1
|
Shieh TM, Lin NC, Shen YW, Lan WC, Shih YH. Epithelium-derived exosomal dipeptidyl peptidase-4 involved in arecoline-induced oral submucous fibrosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167683. [PMID: 39837428 DOI: 10.1016/j.bbadis.2025.167683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Dipeptidyl peptidase-4 is known to be involved in the progression of several fibrogenic diseases, but its association with oral submucous fibrosis remains unclear. This study aims to ascertain whether dipeptidyl peptidase-4 plays a role in the pathogenesis of arecoline-induced oral submucous fibrosis. METHODS We assessed the expression of dipeptidyl peptidase-4 in arecoline-treated epithelial cells and the exosomes derived from cells. We cocultured the fibroblast and exosomes derived from epithelium cells and assessed fibrogenic activity by measuring collagen secretion, α-SMA expression, and gel contraction capability. An animal study was conducted to confirm the fibrogenic activity of exosomes derived from arecoline-treated epithelial cells. Additionally, we employed a dipeptidyl peptidase-4 inhibitor to assess its efficacy in mitigating fibrogenesis. RESULTS Following arecoline treatment, an increase dipeptidyl peptidase-4 expression was observed in exosomes from the treated epithelium cells. When these exosomes cocultured with fibroblast, fibrogenic gene α-SMA was upregulated, increased collagen secretion, and enhanced gel contraction capability. In a mouse model, the administration of arecoline-treated epithelium-derived exosomes induced oral submucous fibrosis phenotype, characterized by a reduction in incisal distance and epithelial atrophy. CONCLUSIONS These findings offer valuable insights into clinical strategies for combating oral fibrotic disease and contribute to the foundation of future research in this field.
Collapse
Affiliation(s)
- Tzong-Ming Shieh
- School of Dentistry, China Medical University, 404332 Taichung, Taiwan; Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taipei, Taiwan.
| | - Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, 500 Changhua, Taiwan.
| | - Yen-Wen Shen
- Department of Dentistry, China Medical University Hospital, 404332 Taichung City, Taiwan.
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan.
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, 40454 Taichung, Taiwan.
| |
Collapse
|
2
|
Tang J, Liu J, Zhou Z, Cui X, Tu H, Jia J, Chen B, Dai X, Liu O. Oral submucous fibrosis: pathogenesis and therapeutic approaches. Int J Oral Sci 2025; 17:8. [PMID: 39890798 PMCID: PMC11785813 DOI: 10.1038/s41368-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
Oral submucous fibrosis (OSF), characterized by excessive deposition of extracellular matrix (ECM) that causes oral mucosal tissue sclerosis, and even cancer transformation, is a chronic, progressive fibrosis disease. However, despite some advancements in recent years, no targeted antifibrotic strategies for OSF have been approved; likely because the complicated mechanisms that initiate and drive fibrosis remain to be determined. In this review, we briefly introduce the epidemiology and etiology of OSF. Then, we highlight how cell-intrinsic changes in significant structural cells can drive fibrotic response by regulating biological behaviors, secretion function, and activation of ECM-producing myofibroblasts. In addition, we also discuss the role of innate and adaptive immune cells and how they contribute to the pathogenesis of OSF. Finally, we summarize strategies to interrupt key mechanisms that cause OSF, including modulation of the ECM, inhibition of inflammation, improvement of vascular disturbance. This review will provide potential routes for developing novel anti-OSF therapeutics.
Collapse
Affiliation(s)
- Jianfei Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Junjie Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zekun Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xinyan Cui
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Hua Tu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jia Jia
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Baike Chen
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-Maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China.
| |
Collapse
|
3
|
Gocol H, Zeng JH, Chang S, Koh BY, Nguyen H, Cirillo N. A Critical Interpretive Synthesis of the Role of Arecoline in Oral Carcinogenesis: Is the Local Cholinergic Axis a Missing Link in Disease Pathophysiology? Pharmaceuticals (Basel) 2023; 16:1684. [PMID: 38139811 PMCID: PMC10748297 DOI: 10.3390/ph16121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Arecoline is the primary active carcinogen found in areca nut and has been implicated in the pathogenesis of oral squamous cell carcinoma (OSCC) and oral submucous fibrosis (OSF). For this study, we conducted a stepwise review process by combining iterative scoping reviews with a post hoc search, with the aim of identifying the specific mechanisms by which arecoline initiates and promotes oral carcinogenesis. Our initial search allowed us to define the current trends and patterns in the pathophysiology of arecoline-induced OSF and OSCC, which include the induction of cell proliferation, facilitation of invasion, adhesion, and migration, increased collagen deposition and fibrosis, imbalance in immune and inflammatory mechanisms, and genotoxicity. Key molecular pathways comprise the activation of NOTCH1, MYC, PRDX2, WNT, CYR61, EGFR/Pl3K, DDR1 signaling, and cytokine upregulation. Despite providing a comprehensive overview of potential pathogenic mechanisms of OSF, the involvement of molecules functioning as areca alkaloid receptors, namely, the muscarinic and nicotinic acetylcholine receptors (AChRs), was not elucidated with this approach. Accordingly, our search strategy was refined to reflect these evidence gaps. The results of the second round of reviews with the post hoc search highlighted that arecoline binds preferentially to muscarinic AChRs, which have been implicated in cancer. Consistently, AChRs activate the signaling pathways that partially overlap with those described in the context of arecoline-induced carcinogenesis. In summary, we used a theory-driven interpretive review methodology to inform, extend, and supplement the conventional systematic literature assessment workflow. On the one hand, the results of this critical interpretive synthesis highlighted the prevailing trends and enabled the consolidation of data pertaining to the molecular mechanisms involved in arecoline-induced carcinogenesis, and, on the other, brought up knowledge gaps related to the role of the local cholinergic axis in oral carcinogenesis, thus suggesting areas for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia (B.Y.K.)
| |
Collapse
|
4
|
Chu M, Fu G, Deng J, Wang R, Fan Q, Chen Z, Lu J, Liu XA. Evaluation of the inhalation toxicity of arecoline benzoate aerosol in rats. J Appl Toxicol 2022; 42:1396-1410. [PMID: 35170056 DOI: 10.1002/jat.4303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Arecoline is a pharmacologically active alkaloid isolated from Areca catechu. There are no published data available regarding the inhalation toxicity of arecoline in animals. This study aimed to evaluate the inhalation toxicity of arecoline in vitro and in vivo. For this purpose, arecoline benzoate (ABA) salt was prepared to stabilize arecoline in an aerosol. The MTT assay determined the half-maximal inhibitory concentration values of ABA and arecoline in A549 cell proliferation to be 832 μg/ml and 412 μg/ml, respectively. The toxicity of acute and subacute inhalation in Sprague-Dawley rats was evaluated using the guidelines of the Organization for Economic Cooperation and Development. For acute inhalation, the median lethal concentration value of ABA solvent was >5175 mg/m3 . After the exposure and during the recovery period, no treatment-related clinical signs were observed. In the 28-Day inhalation toxicity test, daily nose-only exposure to 2510 mg/m3 aerosol of the ABA solvent contained 75 mg/m3 ABA for male rats and 375 mg/m3 ABA for female rats, which caused no observed adverse effects, except for the decreased body weight gain in male rats exposed to 375 mg/m3 ABA. In this study, the no observed adverse effect level (NOAEL) for the 28-Day repeated dose inhalation of ABA aerosol was calculated to be around 13 mg/kg/day for male rats and 68.8 mg/kg/day for female rats, respectively.
Collapse
Affiliation(s)
- Ming Chu
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Guofeng Fu
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China.,Laboratory of Life Sciences, Shenzhen Icybetel Biotechnology Co, Ltd, Shenzhen, China
| | - Jingjing Deng
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China
| | - Ruoxi Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Qiming Fan
- GuangdongZhongkeEnHealth Science and Technology Co., Ltd., Foshan, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jin Lu
- Laboratory of Life and Health Sciences, Shenzhen First Union Technology Co., Ltd, Shenzhen, China.,Laboratory of Life Sciences, Shenzhen Icybetel Biotechnology Co, Ltd, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role? Int J Mol Sci 2022; 23:ijms23031637. [PMID: 35163557 PMCID: PMC8836171 DOI: 10.3390/ijms23031637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Betel quid (BQ) is a package of mixed constituents that is chewed by more than 600 million people worldwide, particularly in Asia. The formulation of BQ depends on a variety of factors but typically includes areca nut, betel leaf, and slaked lime and may or may not contain tobacco. BQ chewing is strongly associated with the development of potentially malignant and malignant diseases of the mouth such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC), respectively. We have shown recently that the constituents of BQ vary geographically and that the capacity to induce disease reflects the distinct chemical composition of the BQ. In this review, we examined the diverse chemical constituents of BQ and their putative role in oral carcinogenesis. Four major areca alkaloids—arecoline, arecaidine, guvacoline and guvacine—together with the polyphenols, were identified as being potentially involved in oral carcinogenesis. Further, we propose that fibroblast senescence, which is induced by certain BQ components, may be a key driver of tumour progression in OSMF and OSCC. Our study emphasizes that the characterization of the detrimental or protective effects of specific BQ ingredients may facilitate the development of targeted BQ formulations to prevent and/or treat potentially malignant oral disorders and oral cancer in BQ users.
Collapse
|
6
|
Ansari A, Mahmood T, Bagga P, Ahsan F, Shamim A, Ahmad S, Shariq M, Parveen S. Areca catechu
: A phytopharmacological legwork. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | | | - Farogh Ahsan
- Faculty of Pharmacy Integral University Lucknow India
| | | | - Shoaib Ahmad
- Faculty of Pharmacy Integral University Lucknow India
| | | | - Saba Parveen
- Faculty of Pharmacy Integral University Lucknow India
| |
Collapse
|
7
|
Chen Q, Jiao J, Wang Y, Mai Z, Ren J, He S, Li X, Chen Z. Egr-1 mediates low-dose arecoline induced human oral mucosa fibroblast proliferation via transactivation of Wnt5a expression. BMC Mol Cell Biol 2020; 21:80. [PMID: 33167868 PMCID: PMC7653895 DOI: 10.1186/s12860-020-00325-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Background Arecoline is an alkaloid natural product found in the areca nut that can induce oral submucous fibrosis and subsequent development of cancer. However, numerous studies have shown that arecoline may inhibit fibroblast proliferation and prevent collagen synthesis. Results High doses of arecoline (> 32 μg/ml) could inhibit human oral fibroblast proliferation, while low doses of arecoline (< 16 μg/ml) could promote the proliferation of human oral fibroblasts. Wnt5a was found to be both sufficient and necessary for the promotion of fibroblast proliferation. Egr-1 could mediate the expression of Wnt5a in fibroblasts, while NF-κB, FOXO1, Smad2, and Smad3 did not. Treatment with siRNAs specific to Egr-1, Egr inhibitors, or Wnt5a antibody treatment could all inhibit arecoline-induced Wnt5a upregulation and fibroblast proliferation. Conclusions Egr-1 mediates the effect of low dose arecoline treatment on human oral mucosa fibroblast proliferation by transactivating the expression of Wnt5a. Therefore, Egr inhibitors and Wnt5a antibodies are potential therapies for treatment of oral submucosal fibrosis and oral cancer.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China
| | - Jiuyang Jiao
- Department of Oral & Maxillofacial Surgery & Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Youyuan Wang
- Department of Oral & Maxillofacial Surgery & Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Mai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China
| | - Jing Ren
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China
| | - Sijie He
- The fourth people's hospital of Nanhai district of Foshan city, Foshan, China.
| | - Xiaolan Li
- Guanghua School of stomatology & hospital of stomatology, Guangdong province key laboratory of stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe road, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Krishnakumar K, Ramadoss R, Krishnan R, Sukhija H. In vitro Quantification of Collagen and Snail1 Gene Expression in Experimentally Induced Fibrosis by Arecoline and Commercial Smokeless Tobacco Products. Asian Pac J Cancer Prev 2020; 21:1143-1148. [PMID: 32334483 PMCID: PMC7445985 DOI: 10.31557/apjcp.2020.21.4.1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Extracellular matrix component derangement is the major event in pathogenesis of Oral submucous fibrosis. Many studies have elaborated the alteration of the matrix components at a cellular and genetic level. However elaborate quantification of the components with varying concentrations of Areca nut extract and commercial tobacco products have not been done so far. MATERIALS AND METHODS Primary culture of tissues sourced during crown lengthening procedures were used for establishment of fibroblast monoculture and fibroblast / keratinocyte co-culture. Extracts of areca nut, commercial smokeless tobacco products (gutkha and haans) and control CCl4 were tested at concentrations ranging from 20 μL, 40 μL, 80 μL, 160 μL, 320 μL and time intervals of 12, 24, 48, 72 hours. Collagen quantification by spectrophotometry and SNAI1 gene expression study were done. RESULTS Extract of areca nut was found to show increased collagen production than commercial tobacco products and closely similar values to CCL4. Kruskal Wallis test was used to analyse the difference in collagen obtained. The mean values of collagen obtained in co-culture were lesser than those obtained in the fibroblast monoculture. SNAI1 gene expression was negative in both the culture experiments. CONCLUSION Areca nut extract was found to be more potent as an individual agent. Commercial smokeless tobacco products Gutka and Hans exhibited increased collagen production at higher concentration. These findings further steps up the persuasive ill effects of tobacco products. Negative SNAI1 gene expression was corroborated to lack of extracellular environment in the co coculture experiment.
Collapse
Affiliation(s)
| | - Ramya Ramadoss
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| | - Rajkumar Krishnan
- Department of Oral Pathology and Microbiology, SRM Dental College, SRM University, Chennai, India
| | | |
Collapse
|
9
|
Gupta AK, Tulsyan S, Thakur N, Sharma V, Sinha DN, Mehrotra R. Chemistry, metabolism and pharmacology of carcinogenic alkaloids present in areca nut and factors affecting their concentration. Regul Toxicol Pharmacol 2020; 110:104548. [PMID: 31805361 DOI: 10.1016/j.yrtph.2019.104548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/28/2022]
Abstract
Areca Nut (AN), the seed of tropical palm tree Areca catechu, is a widely chewed natural product with estimated 600 million users across the world. Various AN products, thriving in the market, portray 'Areca nut' or 'Supari' as mouth freshener and safe alternative to smokeless tobacco. Unfortunately, AN is identified as a Group 1 human carcinogen by International Agency for Research on Cancer (IARC). Wide variation in the level of alkaloids, broadly ranging from 2 to 10 mg/gm dry weight, is observed in diverse variety of AN sold worldwide. For the first time, various factors influencing the formation of carcinogenic alkaloids in AN at various stages, including during the growth, processing, and storage of the nut, are discussed. Current review illustrates the mechanism of cancer induction by areca alkaloids in humans and also compiles dose-dependent pharmacology and toxicology data of arecoline, the most potent carcinogenic alkaloid in AN. Careful monitoring of the arecoline content in AN can potentially be used as a tool in product surveillance studies to identify the variations in characteristics of various AN sample sold worldwide. The article will help to generate public awareness and sensitize the government bodies to initiate campaigns against AN use and addiction.
Collapse
Affiliation(s)
- Alpana K Gupta
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research, Department of Health Research (Govt. of India), I-7, Sector-39, Noida, G.B. Nagar, 201301, U.P, India
| | - Sonam Tulsyan
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research, Department of Health Research (Govt. of India), I-7, Sector-39, Noida, G.B. Nagar, 201301, U.P, India
| | - Nisha Thakur
- Division of Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Department of Health Research (Govt. of India), I-7, Sector-39, Noida, G.B. Nagar, 201301, U.P, India
| | - Vishwas Sharma
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research, Department of Health Research (Govt. of India), I-7, Sector-39, Noida, G.B. Nagar, 201301, U.P, India
| | | | - Ravi Mehrotra
- ICMR- India Cancer Research Consortium, Department of Health Research (Govt. of India), 1- Red Cross Road, New Delhi, 110001, India.
| |
Collapse
|
10
|
Ray JG, Chatterjee R, Chaudhuri K. Oral submucous fibrosis: A global challenge. Rising incidence, risk factors, management, and research priorities. Periodontol 2000 2019; 80:200-212. [PMID: 31090137 DOI: 10.1111/prd.12277] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral submucous fibrosis is a potentially malignant disorder of the oral cavity, with a high rate of malignant transformation. It is very common among habitual areca nut chewers. The pathogenesis of oral submucous fibrosis is not well established, but it is believed to be a disease of multifactorial origin, including areca nut chewing, ingestion of chilies, genetic factors, immunologic processes and nutritional deficiencies. Genetically susceptible individuals when exposed to areca nut chewing develop this disease over a variable period of time. Oral submucous fibrosis is considered to be a disease of collagen metabolism. Several genetic factors are reported but there is no consensus about the exact mechanism of disease initiation. Variations in histopathological presentation are noted among oral submucous fibrosis patients with habitual areca nut chewing in different forms and other additive agents, eg betel quid, pan masala and gutkha, together with a variety of tobacco habits. The role of epigenetic modifications, such as miRNA regulation, and DNA methylation is also being reported as part of the pathogenesis of oral submucous fibrosis. A combined approach, including analysis of genetic and epigenetic regulations with different habits, might be helpful to better understand the contributory factors and pathogenesis of this serious disorder.
Collapse
Affiliation(s)
- Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | | | - Keya Chaudhuri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
11
|
Liu YJ, Peng W, Hu MB, Xu M, Wu CJ. The pharmacology, toxicology and potential applications of arecoline: a review. PHARMACEUTICAL BIOLOGY 2016; 54:2753-2760. [PMID: 27046150 DOI: 10.3109/13880209.2016.1160251] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Arecoline is an effective constituent of Areca catechu L. (Arecaceae) with various pharmacological effects. However, investigations also revealed that long use of arecoline could arouse some oral diseases. OBJECTIVE The present review gathers the fragmented information available in the literature (before 1 October 2015) regarding pharmacology and toxicology of arecoline. We also discussed the potential developments and applications of arecoline in the future. METHODS All the available information regarding the arecoline is compiled from scientific databases, including Science Direct, PubMed, Web of Science, Scopus, etc. RESULTS Previous research demonstrated that arecoline is one of the major effective constituents in A. catechu. Additionally, arecoline has a wide spectrum of pharmacological activities including effects on nervous, cardiovascular, digestive and endocrine systems and anti-parasitic effects. What's more, arecoline is reported to be the primary toxic constituent of A. catechu, and the main toxic effects include oral submucous fibrosis (OSF), oral squamous cell carcinoma (OSCC) and genotoxicity. CONCLUSION Arecoline has great potential to be a therapeutic drug for various ailments. However, further investigations are needed in the future to reduce or eliminate its toxicities before developing into new drug.
Collapse
Affiliation(s)
- Yu-Jie Liu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Wei Peng
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Mei-Bian Hu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Min Xu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| | - Chun-Jie Wu
- a College of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu , PR China
| |
Collapse
|
12
|
Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:178-91. [DOI: 10.1016/j.oooo.2016.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 01/22/2023]
|
13
|
Lin SH, Chiou SJ, Ho WT, Chuang CT, Chuang LY, Guh JY. Arecoline-induced pro-fibrotic proteins in LLC-PK1 cells are dependent on c-Jun N-terminal kinase. Toxicology 2016; 344-346:53-60. [PMID: 26908192 DOI: 10.1016/j.tox.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 12/16/2022]
Abstract
Areca nut (AN) chewing is associated with chronic kidney disease (CKD). However, the molecular mechanisms of AN-induced CKD are not known. Thus, we studied the effects of arecoline, a major alkaloid of AN, on proximal tubule (LLC-PK1) cells in terms of cytotoxicity, fibrosis, transforming growth factor-β (TGF-β) and c-Jun N-terminal kinase (JNK). We found that arecoline dose (0.1-0.5mM) and time (24-72h)-dependently induced cytotoxicity without causing cell death. Arecoline (0.25 mM) also time-dependently (24-72h) increased fibronectin and plasminogen activator inhibitor-1 (PAI1) protein expressions. Arecoline (0.25 mM) time-dependently (24-72h) increased TGF-β gene transcriptional activity and supernatant levels of active TGF-β1. Moreover, arecoline (0.25 mM) activated JNK while SP600125 (a JNK inhibitor) attenuated arecoline-induced TGF-β gene transcriptional activity. SP600125, but not SB431542 (a TGF-β receptor type I kinase inhibitor), attenuated arecoline-induced fibronectin and PAI1 protein expressions. Finally, tubulointerstitial fibrosis occurred and renal cortical expressions of fibronectin and PAI1 proteins increased in arecoline-fed mice at 24 weeks. We concluded that arecoline induced tubulointerstitial fibrosis in mice while arecoline-induced TGF-β and pro-fibrotic proteins (fibronectin, PAI1) are dependent on JNK in LLC-PK1 cells.
Collapse
Affiliation(s)
- Sheng-Hsuan Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Ting Ho
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Tang Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lea-Yea Chuang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Jinn-Yuh Guh
- Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Dai JP, Zhu DX, Sheng JT, Chen XX, Li WZ, Wang GF, Li KS, Su Y. Inhibition of Tanshinone IIA, salvianolic acid A and salvianolic acid B on Areca nut extract-induced oral submucous fibrosis in vitro. Molecules 2015; 20:6794-807. [PMID: 25884554 PMCID: PMC6272768 DOI: 10.3390/molecules20046794] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023] Open
Abstract
Salvia miltiorrhiza Bunge has been reported to possess excellent antifibrotic activity. In this study, we have investigated the effect and mechanism of tanshinone IIA (Tan-IIA), salvianolic acid A (Sal-A) and salvianolic acid B (Sal-B), the important active compounds of Salvia miltiorrhiza Bunge, on areca nut extract (ANE)-induced oral submucous fibrosis (OSF) in vitro. Through human procollagen gene promoter luciferase reporter plasmid assay, hydroxyproline assay, gelatin zymography assay, qRT-PCR, ELISA and Western blot assay, the influence of these three compounds on ANE-stimulated cell viability, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion and the activation of PI3K/AKT, ERK/JNK/p38 MAPK and TGF-β/Smads pathways were detected. The results showed that Tan-IIA, Sal-A and Sal-B could significantly inhibit the ANE-stimulated abnormal viability and collagen accumulation of mice oral mucosal fibroblasts (MOMFs), inhibit the transcription of procollagen gene COL1A1 and COL3A1, increase MMP-2/-9 activity, decrease TIMP-1/-2 expression and inhibit the transcription and release of CTGF, TGF-β1, IL-6 and TNF-α; Tan-IIA, Sal-A and Sal-B also inhibited the ANE-induced activation of AKT and ERK MAPK pathways in MOMFs and the activation of TGF-β/Smads pathway in HaCaT cells. In conclusion, Tan-IIA, Sal-A and Sal-B possess excellent antifibrotic activity in vitro and can possibly be used to promote the rehabilitation of OSF patients.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Dan-Xia Zhu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Jiang-Tao Sheng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
15
|
Therapeutic interventions in oral submucous fibrosis: an experimental and clinical study. J Maxillofac Oral Surg 2014; 14:278-90. [PMID: 26028848 DOI: 10.1007/s12663-014-0642-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 06/14/2014] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Oral submucous fibrosis (OSF) is a chronic debilitating disease and premalignant condition of the oral cavity and is a serious public health issue in India and many parts of the world. The treatment is still elusive and empirical because of poorly understood etiopathogenesis, which is believed to be multifactorial including areca nut chewing, ingestion of chillies, genetic and immunologic processes, nutritional deficiencies, and many others. The present investigations was focused to understand the possible therapeutic interventions of anti-OSF agents in arecoline induced experimental in vitro model of OSF and clinical application of these anti-OSF agents in the restoration of various grade of the disease. MATERIALS AND METHODS The 127 subjects were selected from patients who visited the OPD of Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, K.G. Medical University, Lucknow. Further the subjects were divided in two groups on the basis of clinical examination. Group-1 subjects showed presence of fibrosis bands in the labial and/or buccal mucosa, loss of elasticity, difficulty to open the mouth and had a habit chewing areca-nut in some form. Group-2 subjects had no habit of chewing areca-nut, were apparently healthy with no mucosal disorder. The samples were collected and were immediately transported to Indian Institute of Toxicology Research, Lucknow, for isolation and cultivation of primary cultures of mucosal fibroblast cells. Then isolation and cultivation of oral mucosal fibroblast, identification of non-cytotoxic doses of arecoline, real time PCR, immunocytochemistry, cytokine determination in culture cells, western blot analyses, functional activity of collagenase, lysyl oxidase enzyme activity, collagen beads assay, cyclooxygenase (COX-2) expression analysis was done. RESULTS AND CONCLUSIONS This study, shows that the reduction of phagocytic cells was strongly related to the arecoline levels in fibroblast culture when we exposed arecoline to normal oral mucosal cells (NOMC) and cells from OSF patient. An enhancement of phagocytic cells was observed following the pre exposure of cells to 1 μM dexamethasone, a glucocorticoids, In this study, histologic evidence is presented which supports the finding that COX-2 expression is upregulated in OSF specimens compared to normal oral submucosal cells. Strong immunostaining for COX-2 was detected in arecoline exposed NOMC and cells from OSF patient. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. The number of phagocytic cells and phagocytic activity in cultured human oral fibroblasts from OSF site was lower than the fibroblasts from the normal regions of the same person.
Collapse
|
16
|
Ye X, Zhang J, Lu R, Zhou G. HBO: a possible supplementary therapy for oral potentially malignant disorders. Med Hypotheses 2014; 83:131-6. [PMID: 24908359 DOI: 10.1016/j.mehy.2014.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 12/25/2022]
Abstract
Oral potentially malignant disorders (OPMDs) are chronic inflammatory diseases in which cells suffer hypoxia referring to deprivation of adequate oxygen supply. Hyperbaric oxygen treatment (HBO), which can increase oxygen tension and delivery to oxygen-deficient tissue, is a supplementary therapy to improve or cure disorders involving hypoxia. Although the applications of HBO in wound healings, acute ischemic stroke, radiation-induced soft tissue injury and cancers are extensively reported, there are only few studies on their effect in OPMDs. Not only does HBO furnish oxygen-it also possesses potent anti-inflammatory properties. At the cellular level, HBO can decrease lymphocyte proliferation and promote apoptosis of fibroblasts. At the molecular level, it can decrease expression of HIF, ICAM-1, TNF-α, TGF-β, and IFN-γ, as well as increase vascular VEGF expression and angiogenesis. Thus, we hypothesize that HBO may contribute to treat OPMDs, including oral lichen planus, oral leukoplakia, and oral submucous fibrosis both at the cellular level and the molecular level, and that it would be a safe and inexpensive therapeutic strategy.
Collapse
Affiliation(s)
- Xiaojing Ye
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China.
| |
Collapse
|
17
|
Li M, Gao F, Zhou ZS, Zhang HM, Zhang R, Wu YF, Bai MH, Li JJ, Lin SR, Peng JY. Arecoline inhibits epithelial cell viability by upregulating the apoptosis pathway: implication for oral submucous fibrosis. Oncol Rep 2014; 31:2422-8. [PMID: 24647969 DOI: 10.3892/or.2014.3091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/20/2014] [Indexed: 11/06/2022] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as a significant etiological factor for disease manifestation. However, the underlying molecular mechanisms regarding areca nut chewing-induced OSF are only partially understood. Herein, we reported that arecoline markedly induced morphologic change in HaCaT epithelial cells, but had no obvious effect on Hel fibroblast cells. MTS assay revealed that arecoline significantly suppressed HaCaT cell viability. Moreover, flow cytometric analysis indicated that arecoline substantially promoted HaCaT cell, but not Hel cell apoptosis in a dose-dependent manner. Furthermore, arecoline-induced HaCaT cell apoptosis was found to be associated with increased expression and activation of cleaved-Bid, cleaved-PARA and cleaved-caspase-3. Collectively, our results suggest that HaCaT epithelial cells are more sensitive than Hel fibroblast cells to arecoline-induced cytotoxicity, which may be involved in the pathogenesis of OSF.
Collapse
Affiliation(s)
- Ming Li
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Feng Gao
- Powder Metallurgy Research Institute of Central South University, Changsha, Hunan, P.R. China
| | - Zhong-Su Zhou
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Hui-Ming Zhang
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Rui Zhang
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Ying-Fang Wu
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Ming-Hai Bai
- Changsha Stomatological Hospital, Changsha, Hunan, P.R. China
| | - Ji-Jia Li
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Shi-Rong Lin
- Taiwan Taipei Dental Sciences, Taipei, Taiwan, R.O.C
| | - Jie-Ying Peng
- Dental Medical Center, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
18
|
Ponnam SR, Chandrasekhar T, Ramani P, Anuja. Autofluorescence spectroscopy of betel quid chewers and oral submucous fibrosis: A pilot study. J Oral Maxillofac Pathol 2012; 16:4-9. [PMID: 22438637 PMCID: PMC3303521 DOI: 10.4103/0973-029x.92965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Context: Oral lesions related to the use of commercially available tobacco (gutkha) is going to pose a major challenge for health care providers in India. Therefore, techniques that are useful for mass screening of the public for early identification of pre-cancerous lesions and conditions are necessary to overcome this challenge. Aims: To identify the differences in autofluorescence spectra of normal oral mucosa, mucosa of betel quid chewers, and mucosa of oral sub mucous fibrosis. Materials and Methods: Group I consist of 15 individuals with clinical diagnosis of oral submucous fibrosis, Group II consists of 18 individuals without oral submucous fibrosis, having the habit of betel quid (gutkha) chewing and Group III consists of 18 normal individuals without the habit of betel quid chewing. Both males and females were included in the study with their age ranging from 18 to 53 years. In vivo fluorescence spectra were obtained using an optical fibre probe attached to Fluoromax-2 spectrofluorometer in the Department of Medical Physics, Anna University, Chennai, India. Statistical Analysis Used: Fisher's Chi square test was used for statistical analysis. Probability value (P value) was also obtained to discriminate the statistical differences between the three groups. Results: The averaged emission and excitation spectra of oral submucous fibrosis was significantly less compared to normal mucosa and betel quid chewers. The statistical findings showed significant differences (P<0.001) between oral submucous fibrosis and the other two groups. Conclusions: Fluorescence spectroscopy can be used effectively for diagnosing the individuals affected by OSMF. However, this technique was unable to discriminate the betel chewers mucosa from normal individuals.
Collapse
Affiliation(s)
- Srinivas Rao Ponnam
- Department of Oral Pathology, Government Dental College and Hospital, Vijayawada, India
| | | | | | | |
Collapse
|
19
|
Angadi PV, Krishnapillai R. Evaluation of PTEN immunoexpression in oral submucous fibrosis: role in pathogenesis and malignant transformation. Head Neck Pathol 2012; 6:314-21. [PMID: 22392409 PMCID: PMC3422583 DOI: 10.1007/s12105-012-0341-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Oral submucous fibrosis (OSMF) is a chronic debilitating disease and a premalignant condition of the oral cavity characterized by generalized submucosal fibrosis. Despite its precancerous nature, the molecular biology regarding its malignant potential has not been extensively studied. PTEN, a known tumor suppressor gene is mutated in a majority of human cancers and has also been implicated in several fibrotic disorders. The present study aims to evaluate the expression of PTEN in OSMF and oral squamous cell carcinoma (OSCC) and correlate it with the pathogenesis and malignant transformation of OSMF. 60 cases total of OSMF (30) and OSCC (30) were subjected to immunohistochemistry using PTEN antibody. Ten normal oral mucosa (NOM) specimens were also stained as controls. There was progressive loss of PTEN expression from normal mucosa to OSMF and OSCC (p ≤ 0.001). Significant differences were observed for PTEN expression between NOM and OSMF, OSMF and OSCC as well as NOM and OSCC. Though a progressive loss of PTEN was noticed between early OSMF and advanced OSMF, the variation did not reach statistical significance (p ≥ 0.001). Data suggest that there is a significant loss of PTEN expression in OSMF as compared to normal oral mucosa and that this trend increased from OSMF to OSCC. Thus, alteration of PTEN is likely an important molecular event in OSMF pathogenesis and oral carcinogenesis.
Collapse
Affiliation(s)
- Punnya V. Angadi
- Department of Oral Pathology and Microbiology, KLEVK Institute of Dental Sciences and Hospital, Belgaum, 590010 Karnataka India ,Department of Oral Pathology and Medicine, KLEVK Institute of Dental Sciences and Hospital, Belgaum, 590010 Karnataka India
| | - Rekha Krishnapillai
- Department of Oral Pathology, Annoor Dental College and Hospital, Muvattupuzha, Kerala India
| |
Collapse
|
20
|
Grando SA. Muscarinic receptor agonists and antagonists: effects on keratinocyte functions. Handb Exp Pharmacol 2012:429-50. [PMID: 22222709 DOI: 10.1007/978-3-642-23274-9_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stratified epithelium enveloping the skin and lining the surfaces of oral and vaginal mucosa is comprised by keratinocytes that synthesize, secrete, degrade, and respond to acetylcholine via muscarinic and nicotinic receptors. The two pathways may compete or synergize with one another, so that net biologic effect represents the biologic sum of the effects of distinct acetylcholine receptors expressed by a keratinocyte at a particular stage of its development. Keratinocytes express a unique combination of muscarinic receptor subtypes at each stage of their development. Experimental results indicate that muscarinic receptors expressed in human keratinocytes regulate their viability, proliferation, migration, adhesion, and terminal differentiation, hair follicle cycling, and secretion of humectants, cytokines, and growth factors. Learning the muscarinic pharmacology of keratinocyte development and functions has salient clinical implications for patients with nonhealing wounds, mucocutaneous cancers, and various autoimmune and inflammatory diseases. Successful therapy of pemphigus lesions with topical pilocarpine and disappearance of psoriatic lesions due to systemic atropine therapy illustrate that such therapeutic approach is feasible.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, University of California, 134 Sprague Hall, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Khan I, Agarwal P, Thangjam GS, Radhesh R, Rao SG, Kondaiah P. Role of TGF-β and BMP7 in the pathogenesis of oral submucous fibrosis. Growth Factors 2011; 29:119-27. [PMID: 21591998 DOI: 10.3109/08977194.2011.582839] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To understand the molecular pathogenesis of oral submucous fibrosis (OSF), which is a chronic inflammatory disease, gene expression profiling was performed in 10 OSF tissues against 8 pooled normal tissues using oligonucleotide arrays. Microarray results revealed differential expression of 5,288 genes (P ≤ 0.05 and fold change ≥ 1.5). Among these, 2,884 are upregulated and 2,404 are downregulated. Validation employing quantitative real-time PCR and immunohistochemistry confirmed upregulation of transforming growth factor-β1 (TGF-β1), TGFBIp, THBS1, SPP1, and TIG1 and downregulation of bone morphogenic protein 7 (BMP7) in OSF tissues. Furthermore, activation of TGF-β pathway was evident in OSF as demonstrated by pSMAD2 strong immunoreactivity. Treatment of keratinocytes and oral fibroblasts by TGF-β confirmed the regulation of few genes identified in microarray including upregulation of connective tissue growth factor, TGM2, THBS1, and downregulation of BMP7, which is a known negative modulator of fibrosis. Taken together, these data suggest activation of TGF-β signaling and suppression of BMP7 expression in the manifestation of OSF.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, 560012, Bangalore, India
| | | | | | | | | | | |
Collapse
|