviral therapies for HZ. We recently identified a population of small non-coding RNA (sncRNA) encoded by Varicella Zoster Virus (VZV) and showed that single locked-nucleic acid antagonists (LNAA) to some sncRNA can modulate VZV replication in cell culture. In this work, we explored the antiviral effects of combinations of LNAA oligonucleotides targeting VZVsncRNA. Combinations of LNAA targeting three VZVsncRNA encoded in and near a critical viral regulatory gene were additive, achieving 96 % reduction in virus growth in a cell line. VZV growth was also inhibited by more than 90 % in primary human skin fibroblast cultures by individual and combinations of LNAA to VZVsncRNA. The inhibition by VZVsncRNA was specific and not a consequence of innate immune responses since LNAA to a different VZVsncRNA enhanced VZV growth. Targeted VZVsncRNA lack homologous sequences in the human transcriptome suggesting that LNAA to them would have reduced cytotoxicity if used as therapeutics. These results support further development of oligonucleotides targeting VZVsncRNA as a novel treatment for HZ.
Collapse
Affiliation(s)
- Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Paul R Kinchington
- Departments of Ophthalmology and of Microbiology and Molecular Genetics, University of Pittsburgh, 1020 EEI 203 Lothrop Street, Pittsburgh, PA, 15213-2588, USA
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel.
| |
Collapse
|
6
|
Kundeková B, Máčajová M, Meta M, Čavarga I, Bilčík B. Chorioallantoic Membrane Models of Various Avian Species: Differences and Applications. BIOLOGY 2021; 10:biology10040301. [PMID: 33917385 PMCID: PMC8067367 DOI: 10.3390/biology10040301] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
The chorioallantoic membrane model (CAM) of an avian embryo is used as an experimental model in various fields of research, including angiogenesis research and drug testing, xenografting and cancer research, and other scientific and commercial disciplines in microbiology, biochemistry, cosmetics, etc. It is a low-cost, low-maintenance, and well-available in vivo animal model that is non-sentient and can be used as an alternative for other mammal experimental models. It respects the principles of the "3R" rule (Replacement, Reduction, and Refinement)-conditions set out for scientific community providing an essential framework for conducting a more human animal research, which is also in line with constantly raising public awareness of welfare and the ethics related to the use of animal experimental models. In this review, we describe the chorioallantoic membrane of an avian embryo, focusing on its properties and development, its advantages and disadvantages as an experimental model, and the possibilities of its application in various fields of biological research. Since the most common chicken CAM model is already well known and described in many publications, we are particularly focusing on the advantages and application of less known avian species that are used for the CAM model-quail, turkey, and duck.
Collapse
Affiliation(s)
- Barbora Kundeková
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
- Correspondence:
| | - Mariana Máčajová
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
| | - Majlinda Meta
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
| | - Ivan Čavarga
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
- St. Elizabeth Cancer Institute, 812 50 Bratislava, Slovakia
| | - Boris Bilčík
- Institute of Animal Biochemistry and Genetics, CBs SAS, 840 05 Bratislava, Slovakia; (M.M.); (M.M.); (I.Č.); (B.B.)
| |
Collapse
|
7
|
Huang W, Itayama M, Arai F, Furukawa KS, Ushida T, Kawahara T. An angiogenesis platform using a cubic artificial eggshell with patterned blood vessels on chicken chorioallantoic membrane. PLoS One 2017; 12:e0175595. [PMID: 28414752 PMCID: PMC5393577 DOI: 10.1371/journal.pone.0175595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
The chorioallantoic membrane (CAM) containing tiny blood vessels is an alternative to large animals for studies involving angiogenesis and tissue engineering. However, there is no technique to design the direction of growing blood vessels on the CAM at the microscale level for tissue engineering experiments. Here, a methodology is provided to direct blood vessel formation on the surface of a three-dimensional egg yolk using a cubic artificial eggshell with six functionalized membranes. A structure on the lateral side of the eggshell containing a straight channel and an interlinked chamber was designed, and the direction and formation area of blood vessels with blood flow was artfully defined by channels with widths of 70-2000 μm, without sharply reducing embryo viability. The relationship between the size of interlinked chamber and the induction of blood vessels was investigated to establish a theory of design. Role of negative and positive pressure in the induction of CAM with blood vessels was investigated, and air pressure change in the culture chamber was measured to demonstrate the mechanism for blood vessel induction. Histological evaluation showed that components of CAM including chorionic membrane and blood vessels were induced into the channels. Based on our design theory, blood vessels were induced into arrayed channels, and channel-specific injection and screening were realized, which demonstrated proposed applications. The platform with position- and space-controlled blood vessels is therefore a powerful tool for biomedical research, which may afford exciting applications in studies involved in local stimulation of blood vessel networks and those necessary to establish a living system with blood flow from a beating heart.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| | - Makoto Itayama
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Katsuko S. Furukawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ushida
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- The Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Kawahara
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| |
Collapse
|
8
|
The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 2014; 17:779-804. [PMID: 25138280 DOI: 10.1007/s10456-014-9440-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/13/2014] [Indexed: 01/16/2023]
Abstract
The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.
Collapse
|
9
|
Noiman T, Buzhor E, Metsuyanim S, Harari-Steinberg O, Morgenshtern C, Dekel B, Goldstein RS. A rapid in vivo assay system for analyzing the organogenetic capacity of human kidney cells. Organogenesis 2011; 7:140-4. [PMID: 21613816 DOI: 10.4161/org.7.2.16457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transplantation of human kidney-derived cells is a potential therapeutic modality for promoting regeneration of diseased renal tissue. However, assays that determine the ability of candidate populations for renal cell therapy to undergo appropriate differentiation and morphogenesis are limited. We report here a rapid and humane assay for characterizing tubulogenic potency utilizing the well-established chorioallantoic membrane CAM) of the chick embryo. Adult human kidney-derived cells expanded in monolayer were suspended in Matrigel and grafted onto the CAM. After a week, grafts were assessed histologically. Strikingly, many of the renal cells self-organized into tubular structures. Host blood vessels penetrated and presumably fed the grafts. Immuno- and histochemical staining revealed that tubular structures were epithelial, but not blood vessels. Some of the cells both within and outside the tubules were dividing. Analysis for markers of proximal and distal renal tubules revealed that grafts contained individual cells of a proximal tubular phenotype and many tubules of distal tubule character. Our results demonstrate that the chick CAM is a useful xenograft system for screening for differentiation and morphogenesis in cells with potential use in renal regenerative medicine.
Collapse
|
10
|
The chick chorioallantoic membrane: a model of molecular, structural, and functional adaptation to transepithelial ion transport and barrier function during embryonic development. J Biomed Biotechnol 2010; 2010:940741. [PMID: 20339524 PMCID: PMC2842975 DOI: 10.1155/2010/940741] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/16/2009] [Accepted: 01/06/2010] [Indexed: 11/17/2022] Open
Abstract
The chick chorioallantoic membrane is a very simple extraembryonic membrane which serves multiple functions during embryo development; it is the site of exchange of respiratory gases, calcium transport from the eggshell, acid-base homeostasis in the embryo, and ion and H(2)O reabsorption from the allantoic fluid. All these functions are accomplished by its epithelia, the chorionic and the allantoic epithelium, by differentiation of a wide range of structural and molecular peculiarities which make them highly specialized, ion transporting epithelia. Studying the different aspects of such a developmental strategy emphasizes the functional potential of the epithelium and offers an excellent model system to gain insights into questions partly still unresolved.
Collapse
|