1
|
Fugate J, Wallace C, Aikens EO, Jesmer B, Kauffman M. Origin stories: how does learned migratory behaviour arise in populations? Biol Rev Camb Philos Soc 2025; 100:996-1014. [PMID: 39727267 DOI: 10.1111/brv.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Although decades of research have deepened our understanding of the proximate triggers and ultimate drivers of migrations for a range of taxa, how populations establish migrations remains a mystery. However, recent studies have begun to illuminate the interplay between genetically inherited and learned migrations, opening the door to the evaluation of how migration may be learned, established, and maintained. Nevertheless, for migratory species where the role of learning is evident, we lack a comprehensive framework for understanding how populations learn specific routes and refine migratory movements over time (i.e., their origins). This review draws on advances in behavioural and movement ecology to offer a comprehensive framework for how populations could transition from resident to migratory by connecting cognitive research on fine-scale perceptual cues and movement decisions with literature on learning and cultural transmission, to the emergent pattern of migration. We synthesize the multiple cognitive mechanisms and processes that allow a population to respond to seasonal resource limitation, then encode spatial and environmental information about resource availability in memory and engage in social learning to navigate their landscapes and track resources better. A rise in global reintroduction efforts, along with human-induced rapid shifts in environmental cues and changing landscapes make evaluating the origins of this threatened behaviour more urgent than ever.
Collapse
Affiliation(s)
- Janey Fugate
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| | - Cody Wallace
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| | - Ellen O Aikens
- School of Computing and the Haub School of the Environment, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| | - Brett Jesmer
- Department of Fish and Wildlife Conservation, Virginia Tech, 310 West Campus Dr, Blacksburg, Virginia, 24061, USA
| | - Matthew Kauffman
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 1000 E University Ave, Laramie, Wyoming, 82071, USA
| |
Collapse
|
2
|
Rittweg TD, Trueman C, Wiedenbeck M, Fietzke J, Wolter C, Talluto L, Dennenmoser S, Nolte A, Arlinghaus R. Variable habitat use supports fine-scale population differentiation of a freshwater piscivore (northern pike, Esox lucius) along salinity gradients in brackish lagoons. Oecologia 2024; 206:275-292. [PMID: 39424687 PMCID: PMC11599437 DOI: 10.1007/s00442-024-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
In mobile animals, selection pressures resulting from spatio-temporally varying ecological factors often drive adaptations in migration behavior and associated physiological phenotypes. These adaptations may manifest in ecologically and genetically distinct ecotypes within populations. We studied a meta-population of northern pike (Esox lucius) in brackish environments and examined intrapopulation divergence along environmental gradients. Behavioral phenotypes in habitat use were characterized via otolith microchemistry in 120 individuals sampled from brackish lagoons and adjacent freshwater tributaries. We genotyped 1514 individual pike at 33 highly informative genetic markers. The relationship between behavioral phenotype and genotype was examined in a subset of 101 pikes for which both phenotypic and genomic data were available. Thermosaline differences between juvenile and adult life stages indicated ontogenetic shifts from warm, low-saline early habitats towards colder, higher-saline adult habitats. Four behavioral phenotypes were found: Freshwater residents, anadromous, brackish residents, and cross-habitat individuals, the latter showing intermediary habitat use between brackish and freshwater areas. Underlying the behavioral phenotypes were four genotypes, putative freshwater, putative anadromous, and two putatively brackish genotypes. Through phenotype-genotype matching, three ecotypes were identified: (i) a brackish resident ecotype, (ii) a freshwater ecotype expressing freshwater residency or anadromy, and (iii) a previously undescribed intermediary cross-habitat ecotype adapted to intermediate salinities, showing limited reliance on freshwater. Life-time growth of all ecotypes was similar, suggesting comparable fitness. By combining genetic data with lifelong habitat use and growth as a fitness surrogate, our study revealed strong differentiation in response to abiotic environmental gradients, primarily salinity, indicating ecotype diversity in coastal northern pike is higher than previously believed.
Collapse
Affiliation(s)
- Timo D Rittweg
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany.
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| | - Clive Trueman
- School of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO143ZH, UK
| | - Michael Wiedenbeck
- German Research Center for Geosciences (GFZ) Potsdam, Telegrafenberg, 14473, Potsdam, Brandenburg, Germany
| | - Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Schleswig-Holstein, Germany
| | - Christian Wolter
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
| | - Lauren Talluto
- Research Group Fluvial Ecosystem Ecology, Department of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Stefan Dennenmoser
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Arne Nolte
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Robert Arlinghaus
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
3
|
Denryter K, Stephenson TR, Monteith KL. Migratory behaviours are risk-sensitive to physiological state in an elevational migrant. CONSERVATION PHYSIOLOGY 2024; 12:coae029. [PMID: 38779433 PMCID: PMC11109817 DOI: 10.1093/conphys/coae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Accretion of body fat by animals is an important physiological adaptation that may underpin seasonal behaviours, especially where it modulates risk associated with a particular behaviour. Using movement data from male Sierra Nevada bighorn sheep (Ovis canadensis sierrae), we tested the hypothesis that migratory behaviours were risk-sensitive to physiological state (indexed by body fat). Sierra bighorn face severe winter conditions at high elevations and higher predation risk at lower elevations. Given that large body fat stores ameliorate starvation risk, we predicted that having small body fat stores would force animals to migrate to lower elevations with more abundant food supplies. We also predicted that body fat stores would influence how far animals migrate, with the skinniest animals migrating the furthest down in elevation (to access the most abundant food supplies at that time of year). Lastly, we predicted that population-level rates of switching between migratory tactics would be inversely related to body fat levels because as body fat levels decrease, animals exhibiting migratory plasticity should modulate their risk of starvation by switching migratory tactics. Consistent with our predictions, probability of migration and elevational distance migrated increased with decreasing body fat, but effects differed amongst metapopulations. Population-level switching rates also were inversely related to population-level measures of body fat prior to migration. Collectively, our findings suggest migration was risk-sensitive to physiological state, and failure to accrete adequate fat may force animals to make trade-offs between starvation and predation risk. In complex seasonal environments, risk-sensitive migration yields a layer of flexibility that should aid long-term persistence of animals that can best modulate their risk by attuning behaviour to physiological state.
Collapse
Affiliation(s)
- Kristin Denryter
- Haub School of Environment and Natural Resources, University of Wyoming, Bim Kendall House 804 E Fremont St, Laramie, WY 82072, USA
| | - Thomas R. Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, 787 N Main St., Bishop, CA 93514, USA
| | - Kevin L. Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Bim Kendall House 804 E Fremont St, Laramie, WY 82072, USA
| |
Collapse
|
4
|
Ortega AC, Merkle JA, Sawyer H, Monteith KL, Lionberger P, Valdez M, Kauffman MJ. A test of the frost wave hypothesis in a temperate ungulate. Ecology 2024; 105:e4238. [PMID: 38212148 DOI: 10.1002/ecy.4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/25/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
Growing evidence supports the hypothesis that temperate herbivores surf the green wave of emerging plants during spring migration. Despite the importance of autumn migration, few studies have conceptualized resource tracking of temperate herbivores during this critical season. We adapted the frost wave hypothesis (FWH), which posits that animals pace their autumn migration to reduce exposure to snow but increase acquisition of forage. We tested the FWH in a population of mule deer in Wyoming, USA by tracking the autumn migrations of n = 163 mule deer that moved 15-288 km from summer to winter range. Migrating deer experienced similar amounts of snow but 1.4-2.1 times more residual forage than if they had naïve knowledge of when or how fast to migrate. Importantly, deer balanced exposure to snow and forage in a spatial manner. At the fine scale, deer avoided snow near their mountainous summer ranges and became more risk prone to snow near winter range. Aligning with their higher tolerance of snow and lingering behavior to acquire residual forage, deer increased stopover use by 1 ± 1 day (95% CI) day for every 10% of their migration completed. Our findings support the prediction that mule deer pace their autumn migration with the onset of snow and residual forage, but refine the FWH to include movement behavior en route that is spatially dynamic.
Collapse
Affiliation(s)
- Anna C Ortega
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Hall Sawyer
- Western Ecosystems Technology, Inc., Laramie, Wyoming, USA
| | - Kevin L Monteith
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | - Patrick Lionberger
- Bureau of Land Management, Rock Springs Field Office, Rock Springs, Wyoming, USA
| | - Miguel Valdez
- Bureau of Land Management, Rock Springs Field Office, Rock Springs, Wyoming, USA
| | - Matthew J Kauffman
- US Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
5
|
Resop L, Demarais S, Strickland BK, McKinley WT, Street G. Rutting and rambling: Movement characteristics reveal partial migration in adult male white-tailed deer at a latitude void of chronic and severe environmental fluctuations. Ecol Evol 2024; 14:e10875. [PMID: 38352199 PMCID: PMC10862164 DOI: 10.1002/ece3.10875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
White-tailed deer (Odocoileus virginianus) are generally considered a home-ranging species, although northern populations may migrate between summer and winter ranges to balance resource requirements with environmental stressors. We evaluated annual home range characteristics of adult bucks (n = 30) fitted with GPS collars from 2017 to 2021 in central Mississippi with time series segmentation and Kernel Density Estimation (KDE) to determine if individuals employed varying movement strategies. We found 67% of bucks displayed a "sedentary" strategy characterized by a single KDE home range polygon with a mean size of 361 ha. The remaining 33% of bucks employed a "mobile" strategy characterized by multiple home range segments with a mean size of 6530 ha. Sedentary bucks went on an average of 5.9 excursions annually while mobile bucks went on 0.8. Excursion timing for both strategies peaked in breeding season and early spring. Mobile buck home ranges were separated by a mean distance of 7.1 km and mean duration in one home range segment before traveling to another was 78 days. Our study provides the first evidence that partial migration may apply to a larger proportion of lower-latitude deer populations than originally thought, though the environmental justification for this partial migration is not clear.
Collapse
Affiliation(s)
- Luke Resop
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityMississippi StateMississippiUSA
| | - Stephen Demarais
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityMississippi StateMississippiUSA
| | - Bronson K. Strickland
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityMississippi StateMississippiUSA
| | - William T. McKinley
- Mississippi Department of Wildlife Fisheries, and ParksJacksonMississippiUSA
| | - Garrett Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityMississippi StateMississippiUSA
| |
Collapse
|
6
|
Laneng LA, Tachiki Y, Akamatsu R, Kobayashi K, Takahata C, Nakamura F. Seasonal home range and habitat selection patterns of sika deer
Cervus nippon
in southern Hokkaido, Japan. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lauretta Andrew Laneng
- Dept of Forest Science, Graduate School of Agriculture, Hokkaido Univ. Sapporo Hokkaido Japan
| | | | | | | | - Chihiro Takahata
- Dept of Forest Science, Graduate School of Agriculture, Hokkaido Univ. Sapporo Hokkaido Japan
| | - Futoshi Nakamura
- Dept of Forest Science, Graduate School of Agriculture, Hokkaido Univ. Sapporo Hokkaido Japan
| |
Collapse
|
7
|
Hulthén K, Chapman BB, Nilsson PA, Hansson LA, Skov C, Brodersen J, Brönmark C. Timing and synchrony of migration in a freshwater fish: Consequences for survival. J Anim Ecol 2022; 91:2103-2112. [PMID: 35899786 DOI: 10.1111/1365-2656.13790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/15/2022] [Indexed: 01/07/2023]
Abstract
Animal migration is one of the most spectacular and visible behavioural phenomena in nature with profound implications for a range of ecological and evolutionary processes. Successful migration hinges on the ability to exploit temporary resources (e.g. food) and evade threats (e.g. predators) as they arise, and thus the timing of migration is often regarded as a dominant predictor of individual migratory success. However, with the exception of intensively studied taxa (mainly birds), relatively few studies have investigated inter-individual annual and seasonal variation in migratory timing and performance, or tested predictions on how migration across high and low predation-risk habitats may exert selection on migratory timing. In particular, studies that assess the survival consequences of variation in migratory timing remain rare, which is most likely due to the logistical challenges associated with monitoring survival success and population-level characteristics simultaneously. Here, we address the above-mentioned questions using roach Rutilus rutilus, a fish that migrates from lakes characterised by high predation risk into low-risk streams during winter. Specifically, we used individual-based tracking of roach in two European lake systems over multiple migration periods (9 and 7 years respectively), to obtain highly detailed (year-round scheduling, repeat journeys and the fate of individuals) data on the variability/synchrony of migratory timing in spring and autumn respectively. We report seasonal differences in the variability of migratory timing, with lower variance and higher migration synchrony in spring lake arrival timing as compared to autumn lake departure timing. Furthermore, the timing of autumn migration is more variable across years than the timing of spring migration. Second, we find that later arrival to the lake habitat is positively associated with apparent survival from 1 year to the next, whereas we found no effect of lake departure timing on survival probability. These findings represent rare evidence showing how intraspecific variation in timing in migratory fish differs across years and seasons, and how variation in timing can translate into survival consequences for prey in systems characterised by high predation risk.
Collapse
Affiliation(s)
- Kaj Hulthén
- Department of Biology-Aquatic Ecology, Lund University, Lund, Sweden
| | - Ben B Chapman
- Division of Evolution and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | - P Anders Nilsson
- Department of Biology-Aquatic Ecology, Lund University, Lund, Sweden
| | | | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Department of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Christer Brönmark
- Department of Biology-Aquatic Ecology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Denryter K, Conner MM, Stephenson TR, German DW, Monteith KL. Survival of the fattest: how body fat and migration influence survival in highly seasonal environments. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kristin Denryter
- Haub School of Environment and Natural Resources University of Wyoming, 804 East Fremont Laramie WY USA
| | - Mary M. Conner
- Utah State University Department of Wildland Resources, 5320 Old Main Hill Logan UT USA
- California Department of Fish and Wildlife, 787 North Main Street, Suite 220 Bishop CA USA
| | - Thomas R. Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, 787 North Main Street, Suite 220 Bishop CA USA
| | - David W. German
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, 787 North Main Street, Suite 220 Bishop CA USA
| | - Kevin L. Monteith
- Haub School of Environment and Natural Resources Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, 804 East Fremont Laramie WY USA
| |
Collapse
|
9
|
Wondim MA, Czupryna P, Pancewicz S, Kruszewska E, Groth M, Moniuszko-Malinowska A. Epidemiological Trends of Trans-Boundary Tick-Borne Encephalitis in Europe, 2000-2019. Pathogens 2022; 11:pathogens11060704. [PMID: 35745558 PMCID: PMC9228375 DOI: 10.3390/pathogens11060704] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis is a neuroinfection widely distributed in the Euro-Asia region. Primarily, the virus is transmitted by the bite of infected ticks. From 2000-2019, the total number of confirmed cases in Europe reported to the European Centre for Disease Prevention and Control was 51,519. The number of cases decreased in 2014 and 2015; however, since 2015, a growing number of cases have been observed, with the involvement of countries in which TBE has not been previously reported. The determinant factors for the spread of TBE are host population size, weather conditions, movement of hosts, and local regulations on the socioeconomic dynamics of the local and travelling people around the foci areas. The mean incidence rate of tick-borne encephalitis from 2000-2019 in Europe was 3.27, while the age-adjusted mean incidence rate was 2.19 per 100,000 population size. This review used several articles and data sources from the European Centre for Diseases Prevention and Control.
Collapse
|
10
|
Animal-vehicle collisions during the COVID-19 lockdown in early 2020 in the Krakow metropolitan region, Poland. Sci Rep 2022; 12:7572. [PMID: 35534651 PMCID: PMC9082987 DOI: 10.1038/s41598-022-11526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
The interrelations between human activity and animal populations are of increasing interest due to the emergence of the novel COVID-19 and the consequent pandemic across the world. Anthropogenic impacts of the pandemic on animals in urban-suburban environments are largely unknown. In this study, the temporal and spatial patterns of urban animal response to the COVID-19 lockdown were assessed using animal-vehicle collisions (AVC) data. We collected AVC data over two 6-month periods in 2019 and 2020 (January to June) from the largest metropolis in southern Poland, which included lockdown months. Furthermore, we used traffic data to understand the impact of lockdown on AVC in the urban area. Our analysis of 1063 AVC incidents revealed that COVID-19 related lockdown decreased AVC rates in suburban areas. However, in the urban area, even though traffic volume had significantly reduced, AVC did not decrease significantly, suggesting that lockdown did not influence the collision rates in the urban area. Our results suggest that there is a need to focus on understanding the effects of changes in traffic volume on both human behaviour and wildlife space use on the resulting impacts on AVC in the urban area.
Collapse
|
11
|
Theoret J, Cavedon M, Hegel T, Hervieux D, Schwantje H, Steenweg R, Watters M, Musiani M. Seasonal movements in caribou ecotypes of Western Canada. MOVEMENT ECOLOGY 2022; 10:12. [PMID: 35272704 PMCID: PMC8908644 DOI: 10.1186/s40462-022-00312-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/27/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Several migratory ungulates, including caribou, are dramatically declining. Caribou of the Barren-ground ecotype, which forms its own subspecies, are known to be mainly migratory. By contrast, within the Woodland subspecies, animals of the Boreal ecotype are known to be mainly sedentary, while those within the Northern and Central Mountain ecotypes to be partially migratory, with only some individuals migrating. Promotion of conservation actions (e.g., habitat protection) that are specific to both residents and migrants, as well as to the areas they frequent seasonally (which may be separate for migrants), requires distinguishing migration from other movement behaviours, which might be a challenge. METHODS We aimed at assessing seasonal movement behaviours, including migratory, resident, dispersing, and nomadic, for caribou belonging to the Barren-ground and Woodland subspecies and ecotypes. We examined seasonal displacement, both planar and altitudinal, and seasonal ranges overlap for 366 individuals that were GPS-collared in Northern and Western Canada. Lastly, we assessed the ability of caribou individuals to switch between migratory and non-migratory movement behaviours between years. RESULTS We detected migratory behaviour within each of the studied subspecies and ecotypes. However, seasonal ranges overlap (an index of sedentary behaviour) varied, with proportions of clear migrants (0 overlap) of 40.94% for Barren-ground caribou and 23.34% for Woodland caribou, and of 32.95%, 54.87%, and 8.86% for its Northern Mountain, Central Mountain, and Boreal ecotype, respectively. Plastic switches of individuals were also detected between migratory, resident, dispersing, and nomadic seasonal movements performed across years. CONCLUSIONS Our unexpected findings of marked seasonal movement plasticity in caribou indicate that this phenomenon should be better studied to understand the resilience of this endangered species to habitat and climatic changes. Our results that a substantial proportion of individuals engaged in seasonal migration in all studied ecotypes indicate that caribou conservation plans should account for critical habitat in both summer and winter ranges. Accordingly, conservation strategies are being devised for the Woodland subspecies and its ecotypes, which were found to be at least partially migratory in this study. Our findings that migration is detectable with both planar and altitudinal analyses of seasonal displacement provide a tool to better define seasonal ranges, also in mountainous and hilly environments, and protect habitat there.
Collapse
Affiliation(s)
- Jessica Theoret
- Faculty of Environmental Design, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, YT, Y1A 2C6, Canada
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, 4999 98 Ave., Edmonton, AB, T6B 2X3, Canada
| | - Dave Hervieux
- Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, AB, T8V 6J4, Canada
| | - Helen Schwantje
- Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, 2080 Labieux Road, Nanaimo, BC, V9T 6J9, Canada
| | - Robin Steenweg
- Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Megan Watters
- Land and Resource Specialist, 300 - 10003 110th Avenue, Fort St. John, BC, V1J 6M7, Canada
| | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
12
|
Berger DJ, German DW, John C, Hart R, Stephenson TR, Avgar T. Seeing Is Be-Leaving: Perception Informs Migratory Decisions in Sierra Nevada Bighorn Sheep (Ovis canadensis sierrae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.742275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Seasonal migration is a behavioral response to predictable variation in environmental resources, risks, and conditions. In behaviorally plastic migrants, migration is a conditional strategy that depends, in part, on an individual’s informational state. The cognitive processes that underlie how facultative migrants understand and respond to their environment are not well understood. We compared perception of the present environment to memory and omniscience as competing cognitive mechanisms driving altitudinal migratory decisions in an endangered ungulate, the Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using 1,298 animal years of data, encompassing 460 unique individuals. We built a suite of statistical models to partition variation in fall migratory status explained by cognitive predictors, while controlling for non-cognitive drivers. To approximate attribute memory, we included lagged attributes of the range an individual experienced in the previous year. We quantified perception by limiting an individual’s knowledge of migratory range to the area and attributes visible from its summer range, prior to migrating. Our results show that perception, in addition to the migratory propensity of an individual’s social group, and an individual’s migratory history are the best predictors of migration in our system. Our findings suggest that short-distance altitudinal migration is, in part, a response to an individual’s perception of conditions on alterative winter range. In long-distance partial migrants, exploration of migratory decision-making has been limited, but it is unlikely that migratory decisions would be based on sensory cues from a remote target range. Differing cognitive mechanisms underpinning short and long-distance migratory decisions will result in differing levels of behavioral plasticity in response to global climate change and anthropogenic disturbance, with important implications for management and conservation of migratory species.
Collapse
|
13
|
Martin HW, Hebblewhite M, Merrill EH. Large herbivores in a partially migratory population search for the ideal free home. Ecology 2022; 103:e3652. [PMID: 35084736 PMCID: PMC10162400 DOI: 10.1002/ecy.3652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/10/2021] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
Migration is a tactic used across taxa to access resources in temporally heterogenous landscapes. Populations that migrate can attain higher abundances because such movements allow access to higher quality resources, or reduction in predation risk resulting in increased fitness. However, most migratory species occur in partially migratory populations, a mix of migratory and non-migratory individuals. It is thought that the portion of migrants in a partial migration population is maintained either through 1) a population-level evolutionary stable state where counteracting density-dependent vital rates act on migrants and residents to balance fitness, or 2) conditional migration, where the propensity to migrate is influenced by the individual's state. However, in many respects, migration is also a form of habitat selection and the proportion of migrants and residents may be the result of density-dependent habitat selection. Here, we test whether the theory of Ideal Free Distribution (IFD) can explain the coexistence of different migratory tactics in a partially migratory population. IFD predicts individuals exhibit density-dependent vital rates and select different migratory tactics to maximize individual fitness resulting in equal fitness (λ) between tactics. We tested the predictions of IFD in a partially migratory elk population that declined by 70% with 19 years of demographic data and migratory tactic switching rates from >300 individuals. We found evidence of density dependence for resident pregnancy and adult female survival providing a fitness incentive to switch tactics. Despite differences in vital rates between migratory tactics, mean λ (fitness) was equal. However, as predicted by the IFD, individuals switched tactics toward those of higher fitness. Our analysis reveals that partial migration may be driven by tactic selection that follows the ideal free distribution. These findings reinforce that migration across taxa may be a polymorphic behavior in large herbivores where migratory tactic selection is determined by differential costs and benefits, mediated by density-dependence.
Collapse
Affiliation(s)
- Hans W Martin
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Mark Hebblewhite
- Wildlife Biology Program, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Evelyn H Merrill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Passoni G, Coulson T, Ranc N, Corradini A, Hewison AJM, Ciuti S, Gehr B, Heurich M, Brieger F, Sandfort R, Mysterud A, Balkenhol N, Cagnacci F. Roads constrain movement across behavioural processes in a partially migratory ungulate. MOVEMENT ECOLOGY 2021; 9:57. [PMID: 34774097 PMCID: PMC8590235 DOI: 10.1186/s40462-021-00292-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Human disturbance alters animal movement globally and infrastructure, such as roads, can act as physical barriers that impact behaviour across multiple spatial scales. In ungulates, roads can particularly hamper key ecological processes such as dispersal and migration, which ensure functional connectivity among populations, and may be particularly important for population performance in highly human-dominated landscapes. The impact of roads on some aspects of ungulate behaviour has already been studied. However, potential differences in response to roads during migration, dispersal and home range movements have never been evaluated. Addressing these issues is particularly important to assess the resistance of European landscapes to the range of wildlife movement processes, and to evaluate how animals adjust to anthropogenic constraints. METHODS We analysed 95 GPS trajectories from 6 populations of European roe deer (Capreolus capreolus) across the Alps and central Europe. We investigated how roe deer movements were affected by landscape characteristics, including roads, and we evaluated potential differences in road avoidance among resident, migratory and dispersing animals (hereafter, movement modes). First, using Net Squared Displacement and a spatio-temporal clustering algorithm, we classified individuals as residents, migrants or dispersers. We then identified the start and end dates of the migration and dispersal trajectories, and retained only the GPS locations that fell between those dates (i.e., during transience). Finally, we used the resulting trajectories to perform an integrated step selection analysis. RESULTS We found that roe deer moved through more forested areas during the day and visited less forested areas at night. They also minimised elevation gains and losses along their movement trajectories. Road crossings were strongly avoided at all times of day, but when they occurred, they were more likely to occur during longer steps and in more forested areas. Road avoidance did not vary among movement modes and, during dispersal and migration, it remained high and consistent with that expressed during home range movements. CONCLUSIONS Roads can represent a major constraint to movement across modes and populations, potentially limiting functional connectivity at multiple ecological scales. In particular, they can affect migrating individuals that track seasonal resources, and dispersing animals searching for novel ranges.
Collapse
Affiliation(s)
- Gioele Passoni
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, OX1 3SZ, UK.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre (CRI), Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy.
| | - Tim Coulson
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Nathan Ranc
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, 95064, USA
| | - Andrea Corradini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre (CRI), Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, via Mesiano 77, 38123, Trento, TN, Italy
- Stelvio National Park, Via De Simoni 42, 23032, Bormio, SO, Italy
| | - A J Mark Hewison
- INRAE, CEFS, Université de Toulouse, 31326, Castanet-Tolosan, France
- LTSER ZA Pyrénées Garonne, 31320, Auzeville Tolosane, France
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, University College Dublin, Belfield, D4, Ireland
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Freyunger Straße 2, 94481, Grafenau, Germany
- Faculty of Environment and Natural Resources, Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Science, 2480, Koppang, Norway
| | - Falko Brieger
- Wildlife Institute, Forest Research Institute Baden-Wuerttemberg, Wonnhaldestraße 4, 79100, Freiburg, Germany
| | - Robin Sandfort
- Department of Integrative Biology and Biodiversity Research, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel Straße 33, 1180, Vienna, Austria
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Niko Balkenhol
- Wildlife Sciences, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Buesgenweg 3, 37077, Goettingen, Germany
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre (CRI), Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
15
|
Fudickar AM, Jahn AE, Ketterson ED. Animal Migration: An Overview of One of Nature's Great Spectacles. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012021-031035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study.
Collapse
Affiliation(s)
- Adam M. Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Alex E. Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
| | - Ellen D. Ketterson
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405, USA;, ,
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
16
|
Cameron MD, Eisaguirre JM, Breed GA, Joly K, Kielland K. Mechanistic movement models identify continuously updated autumn migration cues in Arctic caribou. MOVEMENT ECOLOGY 2021; 9:54. [PMID: 34724991 PMCID: PMC8559358 DOI: 10.1186/s40462-021-00288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Migrations in temperate systems typically have two migratory phases, spring and autumn, and many migratory ungulates track the pulse of spring vegetation growth during a synchronized spring migration. In contrast, autumn migrations are generally less synchronous and the cues driving them remain understudied. Our goal was to identify the cues that migrants use in deciding when to initiate migration and how this is updated while en route. METHODS We analyzed autumn migrations of Arctic barren-ground caribou (Rangifer tarandus) as a series of persistent and directional movements and assessed the influence of a suite of environmental factors. We fitted a dynamic-parameter movement model at the individual-level and estimated annual population-level parameters for weather covariates on 389 individual-seasons across 9 years. RESULTS Our results revealed strong, consistent effects of decreasing temperature and increasing snow depth on migratory movements, indicating that caribou continuously update their migratory decision based on dynamic environmental conditions. This suggests that individuals pace migration along gradients of these environmental variables. Whereas temperature and snow appeared to be the most consistent cues for migration, we also found interannual variability in the effect of wind, NDVI, and barometric pressure. The dispersed distribution of individuals in autumn resulted in diverse environmental conditions experienced by individual caribou and thus pronounced variability in migratory patterns. CONCLUSIONS By analyzing autumn migration as a continuous process across the entire migration period, we found that caribou migration was largely related to temperature and snow conditions experienced throughout the journey. This mechanism of pacing autumn migration based on indicators of the approaching winter is analogous to the more widely researched mechanism of spring migration, when many migrants pace migration with a resource wave. Such a similarity in mechanisms highlights the different environmental stimuli to which migrants have adapted their movements throughout their annual cycle. These insights have implications for how long-distance migratory patterns may change as the Arctic climate continues to warm.
Collapse
Affiliation(s)
- Matthew D. Cameron
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775 USA
- Gates of the Arctic National Park and Preserve, Arctic Inventory and Monitoring Network, National Park Service, 4175 Geist Road, Fairbanks, AK 99709 USA
| | - Joseph M. Eisaguirre
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775 USA
- Present Address: U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E. Tudor Rd., Anchorage, AK 99503 USA
| | - Greg A. Breed
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775 USA
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Kyle Joly
- Gates of the Arctic National Park and Preserve, Arctic Inventory and Monitoring Network, National Park Service, 4175 Geist Road, Fairbanks, AK 99709 USA
| | - Knut Kielland
- Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Drive, Fairbanks, AK 99775 USA
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775 USA
| |
Collapse
|
17
|
Urbano F, Cagnacci F. Data Management and Sharing for Collaborative Science: Lessons Learnt From the Euromammals Initiative. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current and future consequences of anthropogenic impacts such as climate change and habitat loss on ecosystems will be better understood and therefore addressed if diverse ecological data from multiple environmental contexts are more effectively shared. Re-use requires that data are readily available to the scientific scrutiny of the research community. A number of repositories to store shared data have emerged in different ecological domains and developments are underway to define common data and metadata standards. Nevertheless, the goal is far from being achieved and many challenges still need to be addressed. The definition of best practices for data sharing and re-use can benefit from the experience accumulated by pilot collaborative projects. The Euromammals bottom-up initiative has pioneered collaborative science in spatial animal ecology since 2007. It involves more than 150 institutes to address scientific, management and conservation questions regarding terrestrial mammal species in Europe using data stored in a shared database. In this manuscript we present some key lessons that we have learnt from the process of making shared data and knowledge accessible to researchers and we stress the importance of data management for data quality assurance. We suggest putting in place a pro-active data review before data are made available in shared repositories via robust technical support and users’ training in data management and standards. We recommend pursuing the definition of common data collection protocols, data and metadata standards, and shared vocabularies with direct involvement of the community to boost their implementation. We stress the importance of knowledge sharing, in addition to data sharing. We show the crucial relevance of collaborative networking with pro-active involvement of data providers in all stages of the scientific process. Our main message is that for data-sharing collaborative efforts to obtain substantial and durable scientific returns, the goals should not only consist in the creation of e-infrastructures and software tools but primarily in the establishment of a network and community trust. This requires moderate investment, but over long-term horizons.
Collapse
|
18
|
Kämmerle J, Taubmann J, Andrén H, Fiedler W, Coppes J. Environmental and seasonal correlates of capercaillie movement traits in a Swedish wind farm. Ecol Evol 2021; 11:11762-11773. [PMID: 34522339 PMCID: PMC8427587 DOI: 10.1002/ece3.7922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Animals continuously interact with their environment through behavioral decisions, rendering the appropriate choice of movement speed and directionality an important phenotypic trait. Anthropogenic activities may alter animal behavior, including movement. A detailed understanding of movement decisions is therefore of great relevance for science and conservation alike. The study of movement decisions in relation to environmental and seasonal cues requires continuous observation of movement behavior, recently made possible by high-resolution telemetry. We studied movement traits of 13 capercaillie (Tetrao urogallus), a mainly ground-moving forest bird species of conservation interest, over two summer seasons in a Swedish windfarm using high-resolution GPS tracking data (5-min sampling interval). We filtered and removed unreliable movement steps using accelerometer data and step characteristics. We explored variation in movement speed and directionality in relation to environmental and seasonal covariates using generalized additive mixed models (GAMMs). We found evidence for clear daily and seasonal variation in speed and directionality of movement that reflected behavioral adjustments to biological and environmental seasonality. Capercaillie moved slower when more turbines were visible and faster close to turbine access roads. Movement speed and directionality were highest on open bogs, lowest on recent clear-cuts (<5 y.o.), and intermediate in all types of forest. Our results provide novel insights into the seasonal and environmental correlates of capercaillie movement patterns and supplement previous behavioral observations on lekking behavior and wind turbine avoidance with a more mechanistic understanding.
Collapse
Affiliation(s)
- Jim‐Lino Kämmerle
- FVA Wildlife InstituteForest Research Institute of Baden‐Wuerttemberg FVAFreiburgGermany
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | - Julia Taubmann
- FVA Wildlife InstituteForest Research Institute of Baden‐Wuerttemberg FVAFreiburgGermany
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | - Henrik Andrén
- Grimsö Wildlife Research StationDepartment of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
| | - Wolfgang Fiedler
- Department of Migration and Immuno‐EcologyMax Planck Institute of Animal BehaviorRadolfzellGermany
| | - Joy Coppes
- FVA Wildlife InstituteForest Research Institute of Baden‐Wuerttemberg FVAFreiburgGermany
| |
Collapse
|
19
|
van de Kerk M, Larsen RT, Olson DD, Hersey KR, McMillan BR. Variation in movement patterns of mule deer: have we oversimplified migration? MOVEMENT ECOLOGY 2021; 9:44. [PMID: 34446100 PMCID: PMC8394567 DOI: 10.1186/s40462-021-00281-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Conservation and management of migratory animals has gained attention in recent years, but the majority of research has focused on stereotypical 'migrant' and 'resident' behaviors, often failing to incorporate any atypical behaviors or characterize migratory behaviors beyond distance and timing of the migration. With migration threatened by anthropogenic development and climate change, it is crucial that we understand the full range of migratory behaviors. Our objective was to demonstrate and characterize the variation in migration strategies, including typical and atypical migratory behaviors for mule deer (Odocoileus hemionus) in Utah, USA. METHODS Because calculation of common metrics such as distance, timing, and use of stopovers during migration did not adequately describe the variation we observed in migratory behavior for this species-particularly when animals visited multiple (> 3) ranges for extended lengths of time-we developed additional methods and categories to describe observed variation in migratory behavior. We first categorized trajectories based on the number of discrete, separate ranges and range shifts between them. Then, we further characterized the variation in migration strategies by examining the timing, duration, and distance traveled within each of the categories. We also examined if and how frequently individual deer switched among categories from year to year. RESULTS We classified 1218 movement trajectories from 722 adult female mule deer, and found that 54.4% were dual-range migrants, who made one round-trip to one distinct range. Multi-range migrants (23.6%) made one round-trip during which they stayed at multiple discrete ranges. Commuters (1.0%) traveled to the same range multiple times, and poly migrants (1.5%) made multiple round-trips to different ranges. Gradual movers (2.5%) did not show a discrete range shift but moved gradually between ranges, whereas residents (12.6%) never left their home ranges, and dispersers (4.4%) left but never returned. Of the deer that we monitored for multiple years, 51.2% switched among categories. CONCLUSION We conclude that the substantial number of atypical migratory strategies, as well as the number of deer that switched categories, underlines the importance of studying these less-stereotyped behaviors that may be exhibited by large proportions of populations. Acknowledging and investigating the full complexity and diversity in migratory strategies might uncover unknowns with respect to underlying factors and drivers of migration, and can help shape effective conservation strategies.
Collapse
Affiliation(s)
- Madelon van de Kerk
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105 Life Sciences Building, Provo, UT, 84602, USA.
- School of Environment and Sustainability, Western Colorado University, Kelley Hall 144, Gunnison, CO, 81231, USA.
| | - Randy T Larsen
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105 Life Sciences Building, Provo, UT, 84602, USA
| | - Daniel D Olson
- Utah Division of Wildlife Resources, 1594 W North Temple, Suite 2110, Salt Lake City, UT, 84114, USA
| | - Kent R Hersey
- Utah Division of Wildlife Resources, 1594 W North Temple, Suite 2110, Salt Lake City, UT, 84114, USA
| | - Brock R McMillan
- Department of Plant and Wildlife Sciences, Brigham Young University, 4105 Life Sciences Building, Provo, UT, 84602, USA
| |
Collapse
|
20
|
Lowrey B, DeVoe JD, Proffitt KM, Garrott RA. Behavior‐specific habitat models as a tool to inform ungulate restoration. Ecosphere 2021. [DOI: 10.1002/ecs2.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- B. Lowrey
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University Bozeman Montana 59717 USA
| | - J. D. DeVoe
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University Bozeman Montana 59717 USA
| | - K. M. Proffitt
- Montana Department of Fish, Wildlife, and Parks 1400 South 19th Avenue Bozeman Montana 59718 USA
| | - R. A. Garrott
- Fish and Wildlife Ecology and Management Program Department of Ecology Montana State University Bozeman Montana 59717 USA
| |
Collapse
|
21
|
Quintana-Rizzo E, Leiter S, Cole TVN, Hagbloom MN, Knowlton AR, Nagelkirk P, O’Brien O, Khan CB, Henry AG, Duley PA, Crowe LM, Mayo CA, Kraus SD. Residency, demographics, and movement patterns of North Atlantic right whales Eubalaena glacialis in an offshore wind energy development area in southern New England, USA. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Offshore wind energy development is growing quickly around the world. In southern New England, USA, one of the largest commercial offshore wind energy farms in the USA will be established in the waters off Massachusetts and Rhode Island, an area used by the Critically Endangered North Atlantic right whale Eubalaena glacialis. Prior to 2011, little was known about the use of this area by right whales. We examined aerial survey data collected between 2011-2015 and 2017-2019 to quantify right whale distribution, residency, demography, and movements in the region. Right whale occurrence increased during the study period. Since 2017, whales have been sighted in the area nearly every month, with peak sighting rates between late winter and spring. Model outputs suggest that 23% of the species’ population is present from December through May, and the mean residence time has tripled to an average of 13 d during these months. Age and sex ratios of the individuals present in the area are similar to those of the species as a whole, with adult males the most common demographic group. Movement models showed that southern New England is an important destination for right whales, including conceptive and reproductive females, and qualitative observations included animals feeding and socializing. Implementing mitigation procedures in coordination with these findings will be crucial in lessening the potential impacts on right whales from construction noise, increased vessel traffic, and habitat disruption in this region.
Collapse
Affiliation(s)
- E Quintana-Rizzo
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
- Simmons University, Boston, MA 02115, USA
| | - S Leiter
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| | - TVN Cole
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA 02543, USA
| | - MN Hagbloom
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| | - AR Knowlton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| | - P Nagelkirk
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| | - O O’Brien
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| | - CB Khan
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA 02543, USA
| | - AG Henry
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA 02543, USA
| | - PA Duley
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA 02543, USA
| | - LM Crowe
- Integrated Statistics, under contract to the Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA 02543, USA
| | - CA Mayo
- Center for Coastal Studies, Provincetown, MA 02657, USA
| | - SD Kraus
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| |
Collapse
|
22
|
Chisholm JD, Hodder DP, Crowley SM, Rea RV, Marshall S. Seasonal movements of migratory and resident female moose (Alces alces) in north-central British Columbia, Canada. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Viola P, Adriani S, Rossi CM, Franceschini C, Primi R, Apollonio M, Amici A. Anthropogenic and Environmental Factors Determining Local Favourable Conditions for Wolves during the Cold Season. Animals (Basel) 2021; 11:ani11071895. [PMID: 34202132 PMCID: PMC8300267 DOI: 10.3390/ani11071895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Wolves normally howl in response to unfamiliar vocalisations, to defend their territory and the important resources within it (e.g., pups and prey). During the non-rendezvous period (late autumn and winter), the protectiveness of adults towards pups decreases, as well as reactions to unfamiliar vocal stimuli. In the late fall of 2010, we performed a saturation wolf howling design in the Cicolano area (Central Apennines, Italy), aiming to identify environmental and human-related characteristics of locations where wolves are prone to respond to unfamiliar howling and to assess their eventual ability to provide insights into the distribution of valuable resources (aside from pups) during the cold season. We found that winter response sites (WRS) were characterized by diverging conditions, with respect to all available sites, suggesting that they are non-randomly located but, instead, had been selected by wolves for some reason. We recorded a positive role of thermal refuges and the occurrence of wild boar drive hunts, as well as the negative roles of other forms of human presence and activities, including the occurrence of free-ranging dogs. These results could be of interest both for conservation purposes and for assessing interactions with human activities. Abstract Winter resources are crucial for wildlife, and, at a local scale, some anthropogenic and environmental factors could affect their availability. In the case of wolves, it is known that vocalisations in response to unfamiliar howls are issued to defend their territory and the important resources within it. Then, we studied the characteristics of winter response sites (WRS) during the cold season, aiming to assess their eventual ability to provide insights into the distribution of valuable resources within their territories. Within this scope, we planned a wolf-howling survey following a standardised approach. The study covered an Apennine (Central Italy) area of 500 km2. A hexagonal mesh was imposed on the area, in order to determine the values of different variables at the local scale. A logistic LASSO regression was performed. WRS were positively related to the presence of thermal refuges (odds = 114.485), to patch richness (odds = 1.153), wild boar drive hunting areas (odds = 1.015), and time elapsed since the last hunt (odds = 1.019). Among negative factors, stray dogs reply considerably affects wolves’ responsiveness (odds = 0.207), where odds are the exponentiated coefficients estimated by the logistic lasso regression. These results suggest that WRS are related to anthropogenic and environmental factors favouring the predation process.
Collapse
Affiliation(s)
- Paolo Viola
- Department of Agricultural and Forest Sciences, University of Tuscia, Via S. C. de Lellis snc, 01100 Viterbo, VT, Italy; (P.V.); (S.A.); (C.M.R.); (C.F.); (R.P.)
| | - Settimio Adriani
- Department of Agricultural and Forest Sciences, University of Tuscia, Via S. C. de Lellis snc, 01100 Viterbo, VT, Italy; (P.V.); (S.A.); (C.M.R.); (C.F.); (R.P.)
| | - Carlo Maria Rossi
- Department of Agricultural and Forest Sciences, University of Tuscia, Via S. C. de Lellis snc, 01100 Viterbo, VT, Italy; (P.V.); (S.A.); (C.M.R.); (C.F.); (R.P.)
| | - Cinzia Franceschini
- Department of Agricultural and Forest Sciences, University of Tuscia, Via S. C. de Lellis snc, 01100 Viterbo, VT, Italy; (P.V.); (S.A.); (C.M.R.); (C.F.); (R.P.)
- Department of Biological, Geological and Environmental Science, University of Bologna, Piazza di Porta S. Donato 1, 40127 Bologna, BO, Italy
| | - Riccardo Primi
- Department of Agricultural and Forest Sciences, University of Tuscia, Via S. C. de Lellis snc, 01100 Viterbo, VT, Italy; (P.V.); (S.A.); (C.M.R.); (C.F.); (R.P.)
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, SS, Italy;
| | - Andrea Amici
- Department of Agricultural and Forest Sciences, University of Tuscia, Via S. C. de Lellis snc, 01100 Viterbo, VT, Italy; (P.V.); (S.A.); (C.M.R.); (C.F.); (R.P.)
- Correspondence: ; Tel.: +39-(0)761-357443
| |
Collapse
|
24
|
Bright Ross JG, Peters W, Ossi F, Moorcroft PR, Cordano E, Eccel E, Bianchini F, Ramanzin M, Cagnacci F. Climate change and anthropogenic food manipulation interact in shifting the distribution of a large herbivore at its altitudinal range limit. Sci Rep 2021; 11:7600. [PMID: 33828110 PMCID: PMC8027592 DOI: 10.1038/s41598-021-86720-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/13/2021] [Indexed: 02/01/2023] Open
Abstract
Ungulates in alpine ecosystems are constrained by winter harshness through resource limitation and direct mortality from weather extremes. However, little empirical evidence has definitively established how current climate change and other anthropogenic modifications of resource availability affect ungulate winter distribution, especially at their range limits. Here, we used a combination of historical (1997-2002) and contemporary (2012-2015) Eurasian roe deer (Capreolus capreolus) relocation datasets that span changes in snowpack characteristics and two levels of supplemental feeding to compare and forecast probability of space use at the species' altitudinal range limit. Scarcer snow cover in the contemporary period interacted with the augmented feeding site distribution to increase the elevation of winter range limits, and we predict this trend will continue under climate change. Moreover, roe deer have shifted from historically using feeding sites primarily under deep snow conditions to contemporarily using them under a wider range of snow conditions as their availability has increased. Combined with scarcer snow cover during December, January, and April, this trend has reduced inter-annual variability in space use patterns in these months. These spatial responses to climate- and artificial resource-provisioning shifts evidence the importance of these changing factors in shaping large herbivore spatial distribution and, consequently, ecosystem dynamics.
Collapse
Affiliation(s)
- Julius G Bright Ross
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK.
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK.
| | - Wibke Peters
- Department of Biodiversity, Conservation and Wildlife Management, Bavarian State Institute of Forestry, Freising, Germany
| | - Federico Ossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- C3A - Centro Agricoltura Alimenti Ambiente, Università degli Studi di Trento, San Michele all'Adige, Italy
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Emanuele Cordano
- Rendena100, Engineering and Consultancy sole proprietorship, Tione di Trento, Italy
| | - Emanuele Eccel
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Filippo Bianchini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department of Biology and Biotechnology 'Charles Darwin', University of Rome 'La Sapienza', Rome, Italy
| | - Maurizio Ramanzin
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Padova, Italy
| | - Francesca Cagnacci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
25
|
Oeser J, Heurich M, Senf C, Pflugmacher D, Kuemmerle T. Satellite-based habitat monitoring reveals long-term dynamics of deer habitat in response to forest disturbances. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2269. [PMID: 33277745 DOI: 10.1002/eap.2269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Disturbances play a key role in driving forest ecosystem dynamics, but how disturbances shape wildlife habitat across space and time often remains unclear. A major reason for this is a lack of information about changes in habitat suitability across large areas and longer time periods. Here, we use a novel approach based on Landsat satellite image time series to map seasonal habitat suitability annually from 1986 to 2017. Our approach involves characterizing forest disturbance dynamics using Landsat-based metrics, harmonizing these metrics through a temporal segmentation algorithm, and then using them together with GPS telemetry data in habitat models. We apply this framework to assess how natural forest disturbances and post-disturbance salvage logging affect habitat suitability for two ungulates, roe deer (Capreolus capreolus) and red deer (Cervus elaphus), over 32 yr in a Central European forest landscape. We found that red and roe deer differed in their response to forest disturbances. Habitat suitability for red deer consistently improved after disturbances, whereas the suitability of disturbed sites was more variable for roe deer depending on season (lower during winter than summer) and disturbance agent (lower in windthrow vs. bark-beetle-affected stands). Salvage logging altered the suitability of bark beetle-affected stands for deer, having negative effects on red deer and mixed effects on roe deer, but generally did not have clear effects on habitat suitability in windthrows. Our results highlight long-lasting legacy effects of forest disturbances on deer habitat. For example, bark beetle disturbances improved red deer habitat suitability for at least 25 yr. The duration of disturbance impacts generally increased with elevation. Methodologically, our approach proved effective for improving the robustness of habitat reconstructions from Landsat time series: integrating multiyear telemetry data into single, multi-temporal habitat models improved model transferability in time. Likewise, temporally segmenting the Landsat-based metrics increased the temporal consistency of our habitat suitability maps. As the frequency of natural forest disturbances is increasing across the globe, their impacts on wildlife habitat should be considered in wildlife and forest management. Our approach offers a widely applicable method for monitoring habitat suitability changes caused by landscape dynamics such as forest disturbance.
Collapse
Affiliation(s)
- Julian Oeser
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Marco Heurich
- Bavarian Forest National Park, Freyungerstr. 2, Grafenau, 94481, Germany
- Chair of Wildlife Ecology and Management, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße 4, Freiburg, 79106, Germany
| | - Cornelius Senf
- Ecosystem dynamics and forest management group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, Freising, 85354, Germany
| | - Dirk Pflugmacher
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| | - Tobias Kuemmerle
- Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
- Integrative Research Institute on Transformation in Human Environment Systems, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin, 10099, Germany
| |
Collapse
|
26
|
Shokri M, Cozzoli F, Ciotti M, Gjoni V, Marrocco V, Vignes F, Basset A. A new approach to assessing the space use behavior of macroinvertebrates by automated video tracking. Ecol Evol 2021; 11:3004-3014. [PMID: 33841762 PMCID: PMC8019041 DOI: 10.1002/ece3.7129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
Individual space and resource use are central issues in ecology and conservation. Recent technological advances such as automated tracking techniques are boosting ecological research in this field. However, the development of a robust method to track space and resource use is still challenging for at least one important ecosystem component: motile aquatic macroinvertebrates. The challenges are mostly related to the small body size and rapid movement of many macroinvertebrate species and to light scattering and wave signal interference in aquatic habitats.We developed a video tracking method designed to reliably assess space use behavior among individual aquatic macroinvertebrates under laboratory (microcosm) conditions. The approach involves the use of experimental apparatus integrating a near infrared backlight source, a Plexiglas multi-patch maze, multiple infrared cameras, and automated video analysis. It allows detection of the position of fast-moving (~ 3 cm/s) and translucent individuals of small size (~ 5 mm in length, ~1 mg in dry weight) on simulated resource patches distributed over an experimental microcosm (0.08 m2).To illustrate the adequacy of the proposed method, we present a case study regarding the size dependency of space use behavior in the model organism Gammarus insensibilis, focusing on individual patch selection, giving-up times, and cumulative space used.In the case study, primary data were collected on individual body size and individual locomotory behavior, for example, mean speed, acceleration, and step length. Individual entrance and departure times were recorded for each simulated resource patch in the experimental maze. Individual giving-up times were found to be characterized by negative size dependency, with patch departure occurring sooner in larger individuals than smaller ones, and individual cumulative space used (treated as the overall surface area of resource patches that individuals visited) was found to scale positively with body size.This approach to studying space use behavior can deepen our understanding of species coexistence, yielding insights into mechanistic models on larger spatial scales, for example, home range, with implications for ecological and evolutionary processes, as well as for the management and conservation of populations and ecosystems. Despite being specifically developed for aquatic macroinvertebrates, this method can also be applied to other small aquatic organisms such as juvenile fish and amphibians.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Francesco Cozzoli
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
- Research Institute on Terrestrial Ecosystems (IRET) ‐ National Research Council of Italy (CNR) via SalariaRomaItaly
| | - Mario Ciotti
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Vojsava Gjoni
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Vanessa Marrocco
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Fabio Vignes
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Alberto Basset
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| |
Collapse
|
27
|
Steiner W, Schöll EM, Leisch F, Hackländer K. Temporal patterns of roe deer traffic accidents: Effects of season, daytime and lunar phase. PLoS One 2021; 16:e0249082. [PMID: 33784325 PMCID: PMC8009364 DOI: 10.1371/journal.pone.0249082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
Wildlife-related accidents, especially deer-vehicle accidents, pose a serious problem for road safety and animal protection in many countries. Knowledge of spatial and temporal patterns of deer-vehicle accidents is inevitable for accident analysis and mitigation efforts with temporal deer-vehicle accident data being much more difficult to obtain in sufficient data quality. We described the temporal patterns of roe deer (Capreolus capreolus) roadkills occurring in the period 2002-2006 in southeastern Austria. Using a comprehensive dataset, consisting of 11.771 data points, we examined the influence of different time units (i.e. season, month, day of week, day of year), illumination categories (coarse and fine temporal resolution) and lunar phases on deer-vehicle accidents by performing linear and generalized additive models. Thereby, we identified peak accident periods within the analyzed time units. Highest frequencies of deer-vehicle accidents occurred in November, May and October, on Fridays, and during nights. Relationships between lunar phases and roe deer-vehicle accidents were analysed, providing evidence for high frequencies of deer-vehicle accidents during full moon phases. We suggest that deer-vehicle accidents are dependent both on human activity in traffic and wildlife activity, which is in turn affected by phenology, intra- and interspecific competition, climatic and astronomical events. Our results highlight, that short-term mitigation measures (e.g. traffic controls and speed limits) can be highly effective to reduce deer-vehicle accidents, but should be flexibly adapted to specific temporal periods.
Collapse
Affiliation(s)
- Wolfgang Steiner
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Eva Maria Schöll
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Friedrich Leisch
- Institute of Statistics, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - Klaus Hackländer
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| |
Collapse
|
28
|
Denryter K, Stephenson TR, Monteith KL. Broadening the migratory portfolio of altitudinal migrants. Ecology 2021; 102:e03321. [PMID: 33690892 PMCID: PMC8459274 DOI: 10.1002/ecy.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Kristin Denryter
- Haub School of Environment and Natural Resources, University of Wyoming, 804 East Fremont, Laramie, Wyoming, 82072, USA
| | - Thomas R Stephenson
- Sierra Nevada Bighorn Sheep Recovery Program, California Department of Fish and Wildlife, 787 North Main Street, Suite 220, Bishop, California, 93514, USA
| | - Kevin L Monteith
- Haub School of Environment and Natural Resources, Department of Zoology and Physiology, and Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, 804 East Fremont, Laramie, Wyoming, 82072, USA
| |
Collapse
|
29
|
Rodgers PA, Sawyer H, Mong TW, Stephens S, Kauffman MJ. Sex‐specific migratory behaviors in a temperate ungulate. Ecosphere 2021. [DOI: 10.1002/ecs2.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Patrick A. Rodgers
- Wyoming Cooperative Fish and Wildlife Research Unit Department of Zoology and Physiology University of Wyoming Laramie Wyoming82071USA
| | - Hall Sawyer
- Western Ecosystems Technology, Inc. 1610 Reynolds Street Laramie Wyoming82072USA
| | - Tony W. Mong
- Wyoming Game and Fish Department Cody Regional Office 2820 State Highway 120 Cody Wyoming82414USA
| | - Sam Stephens
- Wyoming Game and Fish Department Cheyenne Wyoming82009USA
| | - Matthew J. Kauffman
- U.S. Geological Survey Wyoming Cooperative Fish and Wildlife Research Unit Department of Zoology and Physiology University of Wyoming Laramie Wyoming82071USA
| |
Collapse
|
30
|
Xu W, Barker K, Shawler A, Van Scoyoc A, Smith JA, Mueller T, Sawyer H, Andreozzi C, Bidder OR, Karandikar H, Mumme S, Templin E, Middleton AD. The plasticity of ungulate migration in a changing world. Ecology 2021; 102:e03293. [PMID: 33554353 DOI: 10.1002/ecy.3293] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023]
Abstract
Migratory ungulates are thought to be declining globally because their dependence on large landscapes renders them highly vulnerable to environmental change. Yet recent studies reveal that many ungulate species can adjust their migration propensity in response to changing environmental conditions to potentially improve population persistence. In addition to the question of whether to migrate, decisions of where and when to migrate appear equally fundamental to individual migration tactics, but these three dimensions of plasticity have rarely been explored together. Here, we expand the concept of migratory plasticity beyond individual switches in migration propensity to also include spatial and temporal adjustments to migration patterns. We develop a novel typological framework that delineates every potential change type within the three dimensions, then use this framework to guide a literature review. We discuss broad patterns in migratory plasticity, potential drivers of migration change, and research gaps in the current understanding of this trait. Our result reveals 127 migration change events in direct response to natural and human-induced environmental changes across 27 ungulate species. Species that appeared in multiple studies showed multiple types of change, with some exhibiting the full spectrum of migratory plasticity. This result highlights that multidimensional migratory plasticity is pervasive in ungulates, even as the manifestation of plasticity varies case by case. However, studies thus far have rarely been able to determine the fitness outcomes of different types of migration change, likely due to the scarcity of long-term individual-based demographic monitoring as well as measurements encompassing a full behavioral continuum and environmental gradient for any given species. Recognizing and documenting the full spectrum of migratory plasticity marks the first step for the field of migration ecology to employ quantitative methods, such as reaction norms, to predict migration change along environmental gradients. Closer monitoring for changes in migratory propensity, routes, and timing may improve the efficacy of conservation strategies and management actions in a rapidly changing world.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Kristin Barker
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Avery Shawler
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Amy Van Scoyoc
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, 95616, USA
| | - Thomas Mueller
- Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Main), 60438, Germany.,Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Hall Sawyer
- Western Ecosystems Technology, 1610 Reynolds Street, Laramie, Wyoming, 82072, USA
| | - Chelsea Andreozzi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Owen R Bidder
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Harshad Karandikar
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Steffen Mumme
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA.,Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Viale dell'Università 32, Rome, 00185, Italy.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), 38010, Italy
| | - Elizabeth Templin
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
31
|
De Angelis D, Kusak J, Huber D, Reljić S, Gužvica G, Ciucci P. Environmental and anthropogenic correlates of seasonal migrations in the Dinaric‐Pindos brown bear population. J Zool (1987) 2021. [DOI: 10.1111/jzo.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele De Angelis
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Roma Italy
| | - Josip Kusak
- Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Djuro Huber
- Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Slaven Reljić
- Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Goran Gužvica
- Oikon Ltd. Institute of Applied Ecology Zagreb Croatia
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Roma Italy
| |
Collapse
|
32
|
Xu W, Dejid N, Herrmann V, Sawyer H, Middleton AD. Barrier Behaviour Analysis (BaBA) reveals extensive effects of fencing on wide‐ranging ungulates. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Xu
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | - Nandintsetseg Dejid
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt Germany
| | - Valentine Herrmann
- Smithsonian Conservation Biology InstituteSmithsonian Institution Front Royal VA USA
| | - Hall Sawyer
- Western Ecosystems Technology, Inc. Laramie WY USA
| | - Arthur D. Middleton
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| |
Collapse
|
33
|
Davidson SC, Bohrer G, Gurarie E, LaPoint S, Mahoney PJ, Boelman NT, Eitel JUH, Prugh LR, Vierling LA, Jennewein J, Grier E, Couriot O, Kelly AP, Meddens AJH, Oliver RY, Kays R, Wikelski M, Aarvak T, Ackerman JT, Alves JA, Bayne E, Bedrosian B, Belant JL, Berdahl AM, Berlin AM, Berteaux D, Bêty J, Boiko D, Booms TL, Borg BL, Boutin S, Boyd WS, Brides K, Brown S, Bulyuk VN, Burnham KK, Cabot D, Casazza M, Christie K, Craig EH, Davis SE, Davison T, Demma D, DeSorbo CR, Dixon A, Domenech R, Eichhorn G, Elliott K, Evenson JR, Exo KM, Ferguson SH, Fiedler W, Fisk A, Fort J, Franke A, Fuller MR, Garthe S, Gauthier G, Gilchrist G, Glazov P, Gray CE, Grémillet D, Griffin L, Hallworth MT, Harrison AL, Hennin HL, Hipfner JM, Hodson J, Johnson JA, Joly K, Jones K, Katzner TE, Kidd JW, Knight EC, Kochert MN, Kölzsch A, Kruckenberg H, Lagassé BJ, Lai S, Lamarre JF, Lanctot RB, Larter NC, Latham ADM, Latty CJ, Lawler JP, Léandri-Breton DJ, Lee H, Lewis SB, Love OP, Madsen J, Maftei M, Mallory ML, Mangipane B, Markovets MY, Marra PP, McGuire R, McIntyre CL, McKinnon EA, Miller TA, Moonen S, et alDavidson SC, Bohrer G, Gurarie E, LaPoint S, Mahoney PJ, Boelman NT, Eitel JUH, Prugh LR, Vierling LA, Jennewein J, Grier E, Couriot O, Kelly AP, Meddens AJH, Oliver RY, Kays R, Wikelski M, Aarvak T, Ackerman JT, Alves JA, Bayne E, Bedrosian B, Belant JL, Berdahl AM, Berlin AM, Berteaux D, Bêty J, Boiko D, Booms TL, Borg BL, Boutin S, Boyd WS, Brides K, Brown S, Bulyuk VN, Burnham KK, Cabot D, Casazza M, Christie K, Craig EH, Davis SE, Davison T, Demma D, DeSorbo CR, Dixon A, Domenech R, Eichhorn G, Elliott K, Evenson JR, Exo KM, Ferguson SH, Fiedler W, Fisk A, Fort J, Franke A, Fuller MR, Garthe S, Gauthier G, Gilchrist G, Glazov P, Gray CE, Grémillet D, Griffin L, Hallworth MT, Harrison AL, Hennin HL, Hipfner JM, Hodson J, Johnson JA, Joly K, Jones K, Katzner TE, Kidd JW, Knight EC, Kochert MN, Kölzsch A, Kruckenberg H, Lagassé BJ, Lai S, Lamarre JF, Lanctot RB, Larter NC, Latham ADM, Latty CJ, Lawler JP, Léandri-Breton DJ, Lee H, Lewis SB, Love OP, Madsen J, Maftei M, Mallory ML, Mangipane B, Markovets MY, Marra PP, McGuire R, McIntyre CL, McKinnon EA, Miller TA, Moonen S, Mu T, Müskens GJDM, Ng J, Nicholson KL, Øien IJ, Overton C, Owen PA, Patterson A, Petersen A, Pokrovsky I, Powell LL, Prieto R, Quillfeldt P, Rausch J, Russell K, Saalfeld ST, Schekkerman H, Schmutz JA, Schwemmer P, Seip DR, Shreading A, Silva MA, Smith BW, Smith F, Smith JP, Snell KRS, Sokolov A, Sokolov V, Solovyeva DV, Sorum MS, Tertitski G, Therrien JF, Thorup K, Tibbitts TL, Tulp I, Uher-Koch BD, van Bemmelen RSA, Van Wilgenburg S, Von Duyke AL, Watson JL, Watts BD, Williams JA, Wilson MT, Wright JR, Yates MA, Yurkowski DJ, Žydelis R, Hebblewhite M. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 2020; 370:712-715. [PMID: 33154141 DOI: 10.1126/science.abb7080] [Show More Authors] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/16/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022]
Abstract
The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.
Collapse
Affiliation(s)
- Sarah C Davidson
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Gil Bohrer
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.
| | - Eliezer Gurarie
- Department of Biology, University of Maryland, College Park, MD, USA.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Scott LaPoint
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Black Rock Forest, 65 Reservoir Road, Cornwall, NY, USA.,Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Peter J Mahoney
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Natalie T Boelman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Jan U H Eitel
- Department of Natural Resources and Society, University of Idaho, Moscow, ID, USA
| | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Lee A Vierling
- Department of Natural Resources and Society, University of Idaho, Moscow, ID, USA
| | - Jyoti Jennewein
- Department of Natural Resources and Society, University of Idaho, Moscow, ID, USA
| | - Emma Grier
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Ophélie Couriot
- Department of Biology, University of Maryland, College Park, MD, USA.,National Socio-Environmental Synthesis Center, Annapolis, MD, USA
| | - Allicia P Kelly
- Department of Environment and Natural Resources, Government of the Northwest Territories, Fort Smith, NT, Canada
| | - Arjan J H Meddens
- School of the Environment, Washington State University, Pullman, WA, USA
| | - Ruth Y Oliver
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Roland Kays
- College of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | | | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - José A Alves
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.,South Iceland Research Centre, University of Iceland, Laugarvatn, Iceland
| | - Erin Bayne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Jerrold L Belant
- Global Wildlife Conservation Center, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Andrew M Berdahl
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Alicia M Berlin
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Dominique Berteaux
- Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Joël Bêty
- Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Dmitrijs Boiko
- Latvian National Museum of Natural History, Riga, Latvia.,Institute of Biology, University of Latvia, Salaspils, Latvia.,Latvian Swan Research Society, Kalnciems, Latvia
| | | | - Bridget L Borg
- National Park Service, Denali National Park and Preserve, Denali Park, AK, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - W Sean Boyd
- Science & Technology Branch, Environment & Climate Change Canada, Delta, BC, Canada
| | | | | | - Victor N Bulyuk
- Biological Station Rybachy, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | | | - David Cabot
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Michael Casazza
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | | | | | | | - Tracy Davison
- Department of Environment and Natural Resources, Government of the Northwest Territories, Inuvik, NT, Canada
| | | | | | - Andrew Dixon
- Reneco International Wildlife Consultants, Abu Dhabi, United Arab Emirates
| | | | - Götz Eichhorn
- Vogeltrekstation-Dutch Centre for Avian Migration and Demography, Wageningen, Netherlands.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Kyle Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QC, Canada
| | | | - Klaus-Michael Exo
- Institute for Avian Research "Vogelwarte Helgoland," Wilhelmshaven, Germany
| | | | - Wolfgang Fiedler
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Aaron Fisk
- Great Lakes Institute for Environmental Research, School of the Environment, University of Windsor, Windsor, ON, Canada
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), CNRS, La Rochelle University, La Rochelle, France
| | - Alastair Franke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Arctic Raptor Project, Rankin Inlet, NU, Canada
| | - Mark R Fuller
- Boise State University, Raptor Research Center, Boise, ID, USA
| | - Stefan Garthe
- Research and Technology Centre (FTZ), Kiel University, Büsum, Germany
| | - Gilles Gauthier
- Département de Biologie & Centre d'Études Nordiques, Université Laval, Quebec City, QC, Canada
| | - Grant Gilchrist
- Environment & Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | - Petr Glazov
- Institute of Geography, Russian Academy of Sciences, Moscow, Russia
| | - Carrie E Gray
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - David Grémillet
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle University, Villiers en Bois, France.,Percy Fitzpatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | | | - Michael T Hallworth
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA.,Northeast Climate Adaptation Science Center, University of Massachusetts Amherst, Amherst, MA, USA
| | - Autumn-Lynn Harrison
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - Holly L Hennin
- Science & Technology Branch, Environment & Climate Change Canada, Delta, BC, Canada.,Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - J Mark Hipfner
- Environment & Climate Change Canada, Pacific Wildlife Research Centre, Delta, BC, Canada
| | - James Hodson
- Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada
| | - James A Johnson
- U.S. Fish & Wildlife Service, Migratory Bird Management, Anchorage, AK, USA
| | - Kyle Joly
- National Park Service, Gates of the Arctic National Park & Preserve, Fairbanks, AK, USA
| | | | - Todd E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | | | - Elly C Knight
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael N Kochert
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - Andrea Kölzsch
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Institute for Wetlands and Waterbird Research e.V., Verden (Aller), Germany
| | - Helmut Kruckenberg
- Institute for Wetlands and Waterbird Research e.V., Verden (Aller), Germany
| | - Benjamin J Lagassé
- Department of Integrative Biology, University of Colorado, Denver, CO, USA
| | - Sandra Lai
- Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, QC, Canada
| | | | - Richard B Lanctot
- U.S. Fish & Wildlife Service, Migratory Bird Management, Anchorage, AK, USA
| | - Nicholas C Larter
- Department of Environment and Natural Resources, Government of the Northwest Territories, Fort Simpson, NT, Canada
| | - A David M Latham
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Christopher J Latty
- U.S. Fish & Wildlife Service, Arctic National Wildlife Refuge, Fairbanks, AK, USA
| | - James P Lawler
- National Park Service, Alaska Inventory and Monitoring Program, Anchorage, AK, USA
| | | | - Hansoo Lee
- Korea Institute of Environmental Ecology, Yuseonggu, Daejeon, Republic of Korea
| | | | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Jesper Madsen
- Department of Bioscience-Kalø, Aarhus University, Rønde, Denmark
| | - Mark Maftei
- High Arctic Gull Research Group, Bamfield, BC, Canada
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, NS, Canada
| | - Buck Mangipane
- National Park Service, Lake Clark National Park and Preserve, Anchorage, AK, USA
| | - Mikhail Y Markovets
- Biological Station Rybachy, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - Peter P Marra
- Department of Biology and the McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - Rebecca McGuire
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, USA
| | - Carol L McIntyre
- National Park Service, Denali National Park and Preserve, Denali Park, AK, USA
| | | | - Tricia A Miller
- Conservation Science Global, Inc., West Cape May, NJ, USA.,Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - Sander Moonen
- Institute for Avian Research "Vogelwarte Helgoland," Wilhelmshaven, Germany
| | - Tong Mu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Gerhard J D M Müskens
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | - Janet Ng
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | - Cory Overton
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, CA, USA
| | - Patricia A Owen
- National Park Service, Denali National Park and Preserve, Denali Park, AK, USA
| | - Allison Patterson
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QC, Canada
| | | | - Ivan Pokrovsky
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Laboratory of Ornithology, Institute of Biological Problems of the North FEB RAS, Magadan, Russia.,Arctic Research Station of Institute of Plant and Animal Ecology UB, RAS, Labytnangi, Yamal-Nenets Autonomous District, Russia
| | - Luke L Powell
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA.,Durham University, Durham, UK.,University of Glasgow, Glasgow, Scotland
| | - Rui Prieto
- Marine and Environmental Sciences Centre, Institute of Marine Research and Okeanos R&D Centre, University of the Azores, Horta, Portugal
| | | | - Jennie Rausch
- Environment & Climate Change Canada, Yellowknife, NT, Canada
| | | | - Sarah T Saalfeld
- U.S. Fish & Wildlife Service, Migratory Bird Management, Anchorage, AK, USA
| | | | - Joel A Schmutz
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | - Philipp Schwemmer
- Research and Technology Centre (FTZ), Kiel University, Büsum, Germany
| | - Dale R Seip
- British Columbia Ministry of Environment, Prince George, BC, Canada
| | | | - Mónica A Silva
- Marine and Environmental Sciences Centre, Institute of Marine Research and Okeanos R&D Centre, University of the Azores, Horta, Portugal.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Brian W Smith
- U.S. Fish & Wildlife Service, Migratory Bird Management, Denver, CO, USA
| | - Fletcher Smith
- Center for Conservation Biology, College of William & Mary, Williamsburg, VA, USA.,Georgia Department of Natural Resources, Brunswick, GA, USA
| | - Jeff P Smith
- HawkWatch International, Salt Lake City, UT, USA.,H. T. Harvey & Associates, Los Gatos, CA, USA
| | - Katherine R S Snell
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr Sokolov
- Arctic Research Station of Institute of Plant and Animal Ecology UB, RAS, Labytnangi, Yamal-Nenets Autonomous District, Russia
| | - Vasiliy Sokolov
- Institute of Plant and Animal Ecology, Ural Division Russian Academy of Sciences, Ekaterinburg, Russia
| | - Diana V Solovyeva
- Laboratory of Ornithology, Institute of Biological Problems of the North FEB RAS, Magadan, Russia
| | - Mathew S Sorum
- National Park Service, Yukon-Charley Rivers National Preserve, Central Alaska Inventory and Monitoring Network, Fairbanks, AK, USA
| | | | - J F Therrien
- Département de Biologie & Centre d'Études Nordiques, Université Laval, Quebec City, QC, Canada.,Hawk Mountain Sanctuary, Kempton, PA, USA
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - T Lee Tibbitts
- U.S. Geological Survey Alaska Science Center, Anchorage, AK, USA
| | - Ingrid Tulp
- Wageningen Marine Research, IJmuiden, Netherlands
| | | | - Rob S A van Bemmelen
- Wageningen Marine Research, IJmuiden, Netherlands.,Bureau Waardenburg, Culemborg, Netherlands
| | - Steven Van Wilgenburg
- Canadian Wildlife Service, Environment & Climate Change Canada, Saskatoon, SK, Canada
| | - Andrew L Von Duyke
- North Slope Borough, Department of Wildlife Management, Utqiaġvik, AK, USA
| | - Jesse L Watson
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Bryan D Watts
- Center for Conservation Biology, College of William & Mary, Williamsburg, VA, USA
| | - Judy A Williams
- Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada
| | | | - James R Wright
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | | | - David J Yurkowski
- Fisheries and Oceans Canada, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada
| | | | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| |
Collapse
|
34
|
Morant J, Abad-Gómez JM, Álvarez T, Sánchez Á, Zuberogoitia I, López-López P. Winter movement patterns of a globally endangered avian scavenger in south-western Europe. Sci Rep 2020; 10:17690. [PMID: 33077857 PMCID: PMC7572415 DOI: 10.1038/s41598-020-74333-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Partial migration, whereby some individuals migrate and some do not, is relatively common and widespread among animals. Switching between migration tactics (from migratory to resident or vice versa) occurs at individual and population levels. Here, we describe for the first time the movement ecology of the largest wintering population of Egyptian Vultures (Neophron percnopterus) in south-west Europe. We combined field surveys and GPS tracking data from December to February during four wintering seasons (2014–2018). The wintering population consisted on average of 85 individuals (range 58–121; 76% adults and 24% subadults). Individuals were counted at five different roosting sites located near farms, unauthorized carcass deposition sites and authorized carcass deposition sites. Our results show that vultures tend to remain close to the roosting site. Moreover, we observed that females exhibited smaller home range sizes than males, which suggests a possible differential use of food sources. Overall, birds relied more on farms than other available food resources, particularly subadult individuals which exploited more intensively these sites. Our results showed that Egyptian Vultures congregate in significant numbers at specific sites throughout the winter period in south-west Spain and that these roosting and feeding sites should be given some level of legal protection and regular monitoring. Furthermore, predictable food sources might be driving the apparent increase in the non-migratory population of Egyptian Vultures, as observed in other avian species which are also changing their migratory behavior.
Collapse
Affiliation(s)
- Jon Morant
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, 20014, Donostia-San Sebastián, Spain.
| | - José María Abad-Gómez
- Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006, Badajoz, Spain.,Servicio de Conservación de la Naturaleza y Áreas Protegidas, Junta de Extremadura, Av/ luis Ramallo s/n, 06800, Mérida, Badajoz, Spain
| | - Toribio Álvarez
- Servicio de Conservación de la Naturaleza y Áreas Protegidas, Junta de Extremadura, Av/ luis Ramallo s/n, 06800, Mérida, Badajoz, Spain
| | - Ángel Sánchez
- Servicio de Conservación de la Naturaleza y Áreas Protegidas, Junta de Extremadura, Av/ luis Ramallo s/n, 06800, Mérida, Badajoz, Spain
| | - Iñigo Zuberogoitia
- Department of Ornithology, Aranzadi Sciences Society, Zorroagagaina 11, 20014, Donostia-San Sebastián, Spain.,Estudios Medioambientales Icarus S.L, C/San Vicente 8, 6 ª Planta, Dpto 8, Edificio Albia I, 48001, Bilbao, Bizkaia, Spain
| | - Pascual López-López
- Movement Ecology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| |
Collapse
|
35
|
Dickinson ER, Millins C, Biek R. Sampling scale and season influence the observed relationship between the density of deer and questing Ixodes ricinus nymphs. Parasit Vectors 2020; 13:493. [PMID: 32993763 PMCID: PMC7526098 DOI: 10.1186/s13071-020-04369-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/17/2020] [Indexed: 12/05/2022] Open
Abstract
Background The relationship between environmentally transmitted tick parasites, Ixodes spp., and their main reproductive host, deer, is generally thought to be positive. However, measuring host abundance and density directly can be challenging and indirect methods are often used. The observed relationship between the parasite and host may be affected by sampling scale and season, which could lead to different inferences being made. Here, we aimed to test the effect of sampling scale and season on the relationship between density of deer and the density of questing Ixodes ricinus nymphs. Methods The density of deer (primarily Dama dama) was estimated using line transect distance sampling of deer dung quantified in different seasons (winter and summer) and measured at three different nested scales (site, transect and observation level). Questing nymph density was measured using blanket drag methods and estimates were calculated at the same scales as deer density estimates. General linear models were used to evaluate the relationship between questing nymphs, deer density and other environmental variables at each sampling scale and each season deer density was measured at. Results While a positive relationship between deer density and questing nymph density was detected at the site and transect scale, no relationship was apparent at the observation level. This was likely due to increased variation and reduced precision of deer dung counts at the finest sampling scale. Seasonal changes in deer populations were observed likely reflecting seasonal shifts in habitat usage. The summer estimates of deer density explained questing nymph density whereas winter estimates did not. Conclusions Our results show that the scale of sampling can affect the detectability of the positive association between host and vector species. Furthermore, such associations can be obscured if hosts exhibit seasonal changes in habitat use. Thus, both sampling scale and season are important to consider when investigating the relationship between host and vector species.![]()
Collapse
Affiliation(s)
- Eleanor R Dickinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead St, Glasgow, G12 8QQ, Scotland, UK. .,Scottish Centre for Ecology and the Natural Environment, Rowardennan, Glasgow, G63 0AW, Scotland, UK. .,School of Biological Sciences, Queens University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - Caroline Millins
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead St, Glasgow, G12 8QQ, Scotland, UK.,Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Brownlow Hill, Liverpool, L69 7TX, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead St, Glasgow, G12 8QQ, Scotland, UK
| |
Collapse
|
36
|
Pärssinen V, Hulthén K, Brönmark C, Skov C, Brodersen J, Baktoft H, Chapman BB, Hansson LA, Nilsson PA. Maladaptive migration behaviour in hybrids links to predator-mediated ecological selection. J Anim Ecol 2020; 89:2596-2604. [PMID: 32745243 PMCID: PMC7692921 DOI: 10.1111/1365-2656.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Different migratory species have evolved distinct migratory characteristics that improve fitness in their particular ecological niches. However, when such species hybridize, migratory traits from parental species can combine maladaptively and cause hybrids to fall between parental fitness peaks, with potential consequences for hybrid viability and species integrity. Here, we take advantage of a natural cross‐breeding incident to study migratory behaviour in naturally occurring hybrids as well as in their parental species and explore links between migratory traits and predation risk. To achieve this, we used electronic tags and passive telemetry to record detailed individual migration patterns (timing and number of migratory trips) in two common freshwater fish species, roach Rutilus rutilus, common bream Abramis brama as well as their hybrids. Next, we scanned for tags regurgitated by a key avian predator (great cormorant Phalacrocorax carbo) at nearby roosting sites, allowing us to directly link migratory behaviour to predation risk in the wild. We found that hybrid individuals showed a higher number of short, multi‐trip movements between lake and stream habitats as compared to both parental species. The mean date of first lake departure differed between bream and roach by more than 10 days, while hybrids departed in two distinct peaks that overlapped with the parental species' averages. Moreover, the probability of cormorant predation increased with multi‐trip movement frequency across species and was higher for hybrids. Our data provide novel insights into hybrid viability, with links to predator‐mediated ecological selection. Increased exposure to predators via maladaptive migratory behaviour reduces hybrid survival and can thereby reinforce species integrity.
Collapse
Affiliation(s)
- Varpu Pärssinen
- Department of Biology - Aquatic Ecology, Lund University, Lund, Sweden
| | - Kaj Hulthén
- Department of Biology - Aquatic Ecology, Lund University, Lund, Sweden
| | - Christer Brönmark
- Department of Biology - Aquatic Ecology, Lund University, Lund, Sweden
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Department of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Henrik Baktoft
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Silkeborg, Denmark
| | - Ben B Chapman
- Division of Evolution and Genomics, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Per Anders Nilsson
- Department of Biology - Aquatic Ecology, Lund University, Lund, Sweden.,Department of Environmental and Life Sciences - Biology, Karlstad University, Karlstad, Sweden
| |
Collapse
|
37
|
Merrill E, Killeen J, Pettit J, Trottier M, Martin H, Berg J, Bohm H, Eggeman S, Hebblewhite M. Density-Dependent Foraging Behaviors on Sympatric Winter Ranges in a Partially Migratory Elk Population. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
38
|
Aronsson M, Åkesson M, Low M, Persson J, Andrén H. Resource dispersion and relatedness interact to explain space use in a solitary predator. OIKOS 2020. [DOI: 10.1111/oik.07258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Malin Aronsson
- Grimsö Wildlife Research Station, Dept of Ecology, Swedish Univ. of Agricultural Sciences SE‐73091 Riddarhyttan Sweden
| | - Mikael Åkesson
- Grimsö Wildlife Research Station, Dept of Ecology, Swedish Univ. of Agricultural Sciences SE‐73091 Riddarhyttan Sweden
| | - Matthew Low
- Dept of Ecology, Swedish Univ. of Agricultural Sciences Uppsala Sweden
| | - Jens Persson
- Grimsö Wildlife Research Station, Dept of Ecology, Swedish Univ. of Agricultural Sciences SE‐73091 Riddarhyttan Sweden
| | - Henrik Andrén
- Grimsö Wildlife Research Station, Dept of Ecology, Swedish Univ. of Agricultural Sciences SE‐73091 Riddarhyttan Sweden
| |
Collapse
|
39
|
Ignatavičius G, Ulevičius A, Valskys V, Trakimas G, Galinskaitė L, Busher PE. Temporal patterns of ungulate-vehicle collisions in a sparsely populated country. EUR J WILDLIFE RES 2020. [DOI: 10.1007/s10344-020-01396-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Bojarska K, Kurek K, Śnieżko S, Wierzbowska I, Król W, Zyśk-Gorczyńska E, Baś G, Widera E, Okarma H. Winter severity and anthropogenic factors affect spatial behaviour of red deer in the Carpathians. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00520-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractSpatial ecology of red deer Cervus elaphus is shaped by both natural and anthropogenic factors. We used radio telemetry to investigate factors affecting habitat selection on two spatial scales, home range sizes and migratory behaviour of red deer (N = 8 individuals) in two mountain ranges of the western Carpathians in 2004–2007. The two study areas differed in terms of environmental conditions: Beskid Sądecki had higher altitudes, higher human population and road density and milder winters than Beskid Niski. Red deer in both areas selected forests and avoided agricultural habitats on both spatial scales. Elevation affected site selection only in Beskid Sądecki: deer selected higher altitudes for their home ranges, but lower altitudes within them. Deer avoided major roads when selecting their home ranges in both sites, but only in Beskid Sądecki, they also avoided roads within their home ranges. Deer in both study sites selected locations closer to supplementary feeding sites in winter. In years with more severe winters, deer in Beskid Niski displayed seasonal migration to south-facing slopes. Deer in Beskid Sadecki showed short-distance altitudinal movements from low elevations in winter to high elevations in summer, and a short-term descent to low elevations in August–September. Our results fit the general concept that climatic conditions and human-related factors shape spatial behaviour in ungulates, and that snow conditions are particularly important for migration. Climate change will likely contribute to diminishing migration in red deer in the Carpathians.
Collapse
|
41
|
Wave-like Patterns of Plant Phenology Determine Ungulate Movement Tactics. Curr Biol 2020; 30:3444-3449.e4. [PMID: 32619482 DOI: 10.1016/j.cub.2020.06.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 11/20/2022]
Abstract
Animals exhibit a diversity of movement tactics [1]. Tracking resources that change across space and time is predicted to be a fundamental driver of animal movement [2]. For example, some migratory ungulates (i.e., hooved mammals) closely track the progression of highly nutritious plant green-up, a phenomenon called "green-wave surfing" [3-5]. Yet general principles describing how the dynamic nature of resources determine movement tactics are lacking [6]. We tested an emerging theory that predicts surfing and the existence of migratory behavior will be favored in environments where green-up is fleeting and moves sequentially across large landscapes (i.e., wave-like green-up) [7]. Landscapes exhibiting wave-like patterns of green-up facilitated surfing and explained the existence of migratory behavior across 61 populations of four ungulate species on two continents (n = 1,696 individuals). At the species level, foraging benefits were equivalent between tactics, suggesting that each movement tactic is fine-tuned to local patterns of plant phenology. For decades, ecologists have sought to understand how animals move to select habitat, commonly defining habitat as a set of static patches [8, 9]. Our findings indicate that animal movement tactics emerge as a function of the flux of resources across space and time, underscoring the need to redefine habitat to include its dynamic attributes. As global habitats continue to be modified by anthropogenic disturbance and climate change [10], our synthesis provides a generalizable framework to understand how animal movement will be influenced by altered patterns of resource phenology.
Collapse
|
42
|
Lowrey B, McWhirter DE, Proffitt KM, Monteith KL, Courtemanch AB, White PJ, Paterson JT, Dewey SR, Garrott RA. Individual variation creates diverse migratory portfolios in native populations of a mountain ungulate. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e2106. [PMID: 32091631 DOI: 10.1002/eap.2106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/10/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Ecological theory and empirical studies have demonstrated population-level demographic benefits resulting from a diversity of migratory behaviors with important implications for ecology, conservation, and evolution of migratory organisms. Nevertheless, evaluation of migratory portfolios (i.e., the variation in migratory behaviors across space and time among individuals within populations) has received relatively little attention in migratory ungulates, where research has focused largely on the dichotomous behaviors (e.g., resident and migrant) of partially migratory populations. Using GPS data from 361 female bighorn sheep (Ovis canadensis) across 17 (4 restored, 6 augmented, 7 native) populations in Montana and Wyoming, USA, we (1) characterized migratory portfolios based on behavioral and spatial migratory characteristics and (2) evaluated the relative influence of landscape attributes and management histories on migratory diversity. Native populations, which had been extant on the landscape for many generations, had more diverse migratory portfolios, higher behavioral switching rates, reduced seasonal range fidelity, and broad dispersion of individuals across summer and winter ranges. In contrast, restored populations with an abbreviated history on the landscape were largely non-migratory with a narrow portfolio of migratory behaviors, less behavioral switching, higher fidelity to seasonal ranges, and less dispersion on summer and winter ranges. Augmented populations were more variable and contained characteristics of both native and restored populations. Differences in migratory diversity among populations were associated with management histories (e.g., restored, augmented, or native). Landscape characteristics such as the duration and regularity of green-up, human landscape alterations, topography, and snow gradients were not strongly associated with migratory diversity. We suggest a two-pronged approach to restoring migratory portfolios in ungulates that first develops behavior-specific habitat models and then places individuals with known migratory behaviors into unoccupied areas in an effort to bolster migratory portfolios in restored populations, potentially with synergistic benefits associated with variation among individuals and resulting portfolio effects. Management efforts to restore diverse migratory portfolios may increase the abundance, resilience, and long-term viability of ungulate populations.
Collapse
Affiliation(s)
- B Lowrey
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| | - D E McWhirter
- Wyoming Game and Fish Department, Jackson, Wyoming, 83001, USA
| | - K M Proffitt
- Montana Department of Fish, Wildlife, and Parks, Bozeman, Montana, 59718, USA
| | - K L Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, 82072, USA
| | - A B Courtemanch
- Wyoming Game and Fish Department, Jackson, Wyoming, 83001, USA
| | - P J White
- Yellowstone Center for Resources, Yellowstone National Park, National Park Service, Mammoth, Wyoming, 82190, USA
| | - J T Paterson
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| | - S R Dewey
- Grand Teton National Park, National Park Service, PO Box 170, Moose, Wyoming, 83012, USA
| | - R A Garrott
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, 59717, USA
| |
Collapse
|
43
|
Rehnus M, Peláez M, Bollmann K. Advancing plant phenology causes an increasing trophic mismatch in an income breeder across a wide elevational range. Ecosphere 2020. [DOI: 10.1002/ecs2.3144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Maik Rehnus
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Zürcherstrasse 111 Birmensdorf8903Switzerland
| | - Marta Peláez
- Departamento de Sistemas y Recursos Naturales Universidad Politécnica de Madrid Ciudad Universitaria s/n Madrid28040Spain
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL Zürcherstrasse 111 Birmensdorf8903Switzerland
| |
Collapse
|
44
|
Peláez M, Gaillard JM, Bollmann K, Heurich M, Rehnus M. Large-scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. J Anim Ecol 2020; 89:1906-1917. [PMID: 32379900 DOI: 10.1111/1365-2656.13251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
Hopkins' Bioclimatic Law predicts geographical patterns in phenological timing by establishing a correspondence between latitudinal and altitudinal gradients. First proposed for key phenological events of plants, such as leaf sprouting or flowering dates, this law has rarely been used to assess the geographical equivalence of key life-history traits of mammals. We hypothesize that (H1) parturition dates of European roe deer Capreolus capreolus are delayed and more synchronized at higher latitudes and altitudes, (H2) parturition timing varies along latitudinal and altitudinal gradients in a way that matches the Hopkins' Bioclimatic Law and (H3) females adjust parturition timing to match the period of high energy demand with peak resource availability. We used parturition dates of 7,444 European roe deer from Switzerland to assess altitudinal variation in birth timing and synchrony from 288 to 2,366 m a.s.l. We then performed a literature survey to compare altitudinal results with those from different populations along the species' latitudinal range of distribution. Finally, we performed spatial analysis combining our highly resolved altitudinal data on parturition dates with plant phenology data. As expected, parturition dates were delayed with increasing latitude and altitude. This delay matched the Bioclimatic Law, as the effect of 1º increase in latitude was similar to 120 m increase in altitude. However, while parturitions were more synchronized with increasing altitude, we did not detect any trend along the latitudinal gradient. Finally, plant phenology explained altitudinal variation in parturition timing better than a linear effect of altitude. Our findings clearly demonstrate the ability of a large herbivore to match parturition timing with phenological conditions across the altitudinal gradient, even at the smallest spatial scales.
Collapse
Affiliation(s)
- Marta Peláez
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain.,Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco Heurich
- Wildlife Ecology and Wildlife Management, University of Freiburg, Freiburg, Germany.,Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Grafenau, Germany
| | - Maik Rehnus
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
45
|
Archer LC, Hutton SA, Harman L, McCormick SD, O'Grady MN, Kerry JP, Poole WR, Gargan P, McGinnity P, Reed TE. Food and temperature stressors have opposing effects in determining flexible migration decisions in brown trout (Salmo trutta). GLOBAL CHANGE BIOLOGY 2020; 26:2878-2896. [PMID: 32103581 DOI: 10.1111/gcb.14990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
With rapid global change, organisms in natural systems are exposed to a multitude of stressors that likely co-occur, with uncertain impacts. We explored individual and cumulative effects of co-occurring environmental stressors on the striking, yet poorly understood, phenomenon of facultative migration. We reared offspring of a brown trout population that naturally demonstrates facultative anadromy (sea migration), under different environmental stressor treatments and measured life history responses in terms of migratory tactics and freshwater maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated to 1.8°C above natural conditions or both treatments in combination over 18 months of experimental tank rearing. When considered in isolation, reduced food had negative effects on the size, mass and condition of fish across the experiment. We detected variable effects of warm temperatures (negative effects on size and mass, but positive effect on lipids). When combined with food restriction, temperature effects on these traits were less pronounced, implying antagonistic stressor effects on morphological traits. Stressors combined additively, but had opposing effects on life history tactics: migration increased and maturation rates decreased under low food conditions, whereas the opposite occurred in the warm temperature treatment. Not all fish had expressed maturation or migration tactics by the end of the study, and the frequency of these 'unassigned' fish was higher in food deprivation treatments, but lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition than fish showing maturation tactics, but were similar in size to unassigned fish. We further detected effects of food restriction on hypo-osmoregulatory function of migrants that may influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to multiple stressors may vary depending on the response considered. Collectively, our results indicate contrasting effects of environmental stressors on life history trajectories in a facultatively migratory species.
Collapse
Affiliation(s)
- Louise C Archer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Stephen A Hutton
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Luke Harman
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Stephen D McCormick
- Leetown Science Centre, S.O. Conte Anadromous Fish Research Laboratory, U.S. Geological Survey, Turners Falls, MA, USA
| | - Michael N O'Grady
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Joseph P Kerry
- Food Packaging Group, School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | | | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Marine Institute, Newport, Ireland
| | - Thomas E Reed
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Basille M, Watling J, Romañach S, Borkhataria R. Joint seasonality in geographic and ecological spaces, illustrated with a partially migratory bird. Ecosphere 2020. [DOI: 10.1002/ecs2.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mathieu Basille
- Department of Wildlife Ecology and Conservation Fort Lauderdale Research and Education Center University of Florida Davie FL33314USA
| | - James Watling
- Department of Biology John Carroll University University Heights OH44118USA
| | - Stephanie Romañach
- Wetland and Aquatic Research Center U.S. Geological Survey Fort Lauderdale FL33314USA
| | - Rena Borkhataria
- Department of Wildlife Ecology and Conservation Everglades Research and Education Center University of Florida Belle Glade FL33430USA
| |
Collapse
|
47
|
Owen‐Smith N, Hopcraft G, Morrison T, Chamaillé‐Jammes S, Hetem R, Bennitt E, Van Langevelde F. Movement ecology of large herbivores in African savannas: current knowledge and gaps. Mamm Rev 2020. [DOI: 10.1111/mam.12193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Norman Owen‐Smith
- Centre for African Ecology School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits 2050 South Africa
| | - Grant Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow G12 8QQ UK
| | - Thomas Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow G12 8QQ UK
| | | | - Robyn Hetem
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits 2050 South Africa
| | - Emily Bennitt
- Okavango Research Institute University of Botswana Maun Botswana
| | | |
Collapse
|
48
|
Le Corre M, Dussault C, Côté SD. Where to spend the winter? The role of intraspecific competition and climate in determining the selection of wintering areas by migratory caribou. OIKOS 2020. [DOI: 10.1111/oik.06668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mael Le Corre
- Caribou Ungava, Dépt de Biologie and Centre d’Études Nordiques, Univ. Laval Québec Québec G1V 0A6 Canada
- Dept of Archaeology, Univ. of Aberdeen Aberdeen AB24 3UF UK
| | - Christian Dussault
- Caribou Ungava, Dépt de Biologie and Centre d’Études Nordiques, Univ. Laval Québec Québec G1V 0A6 Canada
- Direction de l'expertise sur la faune terrestre, l'herpétofaune et l'avifaune, Ministère des Forêts, de la Faune et des Parcs du Québec Québec QC Canada
| | - Steeve D. Côté
- Caribou Ungava, Dépt de Biologie and Centre d’Études Nordiques, Univ. Laval Québec Québec G1V 0A6 Canada
| |
Collapse
|
49
|
Borowik T, Ratkiewicz M, Maślanko W, Duda N, Kowalczyk R. The level of habitat patchiness influences movement strategy of moose in Eastern Poland. PLoS One 2020; 15:e0230521. [PMID: 32191742 PMCID: PMC7082038 DOI: 10.1371/journal.pone.0230521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Spatio-temporal variation in resource availability leads to a variety of animal movement strategies. In the case of ungulates, temporally unpredictable landscapes are associated with nomadism, while high predictability in the resource distribution favours migratory or sedentary behaviours depending on the spatial and temporal scale of landscape dynamics. As most of the surveys on moose (Alces alces) movement behaviours in Europe have been conducted on Scandinavian populations, little is known about the movement strategies of moose at the southern edge of the species' range. We expected that decreasing habitat patchiness in central Europe would be associated with the prevalence of migratory behaviours. To verify this hypothesis, we analysed 32 moose fitted with GPS collars from two study areas in eastern Poland which differed in a level of habitat patchiness. We classified moose movements using the net squared displacement method. As presumed, lower patchiness in the Biebrza study site was associated with the predominance of individuals migrating short-distance, while in more patchy landscape of Polesie, resident moose dominated. At the individual level, the propensity of moose to migrate decreased with increasing abundance of forest habitats in their summer ranges. In addition, the parameters (migration distance, timing and duration) for migratory individuals varied substantially between individuals and years. Yet, in spring individual moose expressed a consistent migration timing across years. There was little synchronization of migration timing between individuals from the same population both in spring and autumn, which may have been related to mild weather conditions. We observed that moose postponed their migrations and started movement toward summer ranges at a similar time window in years when spring was delayed due to harsh weather. Hence, in light of global warming, we presume further changes in animal movements will arise.
Collapse
Affiliation(s)
- Tomasz Borowik
- Mammal Research Institute Polish Academy of Sciences, Białowieża, Poland
- * E-mail:
| | | | - Weronika Maślanko
- University of Life Sciences in Lublin, Department of Animal Ethology and Wildlife Management, Lublin, Poland
| | - Norbert Duda
- University of Białystok, Institute of Biology, Białystok, Poland
- Zespół Szkół Ogólnokształcących Nr 2 w Białymstoku, Białystok, Poland
| | - Rafał Kowalczyk
- Mammal Research Institute Polish Academy of Sciences, Białowieża, Poland
| |
Collapse
|
50
|
Pasquaretta C, Dubois T, Gomez‐Moracho T, Delepoulle VP, Le Loc’h G, Heeb P, Lihoreau M. Analysis of temporal patterns in animal movement networks. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI), CNRS University Toulouse III‐Paul Sabatier Toulouse France
| | - Thibault Dubois
- Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI), CNRS University Toulouse III‐Paul Sabatier Toulouse France
| | - Tamara Gomez‐Moracho
- Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI), CNRS University Toulouse III‐Paul Sabatier Toulouse France
| | | | | | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique (EDB UMR 5174) Université de Toulouse, CNRS, IRD Toulouse cedex 9 France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA) Center for Integrative Biology (CBI), CNRS University Toulouse III‐Paul Sabatier Toulouse France
| |
Collapse
|