1
|
Yanez LZ, Camarillo DB. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod 2017; 23:235-247. [PMID: 27932552 PMCID: PMC5909856 DOI: 10.1093/molehr/gaw071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
Measurement of oocyte and embryo biomechanical properties has recently emerged as an exciting new approach to obtain a quantitative, objective estimate of developmental potential. However, many traditional methods for probing cell mechanical properties are time consuming, labor intensive and require expensive equipment. Microfluidic technology is currently making its way into many aspects of assisted reproductive technologies (ART), and is particularly well suited to measure embryo biomechanics due to the potential for robust, automated single-cell analysis at a low cost. This review will highlight microfluidic approaches to measure oocyte and embryo mechanics along with their ability to predict developmental potential and find practical application in the clinic. Although these new devices must be extensively validated before they can be integrated into the existing clinical workflow, they could eventually be used to constantly monitor oocyte and embryo developmental progress and enable more optimal decision making in ART.
Collapse
Affiliation(s)
- Livia Z. Yanez
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - David B. Camarillo
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
2
|
In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems. ZYGOTE 2014; 23:475-84. [PMID: 24666604 DOI: 10.1017/s0967199414000070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to evaluate the influence of two-dimensional (2D) and three-dimensional (3D) alginate culture systems on in vitro development of pre-antral caprine follicles. In addition, the influence of the reproductive age of the ovary donor on the in vitro culture success was investigated. Pre-antral follicles from pre-pubertal or adult goats were isolated and cultured directly on a plastic surface (2D) or encapsulated in an alginate-based matrix (3D). After 18 days, the oocytes underwent in vitro maturation (IVM) and in vitro fertilization (IVF) to produce embryos. The 3D system showed higher rates of follicle survival, lower rates of oocyte extrusion, and a greater number of recovered oocytes for IVM and IVF (P < 0.05). Only pre-antral follicles from adult animals produced MII oocytes and embryos. The estradiol concentrations increased from day 2 to day 12 of culture in all groups tested (P < 0.05). Conversely, progesterone concentrations were lower in 3D-cultured follicles than in 2D-cultured follicles, with differences on days 2 and 6 of culture (P < 0.05). We provide compelling evidence that a 2D or 3D alginate in vitro culture system offers a promising approach to achieving full in vitro development of caprine pre-antral follicles to produce mature oocytes that are capable of fertilization and viable embryos.
Collapse
|
3
|
Xu J, Xu M, Bernuci MP, Fisher TE, Shea LD, Woodruff TK, Zelinski MB, Stouffer RL. Primate follicular development and oocyte maturation in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 761:43-67. [PMID: 24097381 PMCID: PMC4007769 DOI: 10.1007/978-1-4614-8214-7_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The factors and processes involved in primate follicular development are complex and not fully understood. An encapsulated three-dimensional (3D) follicle culture system could be a valuable in vitro model to study the dynamics and regulation of folliculogenesis in intact individual follicles in primates. Besides the research relevance, in vitro follicle maturation (IFM) is emerging as a promising approach to offer options for fertility preservation in female patients with cancer. This review summarizes the current published data on in vitro follicular development from the preantral to small antral stage in nonhuman primates, including follicle survival and growth, endocrine (ovarian steroid hormone) and paracrine/autocrine (local factor) function, as well as oocyte maturation and fertilization. Future directions include major challenges and strategies to further improve follicular growth and differentiation with oocytes competent for in vitro fertilization and subsequent embryonic development, as well as opportunities to investigate primate folliculogenesis by utilizing this 3D culture system. The information may be valuable in identifying optimal conditions for human follicle culture, with the ultimate goal of translating the experimental results and products to patients, thereby facilitating diagnostic and therapeutic approaches for female fertility.
Collapse
Affiliation(s)
- Jing Xu
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Min Xu
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Marcelo P Bernuci
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Thomas E Fisher
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Lonnie D Shea
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Teresa K Woodruff
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, Illinois 61611, USA
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| |
Collapse
|
4
|
El-Taweel HA, Tolba MM, Sadaka HA, El-Zawawy LA, Osman MM. Zinc PVA versus potassium dichromate for preservation of microsporidian spores of human origin. Parasitol Res 2012; 111:689-94. [DOI: 10.1007/s00436-012-2888-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 03/01/2012] [Indexed: 01/25/2023]
|
5
|
Abstract
Nonhuman primates (NHP) are the closest animal species to humans and have been widely used for studying human reproductive physiology. Assisted reproductive technology (ART) in Old World NHPs provides great opportunity for studying fertilization, embryo development, embryonic stem cell (ESC) derivation for regenerative medicine, somatic cell nuclear transfer (cloning), and transgenic NHP models of inherited genetic disorders. Here we present two ART protocols developed for rhesus monkey (Macaca mulatta) and baboon (Papio cynocephalus).
Collapse
Affiliation(s)
- Tien-Cheng Arthur Chang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | | |
Collapse
|
6
|
Zhang L, Yilmaz A, Chian RC, Son WY, Zhang XY, Kong D, Dahan M, Holzer H, Tan SL, Ao A. Reliable preimplantation genetic diagnosis in thawed human embryos vitrified at cleavage stages without biopsy. J Assist Reprod Genet 2011; 28:597-602. [PMID: 21437672 DOI: 10.1007/s10815-011-9556-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/07/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate preimplantation genetic diagnosis (PGD) efficiency in thawed human embryos vitrified without biopsy. METHODS In this retrospective clinical study, 21 PGD cycles were carried out using fresh and vitrified-thawed embryos collected from 21 patients. RESULTS One hundred and ninety-nine embryos from patients with aneuploidy, single gene defects, or chromosomal translocations were vitrified at the cleavage stages; 93.5% of the embryos survived the vitrification procedure. Conclusive FISH results were obtained in 98.4% of the fresh and 99% of the frozen-thawed embryos screened for aneuploidy or chromosomal translocations. Conclusive PCR test results were obtained in 100% of the fresh and 93.9% of the frozen-thawed embryos screened for single gene defects. The overall clinical pregnancy rate per cycle was 57.1%. To date, 13 healthy children have been born. CONCLUSION Reliable genetic diagnosis can be performed in thawed human embryos vitrified without biopsy. However, further research is required to support this conclusion.
Collapse
Affiliation(s)
- Li Zhang
- MUHC Reproductive Center, Royal Victoria Hospital, and Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chang TC, Eddy CA, Ying Y, Liu YG, Holden AE, Brzyski RG, Schenken RS. Ovarian stimulation, in vitro fertilization, and effects of culture conditions on baboon preimplantation embryo development. Fertil Steril 2011; 95:1217-23. [DOI: 10.1016/j.fertnstert.2010.06.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
8
|
Xu J, Lawson MS, Yeoman RR, Pau KY, Barrett SL, Zelinski MB, Stouffer RL. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod 2011; 26:1061-72. [PMID: 21362681 DOI: 10.1093/humrep/der049] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND An alginate-based matrix supports the three-dimensional (3D) architecture of non-human primate follicles and, in the presence of FSH, permits the in vitro development of pre-antral follicles to the small antral stage, including the production of ovarian steroids and paracrine factors. The current study investigated the ability of gonadotrophins, fetuin and oxygen (O₂) to improve primate follicle growth and oocyte maturation in vitro. METHODS Macaque secondary follicles were isolated from the early follicular phase ovaries, encapsulated in a sodium alginate matrix and cultured individually for 40 days in supplemented medium. The effects of recombinant human (rh) FSH (15, 3 and 0.3 ng/ml for high, medium and low FSH, respectively), bovine fetuin (1 or 0 mg/ml) and O₂ (5 or 20% v/v) were examined. Half of the follicles in each culture condition received rhLH on Day 30-40. Follicles that reached antral stage were treated with rh chorionic gonadotrophin for 34 h to initiate oocyte meiotic maturation. Media were analyzed for ovarian steroids and anti-müllerian hormone (AMH). RESULTS Improved culture conditions supported non-human primate, secondary follicle growth to the antral stage and, for the first time, promoted oocyte maturation to the MII stage. In the presence of fetuin at 5% O₂, follicles had the highest survival rate if cultured with high or medium FSH, whereas follicles grew to larger diameters at Week 5 in low FSH. Oocyte health and maturation were promoted under 5% O₂. High FSH stimulated steroid production by growing follicles, and steroidogenesis by follicles cultured with low FSH was promoted by LH. AMH biosynthesis was elevated with high compared with low FSH and for longer under 5% O₂ than under 20% O₂. CONCLUSIONS This encapsulated 3D culture model permits further studies on the endocrine and local factors that influence primate follicle growth and oocyte maturation, with relevance to enhancing fertility preservation options in women.
Collapse
Affiliation(s)
- J Xu
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Mtango NR, VandeVoort CA, Latham KE. Ontological aspects of pluripotency and stemness gene expression pattern in the rhesus monkey. Gene Expr Patterns 2011; 11:285-98. [PMID: 21329766 DOI: 10.1016/j.gep.2011.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
Two essential aspects of mammalian development are the progressive specialization of cells toward different lineages, and the maintenance of progenitor cells that will give rise to the differentiated components of each tissue and also contribute new cells as older cells die or become injured. The transition from totipotentiality to pluripotentiality, to multipotentiality, to monopotentiality, and then to differentiation is a continuous process during development. The ontological relationship between these different stages is not well understood. We report for the first time an ontological survey of expression of 45 putative "stemness" and "pluripotency" genes in rhesus monkey oocytes and preimplantation stage embryos, and comparison to the expression in the inner cell mass, trophoblast stem cells, and a rhesus monkey (ORMES6) embryonic stem cell line. Our results reveal that some of these genes are not highly expressed in all totipotent or pluripotent cell types. Some are predominantly maternal mRNAs present in oocytes and embryos before transcriptional activation, and diminishing before the blastocyst stage. Others are well expressed in morulae or early blastocysts, but are poorly expressed in later blastocysts or ICMs. Also, some of the genes employed to induce pluripotent stem cells from somatic cells (iPS genes) appear unlikely to play major roles as stemness or pluripotency genes in normal embryos.
Collapse
Affiliation(s)
- Namdori R Mtango
- The Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|