1
|
Xu C, Xie X, Shi P, Xue K, Li Y, Wu Y, Wang J. LepR-expressing cells are a critical population in periodontal healing post periodontitis. J Bone Miner Res 2024; 39:59-72. [PMID: 38630879 DOI: 10.1093/jbmr/zjad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 04/19/2024]
Abstract
Identification of promising seed cells plays a pivotal role in achieving tissue regeneration. This study demonstrated that LepR-expressing cells (LepR+ cells) are required for maintaining periodontal homeostasis at the adult stage. We further investigated how LepR+ cells behave in periodontal healing using a ligature-induced periodontitis (PD) and a self-healing murine model with LepRCre/+; R26RtdTomato/+ mice. Lineage tracing experiments revealed that the largely suppressed osteogenic ability of LepR+ cells results from periodontal inflammation. Periodontal defects were partially recovered when the ligature was removed, in which the osteogenic differentiation of LepR+ cell lineage was promoted and contributed to the newly formed alveolar bone. A cell ablation model established with LepRCre/+; R26RtdTomato/+; R26RDTA/+ mice further proved that LepR+ cells are an important cell source of newly formed alveolar bone. Expressions of β-catenin and LEF1 in LepR+ cells were upregulated when the inflammatory stimuli were removed, which are consistent with the functional changes observed during periodontal healing. Furthermore, the conditional upregulation of WNT signaling or the application of sclerostin neutralized antibody promoted the osteogenic function of LepR+ cells. In contrast, the specific knockdown of β-catenin in LepR+ human periodontal ligament cells with small interfering RNA caused arrested osteogenic function. Our findings identified the LepR+ cell lineage as a critical cell population for endogenous periodontal healing post PD, which is regulated by the WNT signaling pathway, making it a promising seed cell population in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peilei Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kun Xue
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yue Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Sun Z, Yan K, Liu S, Yu X, Xu J, Liu J, Li S. Semaphorin 3A promotes the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells in inflammatory environments by suppressing the Wnt/β-catenin signaling pathway. J Mol Histol 2021; 52:1245-1255. [PMID: 33566267 DOI: 10.1007/s10735-020-09941-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
After periodontal treatment, the local inflammatory environment surrounding periodontal tissues cannot be entirely eliminated. The means by which alveolar bone repair and regeneration are promoted in inflammatory environments have important clinical significance. As a powerful protein that promotes the differentiation of osteocytes, semaphorin 3A (Sema3A) shows potential for bone regeneration therapy. However, the effect of Sema3A on osteogenic differentiation in an inflammatory environment, as well as the underlying mechanism, have not yet been explored. We used lentivirus to transduce rat bone marrow-derived mesenchymal stem cells (rBMSCs) to stably overexpress Sema3A. Lipopolysaccharide from Escherichia coli (E. coli LPS) was used to stimulate rBMSCs to establish an inflammatory environment. ALP staining, Alizarin red staining, ALP activity tests, quantitative RT-PCR (qRT-PCR), and Western blotting were used to elucidate the effect of Sema3A on the osteogenesis of rBMSCs in inflammatory environments. XAV939 and LiCl were used to determine whether the Wnt/β-catenin signaling pathway was involved in attenuating the inhibition of Sema3A-induced osteogenic differentiation by LPS. The qRT-PCR and Western blot results demonstrated that the lentiviral vector (LV-NC) and lentiviral-Sema3A (LV-Sema3A) were successfully transduced into rBMSCs. An inflammatory environment could be established by stimulating rBMSCs with 1 μg/ml E. coli LPS. After Sema3A overexpression, mineral deposition was exacerbated, and the BSP and Runx2 gene and protein expression levels were increased. Furthermore, E. coli LPS activated the Wnt/β-catenin signaling pathway and decreased rBMSC osteogenesis, but these effects were attenuated by Sema3A. In conclusion, Sema3A could protect BMSCs from LPS-mediated inhibition of osteogenic differentiation in inflammatory environments by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhaoze Sun
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Kaixian Yan
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shuang Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xijiao Yu
- Department of Endodontics, Jinan Stomatological Hospital, No. 101 Jingliu Road, Jinan, 250001, Shandong, China
| | - Jingyi Xu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jinhua Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Cheeloo College of Medicine, No .44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Regenerative Endodontic Management of an Immature Molar Using Calcium Hydroxide and Triple Antibiotic Paste: a Two-Year Follow-Up. Case Rep Dent 2020; 2020:9025847. [PMID: 32095292 PMCID: PMC7035542 DOI: 10.1155/2020/9025847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
The regenerative endodontic procedure (REP) is considered a viable treatment option for immature teeth with necrotic pulp and periapical radiolucency which can facilitate continued root formation. In this report, an immature necrotic mandibular molar received REP in three appointments wherein chemomechanical debridement was performed with a sequential application of nonsetting calcium hydroxide (in the whole canal) and triple antibiotics paste (in the root's middle third) dressings in the first and second appointments, respectively. In the third appointment, blood clots were created in the root canals. MTA was placed over the blood clots and the tooth was restored with a composite filling and stainless-steel crown. Recall appointments were performed for two years where the tooth was deemed asymptomatic clinically and a complete root formation with significant periapical healing was evident radiographically. More cases are required to warrant the feasibility of this disinfection protocol.
Collapse
|
5
|
Sakamoto E, Kido JI, Takagi R, Inagaki Y, Naruishi K, Nagata T, Yumoto H. Advanced glycation end-product 2 and Porphyromonas gingivalis lipopolysaccharide increase sclerostin expression in mouse osteocyte-like cells. Bone 2019; 122:22-30. [PMID: 30735798 DOI: 10.1016/j.bone.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Sclerostin is a secreted glycoprotein that is mainly expressed in osteocytes, exerts negative effects on bone formation, and is present at elevated levels in diabetes mellitus (DM). Periodontitis is an infectious disease caused by periodontopathic bacteria, a complication of DM, and sometimes associated with severe inflammation and alveolar bone resorption. Advanced glycation end-products (AGEs) are a major pathogen in DM complications and adversely influence periodontitis in DM patients. In the present study, the effects of AGE2 and Porphyromonas gingivalis lipopolysaccharide (P-LPS) on the expression of sclerostin in mouse osteocyte-like cells (MLO-Y4-A2 cells) and its function in osteoblast differentiation were investigated. AGE2 and P-LPS up-regulated the expressions of receptor of AGE (RAGE) and Toll-like receptor 2 (TLR2), respectively, and significantly up-regulated that of sclerostin and interleukin 6 (IL-6) in osteocytes. Sclerostin, RAGE and TLR2 levels were synergistically increased by AGE2 and P-LPS. The siRNAs of RAGE and TLR2 significantly inhibited AGE2- and P-LPS-induced sclerostin expression. AGE2 up-regulated sclerostin expression in osteocyte-like cells via the RAGE, ERK and JNK, and NF-κB signal pathways. On the other hand, P-LPS elevated sclerostin levels via the TLR2, JNK and p38, and NF-κB signal pathways. When osteocytes pre-treated with AGE2 and P-LPS and osteoblastic cells (MC3T3-E1) were co-cultured in the medium with a sclerostin-neutralizing antibody, AGE2- and P-LPS-induced decreases in alkaline phosphatase activity and Runx2 expression in osteoblastic cells were significantly inhibited by the sclerostin-neutralizing antibody. These results suggest that AGE2 and P-LPS influence bone metabolism and inflammation through the regulation of sclerostin expression, and may aggravate periodontitis with DM.
Collapse
Affiliation(s)
- Eijiro Sakamoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Ryosuke Takagi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Inagaki
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
6
|
Kim H, Kim C, Kook KE, Yanti, Choi S, Kang W, Hwang JK. Inhibitory Effects of Standardized Boesenbergia pandurata Extract and Its Active Compound Panduratin A on Lipopolysaccharide-Induced Periodontal Inflammation and Alveolar Bone Loss in Rats. J Med Food 2018; 21:961-970. [DOI: 10.1089/jmf.2017.4155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Haebom Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Changhee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kyo Eun Kook
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Yanti
- Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University, Jakarta, Indonesia
| | - Seungmok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
7
|
Yu Y, Li X, Mi J, Qu L, Yang D, Guo J, Qiu L. Resveratrol Suppresses Matrix Metalloproteinase-2 Activation Induced by Lipopolysaccharide in Mouse Osteoblasts via Interactions with AMP-Activated Protein Kinase and Suppressor of Cytokine Signaling 1. Molecules 2018; 23:molecules23092327. [PMID: 30213073 PMCID: PMC6225262 DOI: 10.3390/molecules23092327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/18/2022] Open
Abstract
Porphyromonas endodontalis (P. endodontalis) lipopolysaccharide (LPS) is associated with the progression of bone resorption in periodontal and periapical diseases. Matrix metalloproteinase-2 (MMP-2) expression and activity are elevated in apical periodontitis and have been suggested to participate in bone resorption. Therefore, inhibiting MMP-2 activation may be considered a therapeutic strategy for treating apical periodontitis. Resveratrol is a natural non-flavonoid polyphenol that has been reported to have antioxidant, anti-cancer, and anti-inflammatory properties. However, the capacity of resveratrol to protect osteoblast cells from P. endodontalis LPS insults and the mechanism of its inhibitory effects on MMP-2 activation is poorly understood. Here, we demonstrate that cell viability is unchanged when 10 mg L−1P. endodontalis LPS is used, and MMP-2 expression is drastically induced by P. endodontalis LPS in a concentration- and time-dependent manner. Twenty micromolar resveratrol did not reduce MC3T3-E1 cell viability. Resveratrol increased AMP-activated protein kinase (AMPK) phosphorylation, and Compound C, a specific AMPK inhibitor, partially abolished the resveratrol-mediated phosphorylation of AMPK. In addition, AMPK inhibition blocked the effects of resveratrol on MMP-2 expression and activity in LPS-induced MC3T3-E1 cells. Treatment with resveratrol also induced suppressor of cytokine signaling 1 (SOCS1) expression in MC3T3-E1 cells. SOCS1 siRNA negated the inhibitory effects of resveratrol on LPS-induced MMP-2 production. Additionally, resveratrol-induced SOCS1 upregulation was reduced by treatment with compound C. These results demonstrate that AMPK and SOCS1 activation are important signaling events during resveratrol-mediated inhibition of MMP-2 production in response to LPS in MC3T3-E1 cells, and there is crosstalk between AMPK and SOCS1 signaling.
Collapse
Affiliation(s)
- Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
- Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, China.
| | - Xiaolin Li
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Jing Mi
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China.
- Liaoning Province Key Laboratory of Oral Diseases, Shenyang 110002, China.
| |
Collapse
|
8
|
Qu L, Yu Y, Qiu L, Yang D, Yan L, Guo J, Jahan R. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts. J Oral Microbiol 2017; 9:1317578. [PMID: 28473882 PMCID: PMC5405711 DOI: 10.1080/20002297.2017.1317578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.
Collapse
Affiliation(s)
- Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lu Yan
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | | |
Collapse
|
9
|
Herath TDK, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts. Sci Rep 2016; 6:29829. [PMID: 27538450 PMCID: PMC4990928 DOI: 10.1038/srep29829] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022] Open
Abstract
Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis.
Collapse
Affiliation(s)
- Thanuja D K Herath
- National Dental Centre Singapore, Singapore.,Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | | - Cun-Yu Wang
- School of Dentistry, University of California Los Angeles, Los Angeles, USA
| | - Yu Wang
- Department of Pharmacology &Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Papp T, Hollo K, Meszar-Katona E, Nagy Z, Polyak A, Miko E, Bai P, Felszeghy S. TLR signalling can modify the mineralization of tooth germ. Acta Odontol Scand 2016; 74:307-14. [PMID: 26763602 DOI: 10.3109/00016357.2015.1130853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this work is to investigate the possible role of Toll-like receptor 4 (TLR4) during the development of mouse tooth germ. TLR4 is well known to inhibit mineralization and cause inflammation in mature odontoblasts and dental pulp cells. However, unlike these pathological functions of TLR4, little is known about the developmental function(s) of TLR4 during tooth development. MATERIALS AND METHODS TLR4 expression was studied via Western blot in developing lower mouse incisors from E13.5 to E18.5. To generate functional data about the effects of TLR4, a specific agonist (LPS) was applied to the medium of in vitro tooth germ cultures, followed by Western blot, histochemical staining, ELISA assay, in situ hybridization and RT-qPCR. RESULTS Increased accumulation of biotin-labelled LPS was detected in the enamel organ and in preodontoblasts. LPS treatment induced degradation of the inhibitor molecule (IκB) of the NF-κB signalling pathway. However, no morphological alterations were detected in cultured tissue after LPS addition at the applied dosage. Activation of TLR4 inhibited the mineralization of enamel and dentin, as demonstrated by alizarin red staining and as decreased levels of collagen type X. mRNA expression of ameloblastin was elevated after LPS administration. CONCLUSION These results demonstrate that TLR4 may decrease the mineralization of hard tissues of the tooth germ and may trigger the maturation of ameloblasts; it can give valuable information to understand better congenital tooth abnormalities.
Collapse
Affiliation(s)
- Tamas Papp
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Krisztina Hollo
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Eva Meszar-Katona
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Zoltan Nagy
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Angela Polyak
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
| | - Edit Miko
- b Department of Medical Chemistry , University of Debrecen , Debrecen , Hungary
- c MTA-DE Lendület Laboratory of Cellular Metabolism Research Group , Debrecen , Hungary
- d Research Center for Molecular Medicine, University of Debrecen , Debrecen , Hungary
| | - Peter Bai
- b Department of Medical Chemistry , University of Debrecen , Debrecen , Hungary
- c MTA-DE Lendület Laboratory of Cellular Metabolism Research Group , Debrecen , Hungary
- d Research Center for Molecular Medicine, University of Debrecen , Debrecen , Hungary
| | - Szabolcs Felszeghy
- a Department of Anatomy, Histology and Embryology; Faculty of Medicine , University of Debrecen , Debrecen , Hungary
- e Department of Oral Anatomy, Faculty of Dentistry , University of Debrecen , Debrecen , Hungary
| |
Collapse
|
11
|
Dias Dos Santos PR, De Medeiros VP, Freire Martins de Moura JP, Eduardo da Silveira Franciozi C, Nader HB, Faloppa F. Effects of shock wave therapy on glycosaminoglycan expression during bone healing. Int J Surg 2015; 24:120-3. [DOI: 10.1016/j.ijsu.2015.09.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022]
|
12
|
Sakamoto E, Mihara C, Ikuta T, Inagaki Y, Kido J, Nagata T. Inhibitory effects of advanced glycation end-products and Porphyromonas gingivalis
lipopolysaccharide on the expression of osteoblastic markers of rat bone marrow cells in culture. J Periodontal Res 2015. [DOI: 10.1111/jre.12310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- E. Sakamoto
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - C. Mihara
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Ikuta
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Inagaki
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - J. Kido
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Nagata
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| |
Collapse
|
13
|
Aydin K, Ekinci FY, Korachi M. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts. Jundishapur J Microbiol 2015; 8:e17920. [PMID: 26034550 PMCID: PMC4449864 DOI: 10.5812/jjm.8(4)2015.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. OBJECTIVES This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. MATERIALS AND METHODS Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. RESULTS Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). CONCLUSIONS P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.
Collapse
Affiliation(s)
- Kubra Aydin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Fatma Yesim Ekinci
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - May Korachi
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Corresponding author: May Korachi, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey. Tel: +90-2165782653, Fax: +90-2165780829, E-mail:
| |
Collapse
|
14
|
Yu Y, Qiu L, Guo J, Yang D, Qu L, Yu J, Zhan F, Xue M, Zhong M. TRIB3 mediates the expression of Wnt5a and activation of nuclear factor-κB in Porphyromonas endodontalis lipopolysaccharide-treated osteoblasts. Mol Oral Microbiol 2015; 30:295-306. [PMID: 25601649 DOI: 10.1111/omi.12094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 12/25/2022]
Abstract
Porphyromonas endodontalis lipopolysaccharide (LPS) is considered to be correlated with the progression of bone resorption in periodontal and periapical diseases. Wnt5a has recently been implicated in inflammatory processes, but its role is unclear as a P. endodontalis LPS-induced mediator in osteoblasts. Tribbles homolog 3 (TRIB3) encodes a pseudokinase and has been linked to inflammation in certain situations. Here, we found that P. endodontalis LPS induced Wnt5a expression in a dose- and time-dependent manner and it also upregulated translocation, phosphorylation and transcriptional activity of nuclear factor-κB (NF-κB) in MC3T3-E1 cells. Bay 11-7082 blocked the translocation of NF-κB and Wnt5a expression induced by P. endodontalis LPS. Chromatin immunoprecipitation assay further established that induction of Wnt5a by P. endodontalis LPS was mediated through the NF-κB p65 subunit. Additionally, P. endodontalis LPS increased expression of TRIB3 in osteoblasts after 10 h simulated time. Overexpression of TRIB3 enhanced NF-κB phosphorylation and Wnt5a induction, whereas knockdown of TRIB3 inhibited NF-κB phosphorylation and Wnt5a expression in P. endodontalis LPS-stimulated osteoblasts. These results suggest that P. endodontalis LPS has the ability to promote the expression of Wnt5a in mouse osteoblasts, and this induction is mainly mediated by NF-κB pathway. TRIB3 seems to modulate the sustained expression of Wnt5a in osteoblasts stimulated by P. endodontalis LPS, as well as regulating NF-κB phosphorylation.
Collapse
Affiliation(s)
- Y Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - L Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - J Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - D Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - L Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - J Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - F Zhan
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - M Xue
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - M Zhong
- Department of Oral Pathology, Central Laboratory, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Uehara O, Abiko Y, Saitoh M, Miyakawa H, Nakazawa F. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 47:176-81. [DOI: 10.1016/j.jmii.2012.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
|
16
|
Mathisen GH, Ansteinsson V, Samuelsen JT, Becher R, Dahl JE, Bølling AK. TEGDMA and filler particles from dental composites additively attenuate LPS-induced cytokine release from the macrophage cell line RAW 264.7. Clin Oral Investig 2014; 19:61-9. [PMID: 24615298 DOI: 10.1007/s00784-014-1212-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/12/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Due to incomplete curing and material degradation, cells in the oral cavity may be exposed to monomers and filler particles from dental composite fillings. The objective of the present study was to investigate if combined exposures to particles and a methacrylate monomer from composite fillings resulted in additive effects on the macrophage immune response. MATERIAL AND METHODS Two filler particles, Nanosilica (12 nm) and Quartz (1 μm), were studied at concentrations 0.5-4 μg/cm(2), while the methacrylate monomer triethyleneglycol dimethacrylate (TEGDMA) was applied at 5 and 50 μM. RAW 264.7 macrophages were exposed to monomers and/or particles for 24 h, with a subsequent 24 h combined exposure to monomers and/or particles and the bacterial factor lipopolysaccharide (LPS) to stimulate an immune response. Release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were measured as well as the cellular viability. RESULTS Co-exposure to Nanosilica and Quartz resulted in an additive attenuation of the LPS-induced IL-1β release. Moreover, co-exposure to TEGDMA and both types of filler particles also resulted in an additive attenuation, although with a weak synergistic trend. The cellular viability and TNF-α release were not significantly affected by the exposures. CONCLUSION The present findings emphasize the necessity of considering effects of combined exposure to dental degradation products in future risk assessments. CLINICAL RELEVANCE Attenuated cytokine release could have implications for the macrophage immune response and result in impaired bacterial clearance. Further studies are necessary to determine implications for formation of dental biofilms and caries development.
Collapse
Affiliation(s)
- Gro H Mathisen
- Nordic Institute of Dental Materials AS, PO Box 3874, Ullevaal Stadion, 0805, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
17
|
Guo J, Yang D, Okamura H, Teramachi J, Ochiai K, Qiu L, Haneji T. Calcium Hydroxide Suppresses Porphyromonas endodontalis Lipopolysaccharide–induced Bone Destruction. J Dent Res 2014; 93:508-13. [DOI: 10.1177/0022034514526886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS–induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS–suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS–induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS–induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.
Collapse
Affiliation(s)
- J. Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - D. Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - H. Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - J. Teramachi
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - K. Ochiai
- Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - L. Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - T. Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
18
|
Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol 2013; 59:167-75. [PMID: 24370188 DOI: 10.1016/j.archoralbio.2013.11.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/07/2013] [Accepted: 11/16/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) induces pro-inflammatory cytokines, such as interleukin-1 β (IL-1β), IL-6, and IL-8, which induce periodontal tissue destruction. Periodontal ligament stem cells (PDLSCs) play an important role in periodontal tissue regeneration and are expected to have future applications in cellular therapies for periodontitis. However, no studies have examined the effects of P. gingivalis LPS on PDLSCs. The aim of this study was to investigate how P. gingivalis LPS affects the osteoblastic differentiation and pro-inflammatory cytokine production of PDLSCs. DESIGN PDLSCs were obtained from healthy adult human mandibular third molars. The identification of PDLSCs was confirmed by immunohistochemical evaluations of the mesenchymal stem cell markers STRO-1 and SSEA-4. Cell proliferation and osteoblastic differentiation were investigated by culturing the PDLSCs in a normal or osteogenic medium with P. gingivalis LPS (0, 1, or 10μg/mL) and then measuring the alkaline phosphatase (ALP) activity and the production of collagen type 1 Alpha 1 (COL1A1), osteocalcin production, and mineralisation. Additionally, we examined the production of IL-1β, IL-6, and IL-8 in the PDLSCs. RESULTS P. gingivalis LPS inhibited the ALP activity, COL1A1 and osteocalcin production, and mineralisation in the PDLSCs, which are positive for STRO-1 and SSEA-4. P. gingivalis LPS also promoted cell proliferation and produced IL-1β, IL-6, and IL-8. CONCLUSIONS This study provides the first findings that P. gingivalis LPS inhibits osteoblastic differentiation and induces pro-inflammatory cytokines in PDLSCs. These findings will help clarify the relationship between periodontitis and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hirohito Kato
- Department of Oral Pathology, Osaka Dental University, Osaka, Japan.
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Kazuya Tominaga
- Department of Oral Pathology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Akio Tanaka
- Department of Oral Pathology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
19
|
Sloan AJ, Taylor SY, Smith EL, Roberts JL, Chen L, Wei XQ, Waddington RJ. A novel ex vivo culture model for inflammatory bone destruction. J Dent Res 2013; 92:728-34. [PMID: 23857868 DOI: 10.1177/0022034513495240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pathological alterations in the balance of bone metabolism are central to the progression of inflammatory bone diseases such as periodontal disease. We have developed and characterized a novel ex vivo murine mandible model of inflammatory bone destruction. Slices of mandible were cultured for 14 days in the presence or absence of P. gingivalis lipopolysaccharide (LPS) or pro-inflammatory cytokines. Following culture, cell viability and tissue histomorphometry were assessed with quantification of matrix proteins, resident osteoclasts, ligament cells, monocytes, macrophages, and neutrophils. In the absence of inflammatory factors, culture viability, osteoclasts, and matrix components were maintained. LPS or TNFα stimulation demonstrated an increase in cellular proliferation, monocyte cells, osteoclast differentiation, and matrix degradation. Pathophysiological bone metabolism can be induced via exposure to LPS and direct influence of TNFα within the model despite the absence of systemic circulation, providing a model for inflammatory bone destruction and investigation of the effects of novel therapeutics.
Collapse
Affiliation(s)
- A J Sloan
- Mineralised Tissue Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bølling AK, Samuelsen JT, Morisbak E, Ansteinsson V, Becher R, Dahl JE, Mathisen GH. Dental monomers inhibit LPS-induced cytokine release from the macrophage cell line RAW264.7. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Sloan AJ, Lynch CD. Dental tissue repair: novel models for tissue regeneration strategies. Open Dent J 2012; 6:214-9. [PMID: 23308085 PMCID: PMC3540382 DOI: 10.2174/1874210601206010214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/10/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023] Open
Abstract
Studies have shown that dentin matrices contain reservoirs of bioactive molecules capable of directing tissue repair. Elucidating the release mechanisms of such endogenous growth factors will enhance our understanding of dentinpulp regeneration and support the development of novel treatment modalities to enhance dentin repair following trauma and disease. Current clinical practice using new materials which are perceived to maintain pulpal viability require biological evidence to assess their therapeutic benefit and there is a need for better effective methods of assessing therapeutic approaches to improving dentin regeneration at the cellular and tissue level. Experimental modelling of dentin regeneration is hampered by the lack of suitable models. In vivo and in vitro studies have yielded considerable information on the processes taking place, but are limited, due to the cost, ethics and lack of cell/matrix interactions. Novel organotypic models, whereby cells and tissues are cultured in situ may provide a more suitable model system to facilitate dental tissue engineering and regeneration.
Collapse
Affiliation(s)
- Alastair J Sloan
- Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF15 8AZ, UK ; Mineralised Tissue Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Heath Park Cardiff, CF15 8AZ, UK
| | | |
Collapse
|
22
|
de Souza Merli LA, de Medeiros VP, Toma L, Reginato RD, Katchburian E, Nader HB, Faloppa F. The Low Level Laser Therapy Effect on the Remodeling of Bone Extracellular Matrix. Photochem Photobiol 2012; 88:1293-301. [DOI: 10.1111/j.1751-1097.2012.01172.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Sun Y, Li H, Yang MF, Shu W, Sun MJ, Xu Y. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli. PLoS One 2012; 7:e39224. [PMID: 22723968 PMCID: PMC3377652 DOI: 10.1371/journal.pone.0039224] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/17/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and Escherichia coli (E. coli) LPS in murine peritoneal macrophages. METHODOLOGY/PRINCIPAL FINDINGS We studied the cytokine production (TNF-α and IL-10) and Toll-like receptor 2, 4 (TLR2, 4) gene and protein expressions in peritoneal macrophages from young (2-month-old) and middle-aged (12-month-old) ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05), and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05). In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05). CONCLUSIONS/SIGNIFICANCE Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Hui Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Mi-Fang Yang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wei Shu
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Meng-Jun Sun
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Stomatology Hospital affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
He W, Qu T, Yu Q, Wang Z, Wang H, Zhang J, Smith AJ. Lipopolysaccharide enhances decorin expression through the Toll-like receptor 4, myeloid differentiating factor 88, nuclear factor-kappa B, and mitogen-activated protein kinase pathways in odontoblast cells. J Endod 2012; 38:464-9. [PMID: 22414830 DOI: 10.1016/j.joen.2011.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Lipopolysaccharide (LPS) has been shown to regulate the function of odontoblasts. However, the molecular mechanisms of the effect of LPS on odontoblasts are poorly understood. Decorin (DCN), one of the major matrix proteoglycans, is known to affect the mineralization of teeth. In this study, we investigated whether LPS can regulate the expression of DCN in odontoblasts and determined the intracellular signaling pathways triggered by LPS. METHODS The DCN messenger RNA and protein expression changes in mouse odontoblast-lineage cells (OLCs) were detected by real-time polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). Whether TLR4, myeloid differentiating factor 88 (MyD88), nuclear factor-kappa B (NF-κB), or mitogen-activated protein kinase (MAPK) pathways were involved in the LPS-induced DCN expression was determined by examined real-time PCR, ELISA, and luciferase activity assay. The activation of extracellular signal-regulated kinase (ERK), p38, and JNK in OLCs was measured by Western blot analysis. RESULTS We found that the mouse OLCs expressed DCN. DCN messenger RNA was rapidly induced by LPS in a time- and dose-dependent manner. Pretreatment with a MyD88 inhibitory peptide, a TLR4 antibody, or a specific inhibitor for NF-κB or I Kappa B alpha (IκBα) significantly inhibited LPS-induced DCN expression. Moreover, the LPS-mediated increase in κB-luciferase activity in OLCs was suppressed by the overexpression of dominant negative mutants of TLR4, MyD88, and IκBα but not by a dominant negative mutant of TLR2. In addition, LPS stimulation activated the ERK, p38, and JNK MAPK pathways. The pretreatment of OLCs with specific inhibitors of the ERK, p38, and JNK MAPK pathways markedly offset the LPS-induced up-regulation of DCN expression. CONCLUSIONS Our results show that LPS stimulation can up-regulate the gene expression of DCN via the TLR4, MyD88, NF-κB, and MAPK pathways in odontoblast cells.
Collapse
Affiliation(s)
- Wenxi He
- Department of Conservative Dentistry, School of Dentistry, The Fourth Military Medical University, Xian, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Popovic ZV, Wang S, Papatriantafyllou M, Kaya Z, Porubsky S, Meisner M, Bonrouhi M, Burgdorf S, Young MF, Schaefer L, Gröne HJ. The proteoglycan biglycan enhances antigen-specific T cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6217-26. [PMID: 22095710 PMCID: PMC3428142 DOI: 10.4049/jimmunol.1003478] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biglycan is a proteoglycan ubiquitously present in extracellular matrix of a variety of organs, including heart, and it was reported to be overexpressed in myocardial infarction. Myocardial infarction may be complicated by perimyocarditis through unknown mechanisms. Our aim was to investigate the capacity of TLR2/TLR4 ligand biglycan to enhance the presentation of specific Ags released upon cardiomyocyte necrosis. In vitro, OVA-pulsed bone marrow-derived dendritic cells from wild-type (WT; C57BL/6) and TLR2-, TLR4-, MyD88-, or TRIF-deficient mice were cotreated with LPS, biglycan, or vehicle and incubated with OVA-recognizing MHC I- or MHC II-restricted T cells. Biglycan enhanced OVA-specific cross-priming by >80% to MHC I-restricted T cells in both TLR2- and TLR4-pathway-dependent manners. Accordingly, biglycan-induced cross-priming by both MyD88- and TRIF-deficient dendritic cells (DCs) was strongly diminished. OVA-specific activation of MHC II-restricted T cells was predominantly TLR4 dependent. Our first in vivo correlate was a model of experimental autoimmune perimyocarditis triggered by injection of cardiac Ag-pulsed DCs (BALB/c). Biglycan-treated DCs triggered perimyocarditis to a comparable extent and intensity as LPS-treated DCs (mean scores 1.3 ± 0.3 and 1.5 ± 0.4, respectively). Substitution with TLR4-deficient DCs abolished this effect. In a second in vivo approach, WT and biglycan-deficient mice were followed 2 wk after induction of myocardial infarction. WT mice demonstrated significantly greater myocardial T lymphocyte infiltration in comparison with biglycan-deficient animals. We concluded that the TLR2/4 ligand biglycan, a component of the myocardial matrix, may enhance Ag-specific T cell priming, potentially via MyD88 and TRIF, and stimulate autoimmune perimyocarditis.
Collapse
Affiliation(s)
- Zoran V. Popovic
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Shijun Wang
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | | | - Ziya Kaya
- Department of Internal Medicine III, University Hospital Heidelberg, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Stefan Porubsky
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Maria Meisner
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Mahnaz Bonrouhi
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Sven Burgdorf
- Institutes of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Marian F. Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, USA
| | - Liliana Schaefer
- Department of Pharmacology and Toxicology, Goethe University Clinic, Frankfurt am Main, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Karygianni L, Wiedmann-Al-Ahmad M, Finkenzeller G, Sauerbier S, Wolkewitz M, Hellwig E, Al-Ahmad A. Enterococcus faecalis affects the proliferation and differentiation of ovine osteoblast-like cells. Clin Oral Investig 2011; 16:879-87. [DOI: 10.1007/s00784-011-0563-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 04/26/2011] [Indexed: 01/12/2023]
|
27
|
Zhang W, Ju J, Rigney T, Tribble GD. Fimbriae of Porphyromonas gingivalis are important for initial invasion of osteoblasts, but not for inhibition of their differentiation and mineralization. J Periodontol 2010; 82:909-16. [PMID: 21189086 DOI: 10.1902/jop.2010.100501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is etiologically associated with chronic periodontitis. The major fimbriae of this periodontal pathogen mediate binding to host gingival epithelial cells and fibroblasts, a critical function in the initiation of periodontitis. However, the role of fimbriae in P. gingivalis-osteoblast interactions remains unknown. In the present study, the involvement of major fimbriae in the initial and long-term interactions between P. gingivalis and osteoblasts is investigated. METHODS Primary mouse calvarial osteoblast cultures were established and inoculated with P. gingivalis ATCC 33277 or YPF1, a major fimbriae-deficient mutant of P. gingivalis. Confocal microscopy images were acquired to assess bacterial invasion. DNA content measurement, real-time polymerase chain reaction, and alizarin red S staining and calcium content analysis were used to study the impact of bacteria on the proliferation, differentiation, and mineralization of osteoblasts, respectively. RESULTS Compared to the parent strain, YPF1 was significantly reduced in invasion of osteoblasts after 3 hours interaction. However, extended culture of infected osteoblasts did not reveal significant differences in persistence between the two strains. Proliferation of osteoblasts was not affected by either strain, and differentiation and mineralization of osteoblasts were inhibited by both strains to comparable levels. CONCLUSION This study reveals that major fimbriae are involved in the initial invasion of osteoblasts by P. gingivalis, but are not essential for the subsequent inhibition of osteoblast differentiation and mineralization in long-term culture.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic Sciences, University of Texas Dental Branch at Houston, Houston, TX, USA.
| | | | | | | |
Collapse
|
28
|
Shi Y, Yadav S, Wang F, Wang H. Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:748-756. [PMID: 20391117 DOI: 10.1080/15287391003614042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Amorphous silica engineered nanoparticles (ENP) are used for drug delivery and food additive under current regulations. Although the adverse effects of amorphous silica ENP may be negligible, contamination by bacterium products may enhance the toxic potential of these so-called safe products. Lipopolysaccharide (LPS), an endotoxin component generated by gram-negative bacteria, is a potential contaminant of amorphous silica ENP due to its ubiquitous presence in the environment. The combined effects of amorphous silica ENP and LPS are therefore of particular concern. In this study, A549 cells were exposed to amorphous silica ENP in combination with LPS for comparison with the cells treated with ENP. Measurements of MTT assay and lactate dehydrogenase (LDH) activity indicated that the toxicity of amorphous silica ENP was low but co-treatment of the cells with LPS significantly enhanced this toxicity. Decreased cell viability and increased LDH activity release occurred earlier and at lower concentration levels in co-treated cells. Co-treatment of LPS with amorphous silica ENP might also enhance the increase in oxidative stress produced by amorphous silica ENP. However, there were no detectable changes in nitric oxide generation and 8-hydroxy-2-deoxy guanosine formation in the cells treated with either ENP or ENP plus LPS, indicating low effect on oxidative DNA damage. These results showed that LPS may enhance the oxidative stress induced by amorphous silica ENP to initiate cytotoxicity of these engineered nanoparticles.
Collapse
Affiliation(s)
- Yongli Shi
- Environmental Health Science & Cancer Center, Tulane University, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
29
|
Fleischmannova J, Matalova E, Sharpe PT, Misek I, Radlanski RJ. Formation of the tooth-bone interface. J Dent Res 2009; 89:108-15. [PMID: 20042740 DOI: 10.1177/0022034509355440] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Not only are teeth essential for mastication, but also missing teeth are considered a social handicap due to speech and aesthetic problems, with a resulting high impact on emotional well-being. Several treatment procedures are currently available for tooth replacement with mostly inert prosthetic materials and implants. Natural tooth substitution based on copying the developmental process of tooth formation is particularly challenging and creates a rapidly developing area of molecular dentistry. In any approach, functional interactions among the tooth, the surrounding bone, and the periodontium must be established. Therefore, recent research in craniofacial genetics searches for mechanisms responsible for correct cell and tissue interactions, not only within a specific structure, but also in the context of supporting structures. A tooth crown that is not functionally anchored to roots and bone is useless. This review aims to summarize the developmental and tissue homeostatic aspects of the tooth-bone interface, from the initial patterning toward tooth eruption and lifelong interactions between the tooth and its surrounding alveolar bone.
Collapse
Affiliation(s)
- J Fleischmannova
- Institute of Animal Physiology and Genetics CAS v.v.i., Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
30
|
Giannelli M, Bani D, Tani A, Pini A, Margheri M, Zecchi-Orlandini S, Tonelli P, Formigli L. In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol 2009; 80:977-84. [PMID: 19485829 DOI: 10.1902/jop.2009.080648] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The bacterial endotoxin lipopolysaccharide (LPS) represents a prime pathogenic factor of peri-implantitis because of its ability to adhere tenaciously to dental titanium implants. Despite this, the current therapeutic approach to this disease remains based mainly on bacterial decontamination, paying little attention to the neutralization of bioactive bacterial products. The purpose of the present study was to evaluate whether irradiation with low-energy neodymium-doped:yttrium, aluminum, and garnet (Nd:YAG) laser, in addition to the effects on bacterial implant decontamination, was capable of attenuating the LPS-induced inflammatory response. METHODS RAW 264.7 macrophages or human umbilical vein endothelial cells were cultured on titanium disks coated with Porphyromonas gingivalis LPS, subjected or not to irradiation with the Nd:YAG laser, and examined for the production of inflammatory cytokines and the expression of morphologic and molecular markers of cell activation. RESULTS Laser irradiation of LPS-coated titanium disks significantly reduced LPS-induced nitric oxide production and cell activation by the macrophages and strongly attenuated intercellular adhesion molecule-1 and vascular cell adhesion molecule expression, as well as interleukin-8 production by the endothelial cells. CONCLUSION By blunting the LPS-induced inflammatory response, Nd:YAG laser irradiation may be viewed as a promising tool for the therapeutic management of peri-implantitis.
Collapse
Affiliation(s)
- Marco Giannelli
- Department of Odontostomatology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|