1
|
Guinan J, Lopez BS. Generating Bovine Monocyte-Derived Dendritic Cells for Experimental and Clinical Applications Using Commercially Available Serum-Free Medium. Front Immunol 2020; 11:591185. [PMID: 33178224 PMCID: PMC7596353 DOI: 10.3389/fimmu.2020.591185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in fundamental and applied immunology research often originate from pilot studies utilizing animal models. While cattle represent an ideal model for disease pathogenesis and vaccinology research for a number of human disease, optimized bovine culture models have yet to be fully established. Monocyte-derived dendritic cells (MoDC) are critical in activating adaptive immunity and are an attractive subset for experimental and clinical applications. The use of serum-supplemented culture medium in this ex vivo approach is undesirable as serum contains unknown quantities of immune-modulating components and may induce unwanted immune responses if not autologous. Here, we describe a standardized protocol for generating bovine MoDC in serum-free medium (AIM-V) and detail the MoDC phenotype, cytokine profile, and metabolic signature achieved using this culture methodology. MoDC generated from adult, barren cattle were used for a series of experiments that evaluated the following culture conditions: medium type, method of monocyte enrichment, culture duration, and concentration of differentiation additives. Viability and yield were assessed using flow cytometric propidium iodide staining and manual hemocytometer counting, respectively. MoDC phenotype and T cell activation and proliferation were assessed by flow cytometric analysis of surface markers (MHC class II, CD86, CD14, and CD205), and CD25 and CFSE respectively. Cytokine secretion was quantified using a multiplex bovine cytokine panel (IL-1α, IL-1β, IL-8, IL-10, IL-17A, IFN-γ, MIP-1α, TNF-α, and IL-4). Changes in cell metabolism following stimulation were analyzed using an Extracellular Flux (XFe96) Seahorse Analyzer. Data were analyzed using paired t-tests and repeated measures ANOVA. Immature MoDC generated in serum-free medium using magnetic-activated cell sorting with plate adhesion to enrich monocytes and cultured for 4 days have the following phenotypic profile: MHC class II+++, CD86+, CD205++, and CD14-. These MoDC can be matured with PMA and ionomycin as noted by increased CD86 and CD40 expression, increased cytokine secretion (IL-1α, IL-10, MIP-1α, and IL-17A), a metabolic switch to aerobic glycolysis, and induction of T cell activation and proliferation following maturation. Cultivation of bovine MoDC utilizing our well-defined culture protocol offers a serum-free approach to mechanistically investigate mechanisms of diseases and the safety and efficacy of novel therapeutics for both humans and cattle alike.
Collapse
Affiliation(s)
- Jack Guinan
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ, United States
| | - Brina S Lopez
- Department of Pathology and Population Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ, United States
| |
Collapse
|
2
|
Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, Shen L, Wang W, Hua C. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev 2018; 18:25-35. [PMID: 30408584 DOI: 10.1016/j.autrev.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) engagement can directly trigger inflammation or amplify an inflammatory response by synergizing with TLRs or NLRs. Autoimmune diseases are a family of chronic systemic inflammatory disorders. The pivotal role of TREM-1 in inflammation makes it important to explore its immunological effects in autoimmune diseases. In this review, we summarize the structural and functional characteristics of TREM-1. Particularly, we discuss recent findings on TREM-1 pathway regulation in various autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), type 1 diabetes (T1D), and psoriasis. This receptor may potentially be manipulated to alter the inflammatory response to chronic inflammation and possible therapies are explored in this review.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chengyang Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chenmin Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fuyang Tu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Leibin Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wenqian Wang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
3
|
Vermi W, Micheletti A, Finotti G, Tecchio C, Calzetti F, Costa S, Bugatti M, Calza S, Agostinelli C, Pileri S, Balzarini P, Tucci A, Rossi G, Furlani L, Todeschini G, Zamò A, Facchetti F, Lorenzi L, Lonardi S, Cassatella MA. slan + Monocytes and Macrophages Mediate CD20-Dependent B-cell Lymphoma Elimination via ADCC and ADCP. Cancer Res 2018; 78:3544-3559. [PMID: 29748373 DOI: 10.1158/0008-5472.can-17-2344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022]
Abstract
Terminal tissue differentiation and function of slan+ monocytes in cancer is largely unexplored. Our recent studies demonstrated that slan+ monocytes differentiate into a distinct subset of dendritic cells (DC) in human tonsils and that slan+ cells colonize metastatic carcinoma-draining lymph nodes. Herein, we report by retrospective analysis of multi-institutional cohorts that slan+ cells infiltrate various types of non-Hodgkin lymphomas (NHL), particularly the diffuse large B-cell lymphoma (DLBCL) group, including the most aggressive, nodal and extranodal, forms. Nodal slan+ cells displayed features of either immature DC or macrophages, in the latter case ingesting tumor cells and apoptotic bodies. We also found in patients with DLBCL that peripheral blood slan+ monocytes, but not CD14+ monocytes, increased in number and displayed highly efficient rituximab-mediated antibody-dependent cellular cytotoxicity, almost equivalent to that exerted by NK cells. Notably, slan+ monocytes cultured in conditioned medium from nodal DLBCL (DCM) acquired a macrophage-like phenotype, retained CD16 expression, and became very efficient in rituximab-mediated antibody-dependent cellular phagocytosis (ADCP). Macrophages derived from DCM-treated CD14+ monocytes performed very efficient rituximab-mediated ADCP, however, using different FcγRs from those used by slan+ macrophages. Our observations shed new light on the complexity of the immune microenvironment of DLBCL and demonstrate plasticity of slan+ monocytes homing to cancer tissues. Altogether, data identify slan+ monocytes and macrophages as prominent effectors of antibody-mediated tumor cell targeting in patients with DLBCL.Significance: slan+ monocytes differentiate into macrophages that function as prominent effectors of antibody-mediated tumor cell targeting in lymphoma.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3544/F1.large.jpg Cancer Res; 78(13); 3544-59. ©2018 AACR.
Collapse
Affiliation(s)
- William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. .,Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| | - Alessandra Micheletti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Finotti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Stefano Pileri
- Unit of Haematopathology, European Institute of Oncology, 20141 Milan, Italy
| | - Piera Balzarini
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Tucci
- Division of Haematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giuseppe Rossi
- Division of Haematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lara Furlani
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giuseppe Todeschini
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alberto Zamò
- Section of Pathology, Department of Public Health and Diagnostics, University of Verona, Verona, Italy
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Lorenzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.
| |
Collapse
|
4
|
Chistè E, Ghafarinazari A, Donini M, Cremers V, Dendooven J, Detavernier C, Benati D, Scarpa M, Dusi S, Daldosso N. TiO 2-coated luminescent porous silicon micro-particles as a promising system for nanomedicine. J Mater Chem B 2018; 6:1815-1824. [PMID: 32254253 DOI: 10.1039/c7tb02614e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous silicon (pSi) is a sponge-like material obtained by electrochemical etching of a crystalline silicon wafer. Due to quantum confinement effects, this material is photoluminescent and this is a fundamental property from the perspective of bioimaging applications. Limitations in nanomedicine to the use of photoluminescent pSi structures are mainly due to optical quenching in an aqueous environment and to the adverse effects of reactive groups introduced by etching procedures. In this work, we exploited an inorganic TiO2 coating of pSi microparticles by Atomic Layer Deposition (ALD) that resulted in optical stability of pSi particles in a biological buffer (e.g. PBS). The use of a rotary reactor allows deposition of a uniform coating on the particles and enables a fine tuning of its thickness. The ALD parameters were optimized and the photoluminescence (PL) of pSi-TiO2 microparticles was stabilized for more than three months without any significant effect on their morphology. The biocompatibility of the coated microparticles was evaluated by analyzing the release of cytokines and superoxide anion (O2 -) by human dendritic cells, which play an essential role in the regulation of inflammatory and immune responses. We demonstrated that the microparticles per se are unable to significantly damage or stimulate human dendritic cells and therefore are suitable candidates for nanomedicine applications. However, a synergistic effect of the microparticles with bacterial products, which are known to stimulate immune-response, was observed, indicating that a condition unfavorable to the use of inorganic nanomaterials in biological systems is the presence of infection diseases. These results, combined with the proved PL stability in biological buffers, open the way for the use of pSi-TiO2 microparticles as promising materials in nanomedicine, but their ability to increase immune cell activation by other agonists should be considered and even exploited.
Collapse
Affiliation(s)
- E Chistè
- Department of Computer Science, Fluorescence Laboratory, University of Verona - Strada le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bazzi S, Modjtahedi H, Mudan S, Achkar M, Akle C, Bahr GM. Immunomodulatory effects of heat-killed Mycobacterium obuense on human blood dendritic cells. Innate Immun 2017; 23:592-605. [PMID: 28853313 DOI: 10.1177/1753425917727838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat-killed (HK) Mycobacterium obuense is a novel immunomodulator, currently undergoing clinical evaluation as an immunotherapeutic agent in the treatment of cancer. Here, we examined the effect of in vitro exposure to HK M. obuense on the expression of different categories of surface receptors on human blood myeloid (m) and plasmacytoid (p) DCs. Moreover, we have characterized the cytokine and chemokine secretion patterns of purified total blood DCs stimulated with HK M. obuense. HK M. obuense significantly up-regulated the expression of CD11c, CD80, CD83, CD86, CD274 and MHC class II in whole-blood mDCs and CD80, CD123 and MHC class II in whole-blood pDCs. Down-regulation of CD195 expression in both DC subpopulations was also noted. Further analysis showed that HK M. obuense up-regulated the expression of CD80, CD83 and MHC class II on purified blood DC subpopulations. TLR2 and TLR1 were also identified to be engaged in mediating the HK M. obuense-induced up-regulation of surface receptor expression on whole blood mDCs. In addition, our data demonstrated that HK M. obuense augmented the secretion of CCL4, CCL5, CCL22, CXCL8, IL-6, IL-12p40 and TNF-α by purified total blood DCs. Taken together, our data suggest that HK M. obuense exerts potent differential immunomodulatory effects on human DC subpopulations.
Collapse
Affiliation(s)
- Samer Bazzi
- 1 School of Life Sciences, Faculty of Science, Engineering and Computing, 4264 Kingston University , Kingston upon Thames, UK.,2 Biology Department, Faculty of Sciences, 54686 University of Balamand , Al Kurah, Lebanon
| | - Helmout Modjtahedi
- 1 School of Life Sciences, Faculty of Science, Engineering and Computing, 4264 Kingston University , Kingston upon Thames, UK
| | - Satvinder Mudan
- 3 St George's University of London, Imperial College, London and The Royal Marsden Hospital, London, UK
| | - Marcel Achkar
- 4 Clinical Laboratory Department, Nini Hospital, Tripoli, Lebanon
| | | | - Georges M Bahr
- 6 Faculty of Medicine and Medical Sciences, 54686 University of Balamand , Al Kurah, Lebanon
| |
Collapse
|
6
|
Portioli C, Pedroni M, Benati D, Donini M, Bonafede R, Mariotti R, Perbellini L, Cerpelloni M, Dusi S, Speghini A, Bentivoglio M. Citrate-stabilized lanthanide-doped nanoparticles: brain penetration and interaction with immune cells and neurons. Nanomedicine (Lond) 2016; 11:3039-3051. [DOI: 10.2217/nnm-2016-0297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aim: To unravel key aspects of the use of lanthanide-doped nanoparticles (NPs) in biomedicine, the interaction with immune and brain cells. Materials & methods: Effects of citrate-stabilized CaF2 and SrF2: Yb, Er NPs (13–15 nm) on human dendritic cells and neurons were assessed in vitro. In vivo distribution was analyzed in mice at tissue and ultrastructural levels, and with glia immunophenotyping. Results: The NPs did not elicit dendritic cell activation and were internalized by cultured neurons, without viability changes. After intravenous injection, NPs were found in the brain parenchyma, without features of glial neuroinflammatory response. Conclusion: Lanthanide-doped NPs do not activate cells protagonists of systemic and brain immune responses, are endocytosed by neurons and can cross an intact blood–brain barrier.
Collapse
Affiliation(s)
- Corinne Portioli
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Verona, Italy
| | - Marco Pedroni
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Donatella Benati
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Verona, Italy
| | - Marta Donini
- Department of Medicine, University of Verona, Verona, Italy
| | - Roberta Bonafede
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Verona, Italy
| | - Luigi Perbellini
- Department of Diagnostics & Public Health, University of Verona, Verona, Italy
| | - Marzia Cerpelloni
- Department of Diagnostics & Public Health, University of Verona, Verona, Italy
| | - Stefano Dusi
- Department of Medicine, University of Verona, Verona, Italy
| | - Adolfo Speghini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine & Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Portioli C, Bovi M, Benati D, Donini M, Perduca M, Romeo A, Dusi S, Monaco HL, Bentivoglio M. Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 2016; 105:847-858. [DOI: 10.1002/jbm.a.35961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Corinne Portioli
- Department of Neuroscience, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| | - Michele Bovi
- Department of Biotechnology; University of Verona; Verona Italy
| | - Donatella Benati
- Department of Neuroscience, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| | - Marta Donini
- Department of Medicine; University of Verona; Verona Italy
| | | | - Alessandro Romeo
- Department of Computer Science; University of Verona; Verona Italy
| | - Stefano Dusi
- Department of Medicine; University of Verona; Verona Italy
| | - Hugo L. Monaco
- Department of Biotechnology; University of Verona; Verona Italy
| | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| |
Collapse
|
8
|
Xuan NT, Hoang NH, Nhung VP, Duong NT, Ha NH, Hai NV. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression. J Recept Signal Transduct Res 2016; 37:297-303. [PMID: 27808000 DOI: 10.1080/10799893.2016.1247862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Huy Hoang
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Vu Phuong Nhung
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Thuy Duong
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Hai Ha
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nong Van Hai
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| |
Collapse
|
9
|
Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 2016; 9:758-771. [PMID: 27319803 PMCID: PMC5072192 DOI: 10.1111/1751-7915.12374] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/16/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022] Open
Abstract
Tailored nanoparticles offer a novel approach to fight antibiotic-resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram-negative Stenotrophomonas maltophilia [Sm-SeNPs(-)] and Gram-positive Bacillus mycoides [Bm-SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm-SeNPs(-) and Bm-SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch-SeNPs). Dendritic cells and fibroblasts exposed to Sm-SeNPs(-), Bm-SeNPs(+) and Ch-SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro-inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Diagnostic and Public Health, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Emanuele Zonaro
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Marta Donini
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Marzia Boaretti
- Department of Diagnostic and Public Health, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Stefano Dusi
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Regional Center, AOUI Verona, Verona, Italy
| | - Maria M Lleo
- Department of Diagnostic and Public Health, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
10
|
Vermi W, Micheletti A, Lonardi S, Costantini C, Calzetti F, Nascimbeni R, Bugatti M, Codazzi M, Pinter PC, Schäkel K, Tamassia N, Cassatella MA. slanDCs selectively accumulate in carcinoma-draining lymph nodes and marginate metastatic cells. Nat Commun 2015; 5:3029. [PMID: 24398631 DOI: 10.1038/ncomms4029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/27/2013] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) initiate adaptive immune responses to cancer cells by activating naive T lymphocytes. 6-sulfo LacNAc(+) DCs (slanDCs) represent a distinct population of circulating and tissue proinflammatory DCs, whose role in cancer immune surveillance is unknown. Herein, by screening a large set of clinical samples, we demonstrate accumulation of slanDCs in metastatic tumour-draining lymph nodes (M-TDLN) from carcinoma patients. Remarkably, slanDCs are absent at the primary carcinoma site, while their selective nodal recruitment follows the arrival of cancer cells to M-TDLN. slanDCs surround metastatic carcinoma deposits in close proximity to dead cells and efficiently phagocytose tumour cells. In colon carcinoma patients, the contingent of circulating slanDCs remains intact and competent in terms of IL-12p70 and tumour necrosis factor alpha production, induction of T-cell proliferation and migratory capacity to a set of chemokines produced in M-TDLN. We conclude that activated slanDCs represent previously unrecognized players of nodal immune responses to cancer cells.
Collapse
Affiliation(s)
- William Vermi
- 1] Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy [2] Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Alessandra Micheletti
- 1] Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy [2]
| | - Silvia Lonardi
- 1] Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy [2]
| | - Claudio Costantini
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Federica Calzetti
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Riccardo Nascimbeni
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Mattia Bugatti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Manuela Codazzi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Patrick C Pinter
- Section of Otorhinolaryngology, Department of Surgery, University of Verona, Verona 37134, Italy
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, 69115 Heidelberg, Germany
| | - Nicola Tamassia
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy
| |
Collapse
|
11
|
Legitimo A, Consolini R, Failli A, Orsini G, Spisni R. Dendritic cell defects in the colorectal cancer. Hum Vaccin Immunother 2015; 10:3224-35. [PMID: 25483675 PMCID: PMC4514061 DOI: 10.4161/hv.29857] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression.
Collapse
Key Words
- APC, antigen presenting cells
- CRC, Colorectal cancer
- CTLA-4, anticytotoxic T-lymphocyte antigen 4
- DCregs, regulatory DCs
- DCs, dendritic cells
- GM-CSF, granulocyte macrophage colony stimulating factor
- HMGB, high mobility group box
- HNSCC, head and neck squamous cell carcinoma
- IFN, interferon
- IL, interleukin
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex
- NK,natural killer
- PAMP, pathogen-associated molecular pattern
- PD-1, programmed death 1
- PRRs, pattern recognition receptors
- TDLNs, draining lymph nodes
- TGF, transforming growth factor
- TIDCs, tumor-infiltrating DCs
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T helper
- VEGF, vascular endothelial growth factor
- colorectal cancer
- dendritic cells
- immune response
- immunoescape
- mDCs, myeloid dendritic cells
- pDCs, plasmacytoid dendritic cells
- tumor microenvironment
Collapse
Affiliation(s)
- Annalisa Legitimo
- a Department of Clinical and Experimental Medicine ; University of Pisa ; Pisa , Italy
| | | | | | | | | |
Collapse
|
12
|
Lactic acid bacteria strains exert immunostimulatory effect on H. pylori-induced dendritic cells. J Immunol Res 2015; 2015:106743. [PMID: 25759836 PMCID: PMC4352478 DOI: 10.1155/2015/106743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to find out if selected lactic acid bacteria (LAB) strains (antagonistic or nonantagonistic against H. pylori in vitro) would differ in their abilities to modulate the DCs maturation profiles reflected by their phenotype and cytokine expression patterns. Methods. Monocyte-derived DCs maturation was elicited by their direct exposure to the LAB strains of L. rhamnosus 900 or L. paracasei 915 (antagonistic and nonantagonistic to H. pylori, resp.), in the presence or absence of H. pylori strain cagA+. The DCs maturation profile was assessed on the basis of surface markers expression and cytokines production. Results. We observed that the LAB strains and the mixtures of LAB with H. pylori are able to induce mature DCs. At the same time, the L. paracasei 915 leads to high IL-10/IL-12p70 cytokine ratio, in contrast to L. rhamnosus 900. Conclusions. This study showed that the analyzed lactobacilli strains are more potent stimulators of DC maturation than H. pylori. Interestingly from the two chosen LAB strains the antagonistic to H. pylori-L. rhamnosus strain 900 has more proinflammatory and probably antibactericidal properties.
Collapse
|
13
|
Becker JC. Tumor-educated myeloid cells: impact the micro- and macroenvironment. Exp Dermatol 2014; 23:157-8. [PMID: 24102950 DOI: 10.1111/exd.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
Abstract
Immune escape mechanisms of cancers include some of the mechanisms normally used for immune homeostasis, particular those preventing autoimmunity; one of these is the polarisation of myeloid cells. Thereby, tumors, i.e. the cancerous and stromal cells, also condition distant sites like spleen and bone marrow via soluble factors and membrane vesicles such as exosomes in order to create a tumor-educated macroenvironment. Albeit these mechanisms are currently in the focus of (tumor-)immunologic research, the first evidence had been published almost 40 years ago. One of these early reports will be discussed here.
Collapse
Affiliation(s)
- Jürgen C Becker
- General Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Daldosso N, Ghafarinazari A, Cortelletti P, Marongiu L, Donini M, Paterlini V, Bettotti P, Guider R, Froner E, Dusi S, Scarpa M. Orange and blue luminescence emission to track functionalized porous silicon microparticles inside the cells of the human immune system. J Mater Chem B 2014; 2:6345-6353. [DOI: 10.1039/c4tb01031k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Cantarelli IX, Pedroni M, Piccinelli F, Marzola P, Boschi F, Conti G, Sbarbati A, Bernardi P, Mosconi E, Perbellini L, Marongiu L, Donini M, Dusi S, Sorace L, Innocenti C, Fantechi E, Sangregorio C, Speghini A. Multifunctional nanoprobes based on upconverting lanthanide doped CaF2: towards biocompatible materials for biomedical imaging. Biomater Sci 2014; 2:1158-1171. [DOI: 10.1039/c4bm00119b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lanthanide doped CaF2 nanoparticles are useful for in vivo optical and MR imaging and as nanothermometer probes, which do not induce pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
| | - Marco Pedroni
- Dipartimento di Biotecnologie
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Fabio Piccinelli
- Dipartimento di Biotecnologie
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Pasquina Marzola
- Dipartimento di Informatica
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Federico Boschi
- Dipartimento di Informatica
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Giamaica Conti
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Andrea Sbarbati
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Paolo Bernardi
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Elisa Mosconi
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Luigi Perbellini
- Dipartimento di Sanità Pubblica e Medicina di Comunità
- Università di Verona
- Verona, Italy
| | - Laura Marongiu
- Dipartimento di Patologia e Diagnostica
- Sezione di Patologia Generale
- Università di Verona
- Verona, Italy
| | - Marta Donini
- Dipartimento di Patologia e Diagnostica
- Sezione di Patologia Generale
- Università di Verona
- Verona, Italy
| | - Stefano Dusi
- Dipartimento di Patologia e Diagnostica
- Sezione di Patologia Generale
- Università di Verona
- Verona, Italy
| | - Lorenzo Sorace
- INSTM and Dipartimento di Chimica “U. Schiff”
- Università degli Studi di Firenze
- Firenze, Italy
| | - Claudia Innocenti
- INSTM and Dipartimento di Chimica “U. Schiff”
- Università degli Studi di Firenze
- Firenze, Italy
| | - Elvira Fantechi
- INSTM and Dipartimento di Chimica “U. Schiff”
- Università degli Studi di Firenze
- Firenze, Italy
| | | | - Adolfo Speghini
- Dipartimento di Biotecnologie
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| |
Collapse
|
16
|
Orsini G, Legitimo A, Failli A, Ferrari P, Nicolini A, Spisni R, Miccoli P, Consolini R. Defective generation and maturation of dendritic cells from monocytes in colorectal cancer patients during the course of disease. Int J Mol Sci 2013; 14:22022-41. [PMID: 24213603 PMCID: PMC3856049 DOI: 10.3390/ijms141122022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/09/2013] [Accepted: 10/17/2013] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths in Western countries. Today, the role of the host’s immune system in controlling the progression and spread of solid tumors is broadly established. Tumor immunosurveillance escape mechanisms, such as those involving dendritic cells (DCs), the most important antigen-presenting cells, are likewise recognized processes involved in cancer. The present study evaluates the ability of CRC patients to generate DCs in vitro from circulating monocytes at both pre- and post-operative timepoints; the results are correlated with the stage of disease to shed light on the systemic immune statuses of CRC patients. Our data showed that patients’ DCs had lower co-stimulatory molecule expression and were less able to present antigens to allogeneic T cells compared to healthy controls’ (HC) DCs. Furthermore altered cytokine secretion, such as increased IL-10 and reduced IL-12 and TNF-α, was observed. At the post-operative timepoints we observed a recovery of the patients’ ability to generate immature DCs, compared to HCs, but the maturational capacity remained affected. Our study conclusively highlights the persistently impaired in vitro generation of fully mature and functional DCs, which appears to be more altered during advanced stages. This work sheds light on a dendritic cell-based tumor immune escape mechanism that could be useful for the development of more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Giulia Orsini
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma, 67, Pisa 56126, Italy; E-Mails: (A.L.); (A.F.); (R.C.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +39-050-992-222
| | - Annalisa Legitimo
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma, 67, Pisa 56126, Italy; E-Mails: (A.L.); (A.F.); (R.C.)
| | - Alessandra Failli
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma, 67, Pisa 56126, Italy; E-Mails: (A.L.); (A.F.); (R.C.)
| | - Paola Ferrari
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria Pisana (AOUP), via Roma, 67, Pisa 56126, Italy; E-Mail:
| | - Andrea Nicolini
- Department of Clinical and Experimental Medicine, Section Medical Oncology, University of Pisa, via Roma, 67, Pisa 56126, Italy; E-Mail:
| | - Roberto Spisni
- Department of Surgery, Molecular, Medical and Critical Area Pathology, University of Pisa, via Paradisa, 2, Pisa 56126, Italy; E-Mails: (R.S.) (P.M.)
| | - Paolo Miccoli
- Department of Surgery, Molecular, Medical and Critical Area Pathology, University of Pisa, via Paradisa, 2, Pisa 56126, Italy; E-Mails: (R.S.) (P.M.)
| | - Rita Consolini
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma, 67, Pisa 56126, Italy; E-Mails: (A.L.); (A.F.); (R.C.)
| |
Collapse
|
17
|
Combination with methotrexate and cyclophosphamide attenuated maturation of dendritic cells: inducing Treg skewing and Th17 suppression in vivo. Clin Dev Immunol 2013; 2013:238035. [PMID: 24194771 PMCID: PMC3806152 DOI: 10.1155/2013/238035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/01/2013] [Accepted: 08/15/2013] [Indexed: 01/27/2023]
Abstract
Immune disorder is considered the main pathogenesis of autoimmune diseases, such as rheumatoid arthritis (RA). The balance of the two special subsets of CD4+T cells, T helper cell 17 (Th17), and Regulator T cell (Treg) is the key factor of maintaining a normal immune response. Dendritic cells (DCs), which are the most powerful antigen-presenting cells, play an important role in regulating the balance of Th17 and Treg. The combination of disease modifying antirheumatic drugs (DMARDs) is an important strategy of RA therapy. In this study, we investigated the effect of MTX and CTX on DC maturation in ovalbumin (OVA) immunized mice. Th17 inflammatory response is stronger, while the level of DCs maturity is higher. In contrast, the immunosuppression of Treg is stronger. We found that MTX combined with CTX significantly inhibited the DCs maturity and downregulated the antigen presenting capacity of DCs. As a result, it reestablished a balance of Th17 and Treg. Our study adds a novel mechanism and therapeutic target of MTX combined with CTX for autoimmune disease treatment.
Collapse
|
18
|
Quantification of blood dendritic cells in colorectal cancer patients during the course of disease. Pathol Oncol Res 2013; 20:267-76. [PMID: 24022399 DOI: 10.1007/s12253-013-9691-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 08/30/2013] [Indexed: 01/07/2023]
Abstract
Colorectal cancer is a malignancy with poor prognosis that might be associated with defective immune function. The aim of the present study was to investigate circulating dendritic cells in colorectal cancer patients, in order to contribute to elucidate tumor-escape mechanisms and to point out a possible correlation with the clinical condition of the disease. Therefore, we enumerated ex vivo myeloid and plasmacytoid dendritic cells, through multicolor flow cytometry, in 26 colorectal patients and 33 healthy controls. Furthermore we performed several analyses at determined time points in order to define the immunological trend of cancer patients after surgery and other conventional treatments. At the pre-operative time point the absolute number of plasmacytoid dendritic cells in cancer patients was significantly reduced in comparison to controls, this result being mainly referred to stage III-IV patients. The number of myeloid dendritic cells did not show any significant difference compared to healthy controls; interestingly the expression of the tolerogenic antigen CD85k was significantly higher on cancer patients' myeloid dendritic cells than controls'. At the following samplings, circulating dendritic cell absolute number did not show any difference compared to controls. Conclusively the impairment of the number of circulating dendritic cells may represent one of the tumor escape mechanisms occurring in colorectal cancer. These alterations seem to be correlated to cancer progression. Our work sheds light on one of dendritic cell-based tumor immune escape mechanisms. This knowledge may be useful to the development of more effective immunotherapeutic strategies.
Collapse
|
19
|
Pierobon D, Bosco MC, Blengio F, Raggi F, Eva A, Filippi M, Musso T, Novelli F, Cappello P, Varesio L, Giovarelli M. Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur J Immunol 2013; 43:949-66. [PMID: 23436478 DOI: 10.1002/eji.201242709] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/21/2012] [Accepted: 01/25/2013] [Indexed: 12/30/2022]
Abstract
DCs are powerful antigen-presenting cells central in the orchestration of innate and acquired immunity. DC development, migration, and activities are intrinsically linked to the microenvironment. DCs migrate through pathologic tissues before reaching their final destination in the lymph nodes. Hypoxia, a condition of low partial oxygen pressure, is a common feature of many pathologic situations, capable of modifying DC phenotype and functional behavior. We studied human monocyte-derived immature DCs generated under chronic hypoxic conditions (H-iDCs). We demonstrate by gene expression profiling the upregulation of a cluster of genes coding for antigen-presentation, immunoregulatory, and pattern recognition receptors, suggesting a stimulatory role for hypoxia on iDC immunoregulatory functions. In particular, we show that H-iDCs express triggering receptor expressed on myeloid cells(TREM-1), a member of the Ig superfamily of immunoreceptors and an amplifier of inflammation. This effect is reversible because H-iDC reoxygenation results in TREM-1 down-modulation. TREM-1 engagement promotes upregulation of T-cell costimulatory molecules and homing chemokine receptors, typical of mature DCs, and increases the production of proinflammatory, Th1/Th17-priming cytokines/chemokines, resulting in increased T-cell responses. These results suggest that TREM-1 induction by the hypoxic microenvironment represents a mechanism of regulation of Th1-cell trafficking and activation by iDCs differentiated at pathologic sites.
Collapse
Affiliation(s)
- Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang Z, Meng Y, Guo Y, He X, Liu Q, Wang X, Shan F. Rehmannia glutinosa polysaccharide induces maturation of murine bone marrow derived Dendritic cells (BMDCs). Int J Biol Macromol 2012; 54:136-43. [PMID: 23246902 DOI: 10.1016/j.ijbiomac.2012.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
Purified Rehmannia glutinosa polysaccharide (RGP) is used as functional foods for the prevention and treatment of various diseases. In this study, we examined the effects of RGP on phenotypic and functional maturation of murine bone marrow derived Dendritic cells (BMDCs). Phenotypic maturation of BMDCs was confirmed by conventional scanning electron microscopy (SEM), flow cytometry (FCM) and functional maturation by transmission electron microscopy (TEM), cytochemistry assay, Acid phosphatase (ACP) activity, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA).We found that RGP up-regulated the expression of CD40, CD80, CD83, CD86 and MHC II molecules of BMDCs, down-regulated pinocytosis and phagocytosis activity, induced IL-12 and TNF-α production of BMDCs. It is therefore concluded that RGP can effectively promote the maturation of DCs. Our study provides evidence and rationale on using RGP in various clinical conditions to enhance host immunity and suggests RGP as a potent adjuvant for the design of DC-based vaccines.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Bosco MC, Varesio L. Dendritic cell reprogramming by the hypoxic environment. Immunobiology 2012; 217:1241-9. [PMID: 22901977 DOI: 10.1016/j.imbio.2012.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/06/2012] [Accepted: 07/19/2012] [Indexed: 12/17/2022]
Abstract
Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined.
Collapse
Affiliation(s)
- Maria Carla Bosco
- Laboratory of Molecular Biology, G. Gaslini Institute, Genova, Italy.
| | | |
Collapse
|
22
|
Sun L, Hua C, Yang Y, Dou H, Li E, Tan R, Hou Y. Chaeoglobosin Fex inhibits poly(I:C)-induced activation of bone marrow-derived dendritic cells. Mol Immunol 2012; 51:150-8. [PMID: 22424786 DOI: 10.1016/j.molimm.2012.02.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/22/2012] [Accepted: 02/28/2012] [Indexed: 12/27/2022]
Abstract
Dendritic cells (DCs) are implicated in the induction of autoimmune diseases and exist in lesions associated with several autoimmune inflammatory diseases. Chaeoglobosin Fex (Cha Fex), a cytochalasan-based alkaloid, was isolated from marine-derived endophytic fungus Chaetomium globosum QEN-14. In the present study, we evaluated the effect of Cha Fex on poly(I:C)-induced bone marrow-derived DCs. The results showed that Cha Fex attenuated the production of IFN-β both at the mRNA and protein level in poly(I:C)-induced DCs. Cha Fex markedly inhibited the maturation and function of the DCs with a reduced capacity to uptake antigens and low level of expression of costimulatory molecules. Moreover, Cha Fex abrogated the ability of poly(I:C)-induced DCs to promotion of T cell proliferation, Furthermore, Cha Fex inhibited the phosphorylation of IκB-α and IRF-3 in poly(I:C)-induced DCs. Cha Fex also reduced the phosphorylation of p38 and JNK, without affecting ERK1/2. These data demonstrate that that Cha Fex can exhibit an immunosuppressive effect on mouse bone marrow-derived DCs (BMDCs) via TLR3 signaling, which suggests potential application of Cha Fex in the treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Lin Sun
- Immunology and Reproductive Biology Lab & Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Orsini G, Legitimo A, Failli A, Massei F, Biver P, Consolini R. Enumeration of human peripheral blood dendritic cells throughout the life. Int Immunol 2012; 24:347-56. [PMID: 22345276 DOI: 10.1093/intimm/dxs006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human aging is associated with immunosenescence, a process characterized by alterations in numerical and functional features of immune system components. Dendritic cells (DCs) are the main antigen-presenting cells, playing a pivotal role in adaptive and innate immunity. Therefore, we investigated the distribution of human circulating DCs throughout the life, in order to contribute to the knowledge of the physiological background underlying the aging of immune system. Cytofluorimetric analysis of peripheral blood samples by all-aged healthy population showed a significant decrease of circulating DCs and of their two main subsets among age. This reduction was limited to the plasmacytoid cell subtype when young and old subjects were analyzed separately. The analysis of circulating Treg cell number in a cohort of the subjects showed a significant reduction with increasing age and a positive significant correlation to myeloid or plasmacytoid absolute numbers. In conclusion, this work provides a large set of data of normal reference values of peripheral blood dendritic cells in healthy population suitable for comparative clinical studies concerning pathological immune dysfunctions.
Collapse
Affiliation(s)
- Giulia Orsini
- Department of Surgery, University of Pisa, 56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011. [PMID: 21785456 DOI: 10.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, more recent evidence has extended the functions of these cells. The newly discovered repertoire of effector molecules in the neutrophil armamentarium includes a broad array of cytokines, extracellular traps and effector molecules of the humoral arm of the innate immune system. In addition, neutrophils are involved in the activation, regulation and effector functions of innate and adaptive immune cells. Accordingly, neutrophils have a crucial role in the pathogenesis of a broad range of diseases, including infections caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.
Collapse
|
25
|
Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Immunology 2011; 11:519-31. [PMID: 21785456 PMCID: PMC1423800 DOI: 10.1038/nri3024] [Citation(s) in RCA: 2102] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, more recent evidence has extended the functions of these cells. The newly discovered repertoire of effector molecules in the neutrophil armamentarium includes a broad array of cytokines, extracellular traps and effector molecules of the humoral arm of the innate immune system. In addition, neutrophils are involved in the activation, regulation and effector functions of innate and adaptive immune cells. Accordingly, neutrophils have a crucial role in the pathogenesis of a broad range of diseases, including infections caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 56, 20089 Rozzano, Italy.
| | | | | | | |
Collapse
|
26
|
Hänsel A, Günther C, Ingwersen J, Starke J, Schmitz M, Bachmann M, Meurer M, Rieber EP, Schäkel K. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses. J Allergy Clin Immunol 2011; 127:787-94.e1-9. [PMID: 21377044 DOI: 10.1016/j.jaci.2010.12.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/21/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease that is considered to result from activated T cells stimulated by a population of inflammatory dermal dendritic cells (DCs). The origin and identity of these inflammatory dermal DCs are largely unknown. OBJECTIVE We previously identified slanDCs (6-sulfo LacNAc) DCs as a rich source of TNF-α and as the early major source of IL-12. Here we studied the relevance of slanDCs as inflammatory dermal DCs in psoriasis. METHODS Psoriasis skin samples were stained for the presence of activated slanDCs. Functional studies were carried out to determine the cytokine production of slanDCs, their T(h)17/T(h)1 T-cell programming, and their migration behavior. RESULTS Large numbers of IL-23, TNF-α, and inducible nitric oxide synthase expressing slanDCs were found in psoriatic skin samples, which can be recruited by C5a, CX3CL1, and CXCL12. SlanDCs isolated from blood produced high levels of IL-1ß, IL-23, IL-12, and IL-6. Compared with classic CD1c(+) DCs, slanDCs were far more powerful in programming T(h)17/T(h)1 T cells that secrete IL-17, IL-22, TNF-α, and IFN-γ, yet CD1c(+) DCs induced a higher IL-10 production of T cells. Self-nucleic acids complexed to cathelicidin LL37 trigger endosomal Toll-like receptor (TLR) signaling (TLR7, TLR8, TLR9) and are key factors for the activation of DCs in psoriasis. We show that slanDCs respond particularly well to complexes formed of self-RNA and LL37. Similarly, slanDCs stimulated with a synthetic TLR7/8 ligand produced high levels of proinflammatory cytokines. CONCLUSION Our study defines slanDCs as inflammatory dermal DCs in psoriasis and identifies their strong capacity to induce T(h)17/T(h)1 responses.
Collapse
Affiliation(s)
- Anja Hänsel
- Faculty of Medicine, Institute of Immunology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Butterfield LH, Fu X, Song Z, Zhang X, Lu C, Ding G, Wu M. Lentivirally engineered dendritic cells activate AFP-specific T cells which inhibit hepatocellular carcinoma growth in vitro and in vivo. Int J Oncol 2011; 39:245-53. [PMID: 21491085 DOI: 10.3892/ijo.2011.1004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/20/2010] [Indexed: 12/18/2022] Open
Abstract
α-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the anti-tumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered Dendritic cells (DCs) in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and anti-tumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DCs. This study supports the superiority of a full-length antigen lentivirus-based DCs vaccine strategy over peptides, and provides new insight into the design of DCs-based vaccines.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai 10th People's Hospital Affiliated to Tongji University, Shanghai 200072, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Neem leaf glycoprotein partially rectifies suppressed dendritic cell functions and associated T cell efficacy in patients with stage IIIB cervical cancer. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:571-9. [PMID: 21307275 DOI: 10.1128/cvi.00499-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myeloid-derived dendritic cells (DCs) generated from monocytes obtained from stage IIIB cervical cancer (CaCx IIIB) patients show dysfunctional maturation; thus, antitumor T cell functions are dysregulated. In an objective to optimize these dysregulated immune functions, the present study is focused on the ability of neem leaf glycoprotein (NLGP), a nontoxic preparation of the neem leaf, to induce optimum maturation of dendritic cells from CaCx IIIB patients. In vitro NLGP treatment of immature DCs (iDCs) obtained from CaCx IIIB patients results in upregulated expression of various cell surface markers (CD40, CD83, CD80, CD86, and HLA-ABC), which indicates DC maturation. Consequently, NLGP-matured DCs displayed balanced cytokine secretions, with type 1 bias and noteworthy functional properties. These DCs displayed substantial T cell allostimulatory capacity and promoted the generation of cytotoxic T lymphocytes (CTLs). Although NLGP-matured DCs derived from CaCx monocytes are generally subdued compared to those with a healthy monocyte origin, considerable revival of the suppressed DC-based immune functions is noted in vitro at a fairly advanced stage of CaCx, and thus, further exploration of ex vivo and in vivo DC-based vaccines is proposed. Moreover, the DC maturating efficacy of NLGP might be much more effective in the earlier stages of CaCx, where the extent of immune dysregulation is less and, thus, the scope of further investigation may be explored.
Collapse
|
29
|
Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 2010; 117:2625-39. [PMID: 21148811 DOI: 10.1182/blood-2010-06-292136] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are a heterogeneous group of professional antigen-presenting cells functioning as sentinels of the immune system and playing a key role in the initiation and amplification of innate and adaptive immune responses. DC development and functions are acquired during a complex differentiation and maturation process influenced by several factors present in the local milieu. A common feature at pathologic sites is represented by hypoxia, a condition of low pO(2), which creates a unique microenvironment affecting cell phenotype and behavior. Little is known about the impact of hypoxia on the generation of mature DCs (mDCs). In this study, we identified by gene expression profiling a significant cluster of genes coding for immune-related cell surface receptors strongly up-regulated by hypoxia in monocyte-derived mDCs and characterized one of such receptors, TREM-1, as a new hypoxia-inducible gene in mDCs. TREM-1 associated with DAP12 in hypoxic mDCs, and its engagement elicited DAP12-linked signaling, resulting in ERK-1, Akt, and IκBα phosphorylation and proinflammatory cytokine and chemokine secretion. Finally, we provided the first evidence that TREM-1 is expressed on mDCs infiltrating the inflamed hypoxic joints of children affected by juvenile idiopathic arthritis, representing a new in vivo marker of hypoxic mDCs endowed with proinflammatory properties.
Collapse
|
30
|
Ng SC, Kamm MA, Stagg AJ, Knight SC. Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation. Inflamm Bowel Dis 2010; 16:1787-807. [PMID: 20222140 DOI: 10.1002/ibd.21247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) play a key role in discriminating between commensal microorganisms and potentially harmful pathogens and in maintaining the balance between tolerance and active immunity. The regulatory role of DC is of particular importance in the gut where the immune system lies in intimate contact with the highly antigenic external environment. Intestinal DC constantly survey the luminal microenvironment. They act as sentinels, acquiring antigens in peripheral tissues before migrating to secondary lymphoid organs to activate naive T cells. They are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. Recent studies have begun to elucidate mechanisms for functional specializations of DC in the intestine that may include the involvement of retinoic acid and transforming growth factor-β. Specialized CD103(+) intestinal DC can promote the differentiation of Foxp3(+) regulatory T cells via a retinoic acid-dependent process. Different DC outcomes are, in part, influenced by their exposure to microbial stimuli. Evidence is also emerging of the close interaction between bacteria, epithelial cells, and DC in the maintenance of intestinal immune homeostasis. Here we review recent advances of functionally specialized intestinal DC and their mechanisms of antigen uptake and recognition. We also discuss the interaction of DC with intestinal microbiota and their ability to orchestrate protective immunity and immune tolerance in the host. Lastly, we describe how DC functions are altered in intestinal inflammation and their emerging potential as a therapeutic target in inflammatory bowel disease.
Collapse
Affiliation(s)
- S C Ng
- Antigen Presentation Research Group, Faculty of Medicine, Imperial College London, Northwick Park and St Mark's Campus, Harrow, UK
| | | | | | | |
Collapse
|
31
|
Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard JM. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol 2010; 20:145-6. [PMID: 20707812 DOI: 10.1111/j.1600-0625.2010.01146.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidermal Langerhans cells (LC) are dendritic, antigen-presenting cells residing within mammalian epidermis and mucosal epithelia. When massively depleted, they are replaced by cells of bone-marrow origin. However, their renewal within normal skin under steady-state conditions is not precisely known. We observed that epidermal LC within a human hand allograft remain stable in the long term (10 years) and are not replaced by cells of recipient's origin; furthermore, we observed a Langerhans cell in mitosis within the epidermis 8 years postgraft. These results show that under almost physiological conditions, human LC renew in the epidermis by local mitoses of preexisting cells.
Collapse
|
32
|
Abstract
Many viruses infect humans and most are controlled satisfactorily by the immune system with limited damage to host tissues. Some viruses, however, do cause overt damage to the host, either in isolated cases or as a reaction that commonly occurs after infection. The outcome is influenced by properties of the infecting virus, the circumstances of infection and several factors controlled by the host. In this Review, we focus on host factors that influence the outcome of viral infection, including genetic susceptibility, the age of the host when infected, the dose and route of infection, the induction of anti-inflammatory cells and proteins, as well as the presence of concurrent infections and past exposure to cross-reactive agents.
Collapse
|
33
|
|
34
|
Behandlungsstrategien bei Psoriasis vulgaris und Psoriasisarthritis. Hautarzt 2009; 60:91-9. [DOI: 10.1007/s00105-008-1662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|