1
|
Hashimoto T, Okuno S. The big four in the pathogenesis and pathophysiology of prurigo nodularis: Interplay among type 2 inflammation, epidermal hyperplasia, dermal fibrosis, and itch from neuroimmune dysregulation. Clin Dermatol 2025:S0738-081X(25)00093-8. [PMID: 40118300 DOI: 10.1016/j.clindermatol.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Prurigo nodularis (PN) is a distinct inflammatory dermatosis. It is characterized by intensely pruritic, firm nodules, typically 1 to 2 cm in diameter, which usually develop on the extensor surfaces of the extremities. Histopathologically, the following characteristics are observed in PN lesions: (1) dermal cellular infiltrates composed of type 2 inflammation-associated immune cells with lesional overexpression of type 2 cytokines (including interleukin [IL]-4, IL-13, and IL-31), (2) dermal fibrosis, and (3) epidermal hyperplasia with hyperkeratosis. Additionally, functional and structural alterations of cutaneous sensory nerve fibers profoundly contribute to itch in cooperation with type 2 inflammation. This abnormal interaction is referred to as neuroimmune dysregulation. The scratching behavior induced by itching from neuroimmune dysregulation initiates the development of prurigo nodules. This distinctive pathogenic feature of "itch-first" in PN is distinct from "inflammation-first" in atopic dermatitis, where the skin initially exhibits type 2 inflammation, which is subsequently followed by itching. The interplay between the four elements, namely type 2 inflammation, epidermal hyperplasia, dermal fibrosis, and itch resulting from neuroimmune dysregulation, appears to be pivotal in the pathogenesis and pathophysiology of PN.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan.
| | - Satoshi Okuno
- Department of Dermatology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
2
|
Lee JH, Lee J, Dej-adisai S, Hwang JS. Piperine Regulates Melanogenesis through ERK Activation and Proteasomal Degradation of MITF. Biomol Ther (Seoul) 2025; 33:408-414. [PMID: 39933952 PMCID: PMC11893493 DOI: 10.4062/biomolther.2024.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 02/13/2025] Open
Abstract
Melanin is a bio-pigment molecule synthesized by melanocytes. Its role is to shield the skin from ultraviolet radiation. Nonetheless, aberrant melanin production, whether excessive or deficient, can lead to conditions such as vitiligo, freckles, melanocytic nevi, and even melanoma. The biosynthetic pathway of melanin is known as melanogenesis, which is regulated by various transcription factors and enzymatic processes. Piperine (PPN), an alkaloid compound extracted from Piper retrofractum Vahl., was investigated for its potential anti-fungal and anti-inflammatory effects. Our hypothesis centered on the inhibition of melanin biosynthesis in response to PPN treatment. Subsequently, it was observed that PPN treatment resulted in a dose-dependent reduction in melanin production, accompanied by a decrease in tyrosinase activity. Furthermore, PPN was found to downregulate the protein levels of key melanogenesis-related genes. Additionally, PPN was observed to elevate the phosphorylation levels of ERK. To assess the role of ERK signaling in PPN-induced melanogenesis regulation, PD98059, an ERK inhibitor, was used. When Melan-A cells were treated with PD98059, the reduced expression level of MITF and melanin content induced by piperine were restored. Additionally, phosphorylation of ERK increased the phosphorylation of MITF at Ser73. This phosphorylated MITF leads to ubiquitination, and ultimately, the protein level of MITF decreases through proteasomal degradation. Likewise, when Melan-A cells were treated with MG132, a proteasomal inhibitor, the reduced expression level of MITF and melanin content induced by piperine were restored. Consequently, PPN can be a potential candidate for application as a skin whitening agent or in formulations to mitigate hyperpigmentation.
Collapse
Affiliation(s)
- Jun Hyeong Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jieun Lee
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sukanya Dej-adisai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Jae Sung Hwang
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Wang F, Ma W, Fan D, Hu J, An X, Wang Z. The biochemistry of melanogenesis: an insight into the function and mechanism of melanogenesis-related proteins. Front Mol Biosci 2024; 11:1440187. [PMID: 39228912 PMCID: PMC11368874 DOI: 10.3389/fmolb.2024.1440187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Melanin is an amino acid derivative produced by melanocyte through a series of enzymatic reactions using tyrosinase as substrate. Human skin and hair color is also closely related to melanin, so understanding the mechanisms and proteins that produce melanin is very important. There are many proteins involved in the process of melanin expression, For example, proteins involved in melanin formation such as p53, HNF-1α (Hepatocyte nuclear factor 1α), SOX10 (Sry-related HMg-Box gene 10) and pax3 (paired box gene 3), MC1R(Melanocortin 1 Receptor), MITF (Microphthalmia-associated transcription factor), TYR (tyrosinase), TYRP1 (tyrosinase-related protein-1), TYRP2 (tyrosinase-related protein-2), and can be regulated by changing their content to control the production rate of melanin. Others, such as OA1 (ocular albinism type 1), Par-2 (protease-activated receptor 2) and Mlph (Melanophilin), have been found to control the transfer rate of melanosomes from melanocytes to keratinocytes, and regulate the amount of human epidermal melanin to control the depth of human skin color. In addition to the above proteins, there are other protein families also involved in the process of melanin expression, such as BLOC, Rab and Rho. This article reviews the origin of melanocytes, the related proteins affecting melanin and the basic causes of related gene mutations. In addition, we also summarized the active ingredients of 5 popular whitening cosmetics and their mechanisms of action.
Collapse
Affiliation(s)
- Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Wenjing Ma
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Dongjie Fan
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Jing Hu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Shanghai Jiyan Bio-Pharmaceutical Co., Ltd., Shanghai, China
| | - Zuding Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, China
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, China
| |
Collapse
|
4
|
Chun H, Lee H, Kim J, Yeo H, Hyung K, Song D, Kim M, Jun SH, Kang NG. Efficacy of Vitamin B12 and Adenosine Triphosphate in Enhancing Skin Radiance: Unveiled with a Drug-Target Interaction Deep Learning-Based Model. Curr Issues Mol Biol 2024; 46:9082-9092. [PMID: 39194754 DOI: 10.3390/cimb46080537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Skin radiance is crucial for enhancing facial attractiveness and is negatively affected by factors like hyperpigmentation and aging-related changes. Current treatments often lack comprehensive solutions for improving skin radiance. This study aimed to develop a cosmetic formula that enhances skin radiance by reducing hyperpigmentation and improving skin regeneration by targeting specific receptors-the endothelin receptor type B (EDNRB) for hyperpigmentation and the adiponectin receptor 1 (ADIPOR1) for sagging and wrinkles. To achieve this, we used artificial intelligence technologies to screen and select ingredients with an affinity for EDNRB and ADIPOR1. Vitamin B12 (VitB12) was identified as a molecule that targets EDNRB, which is involved in melanogenesis. Adenosine triphosphate (ATP) targets ADIPOR1, which is associated with skin regeneration. VitB12 successfully inhibited intracellular calcium elevation and melanogenesis induced by endothelin-1. In contrast, ATP increased the mRNA expression of collagen and elastin and promoted wound healing. Moreover, the VitB12 and ATP complex significantly increased the expression of hyaluronan synthases, which are crucial for skin hydration. Furthermore, in human participants, the application of the VitB12 and ATP complex to one-half of the face significantly improved skin radiance, elasticity, and texture. Our findings provide valuable insights for the development of skincare formulations.
Collapse
Affiliation(s)
- Hyeyeon Chun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Hyejin Lee
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Jongwook Kim
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Hyerin Yeo
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Kyongeun Hyung
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Dayoung Song
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Moonju Kim
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea
| |
Collapse
|
5
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
6
|
RNA-Seq Reveals the Roles of Long Non-Coding RNAs (lncRNAs) in Cashmere Fiber Production Performance of Cashmere Goats in China. Genes (Basel) 2023; 14:genes14020384. [PMID: 36833312 PMCID: PMC9956036 DOI: 10.3390/genes14020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA being >200 nucleotides in length, and they are found to participate in hair follicle growth and development and wool fiber traits regulation. However, there are limited studies reporting the role of lncRNAs in cashmere fiber production in cashmere goats. In this study, Liaoning cashmere (LC) goats (n = 6) and Ziwuling black (ZB) goats (n = 6) with remarkable divergences in cashmere yield, cashmere fiber diameter, and cashmere color were selected for the construction of expression profiles of lncRNAs in skin tissue using RNA sequencing (RNA-seq). According to our previous report about the expression profiles of mRNAs originated from the same skin tissue as those used in the study, the cis and trans target genes of differentially expressed lncRNAs between the two caprine breeds were screened, resulting in a lncRNA-mRNA network. A total of 129 lncRNAs were differentially expressed in caprine skin tissue samples between LC goats and ZB goats. The presence of 2 cis target genes and 48 trans target genes for the differentially expressed lncRNAs resulted in 2 lncRNA-cis target gene pairs and 93 lncRNA-trans target gene pairs. The target genes concentrated on signaling pathways that were related to fiber follicle development, cashmere fiber diameter, and cashmere fiber color, including PPAR signaling pathway, metabolic pathways, fatty acid metabolism, fatty acid biosynthesis, tyrosine metabolism, and melanogenesis. A lncRNA-mRNA network revealed 22 lncRNA-trans target gene pairs for seven differentially expressed lncRNAs selected, of which 13 trans target genes contributed to regulation of cashmere fiber diameter, while nine trans target genes were responsible for cashmere fiber color. This study brings a clear explanation about the influences of lncRNAs over cashmere fiber traits in cashmere goats.
Collapse
|
7
|
Yang S, Zeng H, Jiang L, Fu C, Gao L, Zhang L, Zhang Y, Zhang X, Zhu L, Zhang F, Chen J, Huang J, Zeng Q. Melatonin reduces melanogenesis by inhibiting the paracrine effects of keratinocytes. Exp Dermatol 2023; 32:511-520. [PMID: 36620869 DOI: 10.1111/exd.14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte-mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin-treated HaCaT cells downregulated melanogenesis-related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin-treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET-1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET-1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yushan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Wang Y, Qi H. Natural Bioactive Compounds from Foods Inhibited Pigmentation Especially Potential Application of Fucoxanthin to Chloasma: a Mini-Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2148690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yida Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
9
|
Maeda K. Timeline of the Development of Skin-Lightening Active Ingredients in Japan. Molecules 2022; 27:molecules27154774. [PMID: 35897958 PMCID: PMC9369694 DOI: 10.3390/molecules27154774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Japanese pharmaceutical cosmetics, often referred to as quasi-drugs, contain skin-lightening active ingredients formulated to prevent sun-induced pigment spots and freckles. Their mechanisms of action include suppressing melanin production in melanocytes and promoting epidermal growth to eliminate melanin more rapidly. For example, arbutin and rucinol are representative skin-lightening active ingredients that inhibit melanin production, and disodium adenosine monophosphate and dexpanthenol are skin-lightening active ingredients that inhibit melanin accumulation in the epidermis. In contrast, oral administration of vitamin C and tranexamic acid in pharmaceutical products can lighten freckles and melasma, and these products are more effective than quasi-drugs. On the basis of their clinical effectiveness, skin-lightening active ingredients can be divided into four categories according to their effectiveness and adverse effects. This review discusses academic research and development regarding skin-lightening ingredients in Japan.
Collapse
Affiliation(s)
- Kazuhisa Maeda
- School of Bioscience and Biotechnology, Tokyo University of Technology 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan
| |
Collapse
|
10
|
Li J, Ba X, Li J, Li Y, Wu S, Jiang H, Zhang Q. MicroRNA-200a regulates skin pigmentation by targeting WNT5A and FZD4 in Cashmere goats. Res Vet Sci 2022; 147:68-73. [DOI: 10.1016/j.rvsc.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
|
11
|
Goenka S, Simon SR. Novel Chemically Modified Curcumin (CMC) Analogs Exhibit Anti-Melanogenic Activity in Primary Human Melanocytes. Int J Mol Sci 2021; 22:ijms22116043. [PMID: 34205035 PMCID: PMC8199869 DOI: 10.3390/ijms22116043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpigmentation is a dermatological condition characterized by the overaccumulation and/or oversecretion of melanin pigment. The efficacy of curcumin as an anti-melanogenic therapeutic has been recognized, but the poor stability and solubility that have limited its use have inspired the synthesis of novel curcumin analogs. We have previously reported on comparisons of the anti-melanogenic activity of four novel chemically modified curcumin (CMC) analogs, CMC2.14, CMC2.5, CMC2.23 and CMC2.24, with that of parent curcumin (PC), using a B16F10 mouse melanoma cell model, and we have investigated mechanisms of inhibition. In the current study, we have extended our findings using normal human melanocytes from a darkly pigmented donor (HEMn-DP) and we have begun to study aspects of melanosome export to human keratinocytes. Our results showed that all the CMCs downregulated the protein levels of melanogenic paracrine mediators, endothelin-1 (ET-1) and adrenomedullin (ADM) in HaCaT cells and suppressed the phagocytosis of FluoSphere beads that are considered to be melanosome mimics. All the three CMCs were similarly potent (except CMC2.14, which was highly cytotoxic) in inhibiting melanin production; furthermore, they suppressed dendricity in HEMn-DP cells. CMC2.24 and CMC2.23 robustly suppressed cellular tyrosinase activity but did not alter tyrosinase protein levels, while CMC2.5 did not suppress tyrosinase activity but significantly downregulated tyrosinase protein levels, indicative of a distinctive mode of action for the two structurally related CMCs. Moreover, HEMn-DP cells treated with CMC2.24 or CMC2.23 partially recovered their suppressed tyrosinase activity after cessation of the treatment. All the three CMCs were nontoxic to human dermal fibroblasts while PC was highly cytotoxic. Our results provide a proof-of-principle for the novel use of the CMCs for skin depigmentation, since at low concentrations, ranging from 5 to 25 µM, the CMCs (CMC2.24, CMC2.23 and CMC2.5) were more potent anti-melanogenic agents than PC and tetrahydrocurcumin (THC), both of which were ineffective at melanogenesis at similar doses, as tested in HEMn-DP cells (with PC being highly toxic in dermal fibroblasts and keratinocytes). Further studies to evaluate the efficacy of CMCs in human skin tissue and in vivo studies are warranted.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Correspondence:
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
Development of Pigmentation-Regulating Agents by Drug Repositioning. Int J Mol Sci 2021; 22:ijms22083894. [PMID: 33918792 PMCID: PMC8069425 DOI: 10.3390/ijms22083894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
Skin color is determined by the processes of melanin synthesis and distribution. Problems in various molecules or signaling pathways involved in melanin synthesis contribute to skin pigmentation defects. Several trials have been conducted on the production of pigmentation-regulating agents, and drug repositioning has emerged as a modern technique to identify new uses for existing drugs. Our research team has researched substances or drugs associated with pigmentation control and, as a result, nilotinib, sorafenib, and ICG-001 have been found to promote pigmentation, while 5-iodotubercidin inhibits pigmentation. Therefore, these substances or medications were suggested as potential therapeutics for pigmentation disorders by drug repositioning.
Collapse
|
13
|
The Vascular Component of Melasma: A Systematic Review of Laboratory, Diagnostic, and Therapeutic Evidence. Dermatol Surg 2021; 46:1642-1650. [PMID: 33252894 DOI: 10.1097/dss.0000000000002770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Melasma is a common acquired disorder of hyperpigmentation, classically manifesting as symmetric brown patches on the face. Although the exact pathogenesis is not fully understood, vascular abnormalities have been implicated in melasma. OBJECTIVE To evaluate the laboratory and clinical evidence regarding the safety and efficacy of antivascular agents for the treatment of melasma. METHODS A systematic review of PubMed, EMBASE, and Cochrane was conducted on May 13, 2020, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Original research articles investigating the role of vascularity and/or evaluating the use of antivascular therapeutics in melasma were included. Clinical recommendations were based on the American College of Physicians guidelines. RESULTS A total of 34 original research articles as follows were identified: 4 laboratory studies, 15 diagnostic studies, and 15 therapeutic studies. CONCLUSION There is promising evidence supporting the use of tranexamic acid and laser/light therapies to treat the vascular component of melasma, and more rigorous clinical trials are needed to validate their efficacy. Clinicians may consider treatment with one or more antivascular therapeutics in patients with melasma. Further research is warranted to characterize the role of cutaneous vascularization in melasma and may provide insights for novel therapies.
Collapse
|
14
|
Liu X, Li H, Cong X, Huo D, Cong L, Wu G. α-MSH-PE38KDEL Kills Melanoma Cells via Modulating Erk1/2/MITF/TYR Signaling in an MC1R-Dependent Manner. Onco Targets Ther 2020; 13:12457-12469. [PMID: 33299329 PMCID: PMC7721307 DOI: 10.2147/ott.s268554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background/Objective The immunotoxin α-MSH-PE38KDEL consisting of α-MSH and PE38KDEL showed high cytotoxicity on MSH receptor-positive melanoma cells, suggesting that α-MSH-PE38KDEL might be a potent drug for the treatment of melanoma. Herein, we explored whether the Erk1/2/MITF/TYR signaling, a verified target of α-MSH/MC1R, was involved in α-MSH-PE38KDEL-mediated cytotoxicity. Methods Human melanoma cell line A375, mouse melanoma cell line B16-F10, human breast cancer cell line MDA-MB-231 and human primary epidermal melanocytes (HEMa) with different expression levels of MC1R were used in this study. Cell apoptosis and viability were determined by using flow cytometry and MTT assays. Protein expressions were tested by Western blotting. Results The expression levels of MC1R in A375 and B16-F10 cells were significantly higher than that of MDA-MB-231 and HEMa. α-MSH-PE38KDEL treatment induced a significant inhibition in cell viability in A375 and B16-F10 cells, while showed no obvious influence in the viability of MDA-MB-231 and HEMa cells. However, knockdown of MC1R abolished α-MSH-PE38KDEL role in promoting cell apoptosis in A375 and B16-F10 cells, and upregulation of MC1R endowed α-MSH-PE38KDEL function to promote cell apoptosis in MDA-MB-231 and HEMa cells. Additionally, α-MSH-PE38KDEL treatment increased the phosphorylation levels of Erk1/2 and MITF (S73), and decreased MITF and TYR expressions in an MC1R-dependent manner. All of the treatments, including inhibition of Erk1/2 with PD98059, MC1R downregulation and MITF overexpression weakened the anti-tumor role of α-MSH-PE38KDEL in melanoma. Conclusion Collectively, this study indicates that α-MSH-PE38KDEL promotes melanoma cell apoptosis via modulating Erk1/2/MITF/TYR signaling in an MC1R-dependent manner.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China
| | - Hong Li
- Emergency Medical Department, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China
| | - Xianling Cong
- Tissue Bank, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China
| | - Da Huo
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China
| | - Lele Cong
- Department of Dermatology, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China
| | - Guangzhi Wu
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun City, Jilin Province 130033, People's Republic of China
| |
Collapse
|
15
|
Abstract
Several resorcinol derivatives were synthesized and their effects on the survival rate of B16 murine melanoma cells, melanin production, and tyrosinase activity were investigated with an aim to evaluate their skin whitening effect. Twelve resorcinol derivatives were synthesized by esterification with three functional groups (L-ascorb-6-yl, ethyl, and glyceryl) linked via four alkyl chains of varying lengths (n = 2–5) at the 4-position. The structures of the 12 resorcinol derivatives were confirmed by Nuclear Magnetic Resonance (NMR). The derivatives were added to B16 murine melanoma cells and the melanin contents in the cells and culture medium were measured. To measure the tyrosinase activity, the substrate L-DOPA was added to a mushroom-derived tyrosinase solution, and the inhibition of the tyrosinase activity was determined. At 10 µM, the resorcinol derivatives did not affect the survival of the B16 murine melanoma cells, but the melanin content was reduced. At 1 µM, the derivatives significantly inhibited the tyrosinase activity in the mushroom-derived tyrosinase solution. A plot of the inhibitory effect on melanin production against the cLogP value for each resorcinol derivative indicated that the highest inhibition occurred at a cLogP value of approximately 2. Therefore, these resorcinol derivatives are expected to serve as effective skin whitening agents.
Collapse
|
16
|
Jung JM, Noh TK, Jo SY, Kim SY, Song Y, Kim YH, Chang SE. Guanine Deaminase in Human Epidermal Keratinocytes Contributes to Skin Pigmentation. Molecules 2020; 25:molecules25112637. [PMID: 32517074 PMCID: PMC7321356 DOI: 10.3390/molecules25112637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/06/2023] Open
Abstract
Epidermal keratinocytes are considered as the most important neighboring cells that modify melanogenesis. Our previous study used microarray to show that guanine deaminase (GDA) gene expression is highly increased in melasma lesions. Hence, we investigated the role of GDA in skin pigmentation. We examined GDA expression in post-inflammatory hyperpigmentation (PIH) lesions, diagnosed as Riehl’s melanosis. We further investigated the possible role of keratinocyte-derived GDA in melanogenesis by quantitative PCR, immunofluorescence staining, small interfering RNA-based GDA knockdown, and adenovirus-mediated GDA overexpression. We found higher GDA positivity in the hyperpigmentary lesional epidermis than in the perilesional epidermis. Both UVB irradiation and stem cell factor (SCF) plus endothelin-1 (ET-1) were used, which are well-known melanogenic stimuli upregulating GDA expression in both keratinocyte culture alone and keratinocyte and melanocyte coculture. GDA knockdown downregulated melanin content, while GDA overexpression promoted melanogenesis in the coculture. When melanocytes were treated with UVB-exposed keratinocyte-conditioned media, the melanin content was increased. Also, GDA knockdown lowered SCF and ET-1 expression levels in keratinocytes. GDA in epidermal keratinocytes may promote melanogenesis by upregulating SCF and ET-1, suggesting its role in skin hyperpigmentary disorders.
Collapse
Affiliation(s)
- Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Tai Kyung Noh
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Soo Youn Jo
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Su Yeon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Young-Hoon Kim
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
- Correspondence: (Y.-H.K.); (S.E.C.); Tel.: +82-2-3010-4298 (Y.-H.K.); +82-2-3010-3460 (S.E.C.); Fax: +82-2-3010-2941 (Y.-H.K.); +82-2-486-7831 (S.E.C.)
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea; (J.M.J.); (T.K.N.); (S.Y.J.); (S.Y.K.)
- Correspondence: (Y.-H.K.); (S.E.C.); Tel.: +82-2-3010-4298 (Y.-H.K.); +82-2-3010-3460 (S.E.C.); Fax: +82-2-3010-2941 (Y.-H.K.); +82-2-486-7831 (S.E.C.)
| |
Collapse
|
17
|
Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I. The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res 2020; 33:778-787. [PMID: 32198977 DOI: 10.1111/pcmr.12878] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Vitiligo is the most common acquired pigmentary disorder, which afflicts 0.5%-1% of the world population, and is characterized by depigmented skin patches resulting from melanocyte loss. Vitiligo has a complex etiology and varies in its manifestations, progression, and response to treatment. It presents as an autoimmune disease, evidenced by circulating melanocyte-specific antibodies, and association with other autoimmune diseases. However, autoimmunity may be secondary to the high oxidative stress in vitiligo skin and to intrinsic defects in melanocytes and their microenvironment, which contribute to aberrant stress response, neo-antigenicity, and susceptibility of melanocytes to immune attack and apoptosis. There is also a genetic predisposition to vitiligo, which sensitizes melanocytes to environmental agents, such as phenolic compounds. Currently, there are different treatment modalities for re-pigmenting vitiligo skin. However, when repigmentation is achieved, the major challenge is maintaining the pigmentation, which is lost in 40% of cases. In this review, we present an overview of the clinical aspects of vitiligo, its pathophysiology, the intrinsic defects in melanocytes and their microenvironment, and treatment strategies. Based on lessons from the biology of human melanocytes, we present our perspective of how repigmentation of vitiligo skin can be achieved and sustained.
Collapse
Affiliation(s)
| | - Christian Jordan
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Tina Ho
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Parth Rajendrakumar Upadhyay
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Alan Fleischer
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
18
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Belote RL, Simon SM. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol 2019; 219:132739. [PMID: 31821412 PMCID: PMC7039208 DOI: 10.1083/jcb.201902014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/19/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Melanocytes are the neural crest-derived pigment-producing cells of the skin that possess dendrites. Yet little is known about how melanocyte dendrites receive and process information from neighboring cells. Here, using a co-culture system to interrogate the interaction between melanocyte dendrites and keratinocytes, we show that signals from neighboring keratinocytes trigger local compartmentalized Ca2+ transients within the melanocyte dendrites. The localized dendritic Ca2+ transients could be triggered by two keratinocyte-secreted factors, endothelin and acetylcholine, which acted via specific melanocyte receptors. Furthermore, compartmentalized Ca2+ transients were also generated on discrete dendritic spine-like structures on the melanocytes. These spines were also present in intact human skin. Our findings provide insights into how melanocyte dendrites communicate with neighboring cells and offer a new model system for studying compartmentalized signaling in dendritic structures.
Collapse
|
20
|
Melanocyte Activation Mechanisms and Rational Therapeutic Treatments of Solar Lentigos. Int J Mol Sci 2019; 20:ijms20153666. [PMID: 31357457 PMCID: PMC6695993 DOI: 10.3390/ijms20153666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
To characterize the pathobiology of solar lentigos (SLs), analyses by semiquantitative RT-PCR, Western blotting, and immunohistochemistry revealed the upregulated expression of endothelin (EDN)-1/endothelin B receptors (EDNBRs), stem cell factor (SCF)/c-KIT, and tumor necrosis factor (TNF)α in the lesional epidermis, which contrasted with the downregulated expression of interleukin (IL) 1α. These findings strongly support the hypothesis that previous repeated UVB exposure triggers keratinocytes to continuously produce TNFα. TNFα then stimulates the secretion of EDNs and the production of SCF in an autocrine fashion, leading to the continuous melanogenic activation of neighboring melanocytes, which causes SLs. A clinical study of 36 patients with SLs for six months treated with an M. Chamomilla extract with a potent ability to abrogate the EDN1-induced increase in DNA synthesis and melanization of human melanocytes in culture revealed a significant improvement in pigment scores and color differences expressed as L values. Another clinical study using a tyrosinase inhibitor L-ascorbate-2-phosphate 3 Na (ASP) demonstrated that L values of test lotion (6% APS)-treated skin significantly increased in SLs and in non-lesional skin with a significantly higher ΔL value in SLs when compared with non-lesional skin. The sum of these findings strongly suggests that combined topical treatment with EDN signaling blockers and tyrosinase inhibitors is a desirable therapeutic choice for SLs.
Collapse
|
21
|
Ishikawa Y, Niwano T, Hirano S, Numano K, Takasima K, Imokawa G. Whitening effect of L-ascorbate-2-phosphate trisodium salt on solar lentigos. Arch Dermatol Res 2019; 311:183-191. [PMID: 30778667 DOI: 10.1007/s00403-019-01892-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
Little is known about the anti-pigmenting effects of whitening agents on solar lentigos (SLs), which comprise ~ 60% of hyperpigmented facial lesions of Asian subjects. Lotions with or without 6% L-ascorbate-2-phosphate trisodium salt (APS) [test lotion (TL) and placebo lotion (PL), respectively] were applied twice daily for 24 weeks in a double-blind half-face study of 27 Japanese females with SLs on both sides of their faces. Pigmentation scores were evaluated using a photo-scale and the skin colors were assessed using a color difference meter and a mexameter for SLs and the non-lesional surrounding skin (NLS). Although the pigmentation scores were not significantly different between the TL and PL-treated SLs after 24 weeks, the L values of TL-treated SLs and NLS increased significantly with a significantly higher △L value in SLs than in NLS. In contrast, the L values of PL-treated SLs and NLS remained unchanged after the treatment. The number of subjects with > 2.0 △L was 7 of 27 (TL) and 0 of 27 (PL) in SLs and 3 of 27 (TL) and 0 of 27 (PS) in NLS. In contrast, the melanin index in TL-treated SLs and NLS significantly decreased with a significantly higher △melanin index in SLs than in NLS. Similarly, the melanin index of PL-treated SLs and NLS were significantly decreased with a significantly higher △melanin index in SLs than in NLS. These findings strongly indicate that APS has a weak but significant anti-pigmenting effect on SLs and a significant whitening effect even on normally pigmented healthy skin.
Collapse
Affiliation(s)
| | - Takao Niwano
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine Utsunomiya, Tochigi, 321-8505, Japan
| | | | - Kayoko Numano
- Quines Square Dermatological Clinic, Kanagawa, Japan
| | | | - Genji Imokawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine Utsunomiya, Tochigi, 321-8505, Japan.
- Research Institute for Biological Functions, Chubu University, Aichi, Japan.
| |
Collapse
|
22
|
Imokawa G. The Xanthophyll Carotenoid Astaxanthin has Distinct Biological Effects to Prevent the Photoaging of the Skin Even by its Postirradiation Treatment. Photochem Photobiol 2018; 95:490-500. [DOI: 10.1111/php.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Genji Imokawa
- Center for Bioscience Research & Education Utsunomiya University Utsunomiya Japan
- Research Institute for Biological Functions Chubu University Kasugai Japan
| |
Collapse
|
23
|
Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci 2018; 40:328-347. [PMID: 29752874 DOI: 10.1111/ics.12466] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Collapse
Affiliation(s)
- C Serre
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - V Busuttil
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| | - J-M Botto
- Global Skin Research Center, Ashland, 655, route du Pin Montard, Sophia Antipolis, 06904, France
| |
Collapse
|
24
|
Lee DH, Ahn SS, Kim JB, Lim Y, Lee YH, Shin SY. Downregulation of α-Melanocyte-Stimulating Hormone-Induced Activation of the Pax3-MITF-Tyrosinase Axis by Sorghum Ethanolic Extract in B16F10 Melanoma Cells. Int J Mol Sci 2018; 19:ijms19061640. [PMID: 29865165 PMCID: PMC6032395 DOI: 10.3390/ijms19061640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023] Open
Abstract
Ultraviolet irradiation-induced hyperpigmentation of the skin is associated with excessive melanin production in melanocytes. Tyrosinase (TYR) is a key enzyme catalyzing the rate-limiting step in melanogenesis. TYR expression is controlled by microphthalmia-associated transcription factor (MITF) expression. Sorghum is a cereal crop widely used in a variety of foods worldwide. Sorghum contains many bioactive compounds and is beneficial to human health. However, the effects of sorghum in anti-melanogenesis have not been well characterized. In this study, the biological activity of sorghum ethanolic extract (SEE) on α-melanocyte-stimulating hormone (α-MSH)-induced TYR expression was evaluated in B16F10 melanoma cells. SEE attenuated α-MSH-induced TYR gene promoter activity through the downregulation of the transcription factor MITF. We found that paired box gene 3 (Pax3) contributes to the maximal induction of MITF gene promoter activity. Further analysis demonstrated that SEE inhibited α-MSH-induced Pax3 expression. The collective results indicate that SEE attenuates α-MSH-induced TYR expression through the suppression of Pax3-mediated MITF gene promoter activity. Targeting the Pax3-MITF axis pathway could be considered a potential strategy to increase the efficacy of anti-melanogenesis.
Collapse
Affiliation(s)
- Da Hyun Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Sung Shin Ahn
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
| | - Jung-Bong Kim
- Functional Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 55365, Korea.
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 05029, Korea.
| | - Young Han Lee
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Korea.
| | - Soon Young Shin
- Department of Biological Sciences, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.
- Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
25
|
Baek JO, Park IJ, Lee KR, Ryu HR, Kim J, Lee S, Kim YR, Hur H. High-fluence 1064-nm Q-Switched Nd:YAG laser: Safe and effective treatment of café-au-lait macules in Asian patients. J Cosmet Dermatol 2018; 17:380-384. [DOI: 10.1111/jocd.12432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Ok Baek
- Department of Dermatology; Gachon University, College of Medicine; Incheon Korea
| | | | - Kyung Real Lee
- SKINDA Dermatology Clinic/Korea Dermatology Research Institute (KDRI); Bundang Korea
| | - Ha Ryeong Ryu
- Department of Dermatology; Gachon University, College of Medicine; Incheon Korea
| | - Jeongsoo Kim
- Department of Dermatology; Gachon University, College of Medicine; Incheon Korea
| | - Seulki Lee
- Department of Dermatology; Gachon University, College of Medicine; Incheon Korea
| | - Yu Ri Kim
- Choice Dermatology Clinic; Pyeongchon Korea
| | - Hoon Hur
- Choice Dermatology Clinic; Pyeongchon Korea
| |
Collapse
|
26
|
Terazawa S, Imokawa G. Signaling Cascades Activated by UVB in Human Melanocytes Lead to the Increased Expression of Melanocyte Receptors, Endothelin B Receptor and c-KIT. Photochem Photobiol 2018; 94:421-431. [PMID: 28977677 DOI: 10.1111/php.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
A single exposure of normal human melanocytes (NHMs) to ultraviolet B (UVB) radiation induces a distinct increase in the expression of c-KIT and endothelin B receptor (EDNRB) and upregulates the expression of microphthalmia-associated transcription factor (MITF). In this review, we clarify the signaling mechanisms by which UVB stimulates the expression of MITF in NHMs, thus leading to upregulation of those two important melanogenic receptors. The increased expression of MITF in UVB-exposed NHMs is accompanied by a markedly stimulated and prolonged phosphorylation of p38/CREB. The UVB-stimulated expression of c-KIT and EDNRB could be completely abolished by a p38 inhibitor concomitant with a reduced phosphorylation of CREB and a downregulation of MITF expression. The UVB exposure of NHMs stimulates the phosphorylation of p38 and c-jun N-terminal kinase, but not ERK, followed by the increased phosphorylation of MSK1 and subsequently CREB. Postirradiation treatment with the MSK1 inhibitor H89 significantly downregulates the increased mRNA and protein expression of MITF, EDNRB and c-KIT in UVB-exposed NHMs. Our findings indicate for the first time that the increased expression of MITF that leads to the upregulation of melanocyte-specific proteins in UVB-exposed NHMs is mediated via activation of the p38/MSK1/CREB axis but not the ERK/RSK/CREB axis.
Collapse
Affiliation(s)
- Shuko Terazawa
- Research Institute for Biological Functions, Chubu University, Aichi, Japan
| | - Genji Imokawa
- Research Institute for Biological Functions, Chubu University, Aichi, Japan.,Center for Bioscience Research & Education, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
27
|
Abstract
Endothelin-1 (ET-1) is a vasoactive peptide that also plays a role in the tanning response of the skin. Animal and cell culture studies have also implicated ET-1 in melanoma progression, but no association studies have been performed to link ET-1 expression and melanoma in humans. Here, we present the first in-vivo study of ET-1 expression in pigmented lesions in humans: an ET-1 immunohistochemical screen of melanocytic nevi, melanoma in situ lesions, invasive melanomas, metastatic melanomas, and blue nevi was performed. Twenty-six percent of melanocytic nevi and 44% of melanoma in situ lesions demonstrate ET-1 expression in the perilesional microenvironment, whereas expression in nevus or melanoma cells was rare to absent. In striking contrast, 100% of moderately to highly pigmented invasive melanomas contained numerous ET-1-positive cells in the tumor microenvironment, with 79% containing ET-1-positive melanoma cells, confirmed by co-staining with melanoma tumor marker HMB45. Hypopigmented invasive melanomas had reduced ET-1 expression, suggesting a correlation between ET-1 expression and pigmented melanomas. ET-1-positive perilesional cells were CD68-positive, indicating macrophage origin. Sixty-two percent of highly pigmented metastatic melanomas demonstrated ET-1 expression in melanoma cells, in contrast to 28.2% of hypopigmented specimens. Eighty-nine percent of benign nevi, known as blue nevi, which have a dermal localization, were associated with numerous ET-1-positive macrophages in the perilesional microenvironment, but no ET-1 expression was detected in the melanocytes. We conclude that ET-1 expression in the microenvironment increases with advancing stages of melanocyte transformation, implicating a critical role for ET-1 in melanoma progression, and the importance of the tumor microenvironment in the melanoma phenotype.
Collapse
|
28
|
Yuan XH, Jin ZH. Paracrine regulation of melanogenesis. Br J Dermatol 2018; 178:632-639. [PMID: 28494100 DOI: 10.1111/bjd.15651] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2017] [Indexed: 01/10/2023]
Abstract
Melanocytes are generally characterized by the basic ability of melanin synthesis and transfer to adjacent keratinocytes. This constitutes an individual skin phenotype and provides epidermal protection from various stimuli, such as ultraviolet irradiation, through a complex process called melanogenesis, which can be regulated by autocrine or paracrine factors. Recent evidence has revealed the paracrine effects of keratinocytes on melanogenesis by secreting cytokines, including α-melanocyte stimulating hormone and endothelin-1. In addition to keratinocytes, there are other types of cells in the skin, such as fibroblasts and immune cells, which are also actively involved in the regulation of melanocyte behaviour through the production of paracrine factors. In addition, extracellular matrix proteins, which are secreted mainly by skin-resident cells, not only play direct roles in regulating melanocyte morphology and functions but also provide structural support between the epidermis and dermis to control the distribution of various secreted cytokines from keratinocytes and/or fibroblasts, which are potentially involved in the regulation of melanogenesis. Moreover, understanding the origin of melanocytes (neural crest cells) and the presence of nerve endings in the epidermis can reveal the intimate contact between melanocytes and cutaneous specific nervous system proteins. Melanocytes are associated with all these networks with corresponding receptors expressed on the cell surface. In this review, we provide an overview of recent advances in determining the intimate relationships between melanocytes and their surrounding elements, which provide insights into the complex nature of the regulation of melanogenesis.
Collapse
Affiliation(s)
- X H Yuan
- Department of Dermatology, Yanbian University Hospital, 1327 Juzi Street, Yanji City, Jilin Province, 133000, China
| | - Z H Jin
- Department of Dermatology, Yanbian University Hospital, 1327 Juzi Street, Yanji City, Jilin Province, 133000, China
| |
Collapse
|
29
|
Taira N, Katsuyama Y, Yoshioka M, Okano Y, Masaki H. 3-O-Glyceryl-2-O-hexyl ascorbate suppresses melanogenesis by interfering with intracellular melanosome transport and suppressing tyrosinase protein synthesis. J Cosmet Dermatol 2017; 17:1209-1215. [PMID: 29115012 DOI: 10.1111/jocd.12451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ascorbic acid (AsA) has multifunctional benefits on skin beauty, such as the reduction in oxidative stress and the induction of collagen production. Among them, the prevention and improvement of skin pigmentation by AsA is a most important benefit for people. However, it is well known that AsA not only is quite unstable in formulations but it also has a low capability of skin penetration due to its hydrophilic property. In addition, existing water-soluble AsA derivatives that were developed to improve its stability also have low skin penetration. AIM To investigate the potential of a newly synthesized amphiphilic derivative of AsA, 3-O-Glyceryl-2-O-hexyl ascorbate (VC-HG), which has an added glyceryl group and a hexyl group, on skin beauty focusing on its skin lightening/whitening effects. METHODS DNA microarray analysis and real-time PCR were used to clarify the effects of VC-HG on melanogenesis using B16 mouse melanoma cells. The effects of VC-HG on melanin synthesis, tyrosinase protein levels, and the inhibition of tyrosinase activity were evaluated. RESULTS DNA microarray analysis revealed that treatment with VC-HG downregulated the expression of genes encoding tyrosinase and MyosinVa. Further, real-time PCR analysis showed the downregulation of tyrosinase, MyosinVa, Rab27a, and Kinesin mRNAs following VC-HG treatment. In addition, VC-HG caused decreases in tyrosinase protein levels and melanin synthesis. CONCLUSION We conclude that VC-HG has an impact on skin lightening/whitening by inhibiting tyrosinase protein synthesis and interfering with intracellular melanosome transport.
Collapse
Affiliation(s)
| | | | | | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachiouji, Japan
| |
Collapse
|
30
|
Jarrett SG, Carter KM, D'Orazio JA. Paracrine regulation of melanocyte genomic stability: a focus on nucleotide excision repair. Pigment Cell Melanoma Res 2017; 30:284-293. [PMID: 28192636 PMCID: PMC5411317 DOI: 10.1111/pcmr.12582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023]
Abstract
UV radiation is a major environmental risk factor for the development of melanoma by causing DNA damage and mutations. Resistance to UV damage is largely determined by the capacity of melanocytes to respond to UV injury by repairing mutagenic photolesions. The nucleotide excision repair (NER) pathway is the major mechanism by which cells correct UV photodamage. This multistep process involves the basic steps of damage recognition, isolation, localized strand unwinding, assembly of a repair complex, excision of the damage-containing strand 3' and 5' to the photolesion, synthesis of a sequence-appropriate replacement strand, and finally ligation to restore continuity of genomic DNA. In melanocytes, the efficiency of NER is regulated by several hormonal pathways including the melanocortin and endothelin signaling pathways. Elucidating molecular mechanisms by which melanocyte DNA repair is regulated offers the possibility of developing novel melanoma-preventive strategies to reduce UV mutagenesis, especially in UV-sensitive melanoma-prone individuals.
Collapse
Affiliation(s)
- Stuart Gordon Jarrett
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - John August D'Orazio
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
31
|
Birlea SA, Costin GE, Roop DR, Norris DA. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization. Med Res Rev 2016; 37:907-935. [PMID: 28029168 DOI: 10.1002/med.21426] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022]
Abstract
Vitiligo is the most frequent human pigmentary disorder, characterized by progressive autoimmune destruction of mature epidermal melanocytes. Of the current treatments offering partial and temporary relief, ultraviolet (UV) light is the most effective, coordinating an intricate network of keratinocyte and melanocyte factors that control numerous cellular and molecular signaling pathways. This UV-activated process is a classic example of regenerative medicine, inducing functional melanocyte stem cell populations in the hair follicle to divide, migrate, and differentiate into mature melanocytes that regenerate the epidermis through a complex process involving melanocytes and other cell lineages in the skin. Using an in-depth correlative analysis of multiple experimental and clinical data sets, we generated a modern molecular research platform that can be used as a working model for further research of vitiligo repigmentation. Our analysis emphasizes the active participation of defined molecular pathways that regulate the balance between stemness and differentiation states of melanocytes and keratinocytes: p53 and its downstream effectors controlling melanogenesis; Wnt/β-catenin with proliferative, migratory, and differentiation roles in different pigmentation systems; integrins, cadherins, tetraspanins, and metalloproteinases, with promigratory effects on melanocytes; TGF-β and its effector PAX3, which control differentiation. Our long-term goal is to design pharmacological compounds that can specifically activate melanocyte precursors in the hair follicle in order to obtain faster, better, and durable repigmentation.
Collapse
Affiliation(s)
- Stanca A Birlea
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Dennis R Roop
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Gates Center for Regenerative Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David A Norris
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Gates Center for Regenerative Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Denver Department of Veterans Affairs Medical Center, Denver, CO
| |
Collapse
|
32
|
Swope VB, Abdel-Malek ZA. Significance of the Melanocortin 1 and Endothelin B Receptors in Melanocyte Homeostasis and Prevention of Sun-Induced Genotoxicity. Front Genet 2016; 7:146. [PMID: 27582758 PMCID: PMC4987328 DOI: 10.3389/fgene.2016.00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022] Open
Abstract
The membrane bound melanocortin 1 receptor (MC1R), and the endothelin B receptor (ENDBR) are two G-protein coupled receptors that play important roles in constitutive regulation of melanocytes and their response to ultraviolet radiation (UVR), the main etiological factor for melanoma. The human MC1R is a Gs protein-coupled receptor, which is activated by its agonists α-melanocyte stimulating hormone (α-melanocortin; α-MSH) and adrenocorticotropic hormone (ACTH). The ENDBR is a Gq coupled-receptor, which is activated by Endothelin (ET)-3 during embryonic development, and ET-1 postnatally. Pigmentation and the DNA repair capacity are two major factors that determine the risk for melanoma. Activation of the MC1R by its agonists stimulates the synthesis of eumelanin, the dark brown photoprotective pigment. In vitro studies showed that α-MSH and ET-1 interact synergistically in the presence of basic fibroblast growth factor to stimulate human melanocyte proliferation and melanogenesis, and to inhibit UVR-induced apoptosis. An important function of the MC1R is reduction of oxidative stress and activation of DNA repair pathways. The human MC1R is highly polymorphic, and MC1R variants, particularly those that cause loss of function of the expressed receptor, are associated with increased melanoma risk independently of pigmentation. These variants compromise the DNA repair and antioxidant capacities of human melanocytes. Recently, activation of ENDBR by ET-1 was reported to reduce the induction and enhance the repair of UVR-induced DNA photoproducts. We conclude that α-MSH and ET-1 and their cognate receptors MC1R and ENDBR reduce the risk for melanoma by maintaining genomic stability of melanocytes via modulating the DNA damage response to solar UVR. Elucidating the response of melanocytes to UVR should improve our understanding of the process of melanomagenesis, and lead to effective melanoma chemoprevention, as well as therapeutic strategies.
Collapse
Affiliation(s)
- Viki B Swope
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati OH, USA
| | - Zalfa A Abdel-Malek
- Department of Dermatology, College of Medicine, University of Cincinnati, Cincinnati OH, USA
| |
Collapse
|
33
|
Platelet-derived growth factor regulates the proliferation and differentiation of human melanocytes in a differentiation-stage-specific manner. J Dermatol Sci 2016; 83:200-9. [PMID: 27289338 DOI: 10.1016/j.jdermsci.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although many kinds of keratinocyte-derived factors are known to regulate the proliferation and differentiation of human melanocytes, it is not well defined whether dermis-derived factors work in a similar way. OBJECTIVE The aim of this study is to clarify whether dermal factors are involved in regulating the proliferation and differentiation of human melanocytes. METHODS Human epidermal melanoblasts were cultured serially in a serum-free growth medium. Platelet-derived growth factor-BB (PDGF-BB) was supplemented to the medium, and the effects on the proliferation of melanoblasts/melanocytes and the differentiation of melanocytes were studied. RESULTS PDGF-BB stimulated the proliferation of melanoblasts cultured in melanoblast-proliferation medium, but inhibited the proliferation of melanocytes cultured in melanocyte-proliferation medium. By contrast, PDGF-BB stimulated the differentiation, dendritogenesis, and melanogenesis of melanocytes through the stimulation of tyrosinase activity and the expressions of tyrosinase and tyrosinase-related protein-1. CONCLUSION These results suggest that PDGF-BB regulates the proliferation and differentiation of human melanocytes in a differentiation-stage-specific manner. PDGF-BB seems to be one of the dermal factors that regulate the proliferation and differentiation of human melanocytes.
Collapse
|
34
|
Kim SJ, Park JY, Shibata T, Fujiwara R, Kang HY. Efficacy and possible mechanisms of topical tranexamic acid in melasma. Clin Exp Dermatol 2016; 41:480-5. [DOI: 10.1111/ced.12835] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Affiliation(s)
- S. J. Kim
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - J.-Y. Park
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| | - T. Shibata
- Shiseido Research Center; Yokohama Japan
| | | | - H. Y. Kang
- Department of Dermatology; Ajou University School of Medicine; Suwon Korea
| |
Collapse
|
35
|
Bingül İ, Aydıngöz İE, Vural P, Doğru-Abbasoğlu S, Uysal M. The Evaluation of Endothelin-1 and Endothelin Receptor Type A Gene Polymorphisms in Patients with Vitiligo. Indian J Dermatol 2016; 61:118. [PMID: 26955120 PMCID: PMC4763630 DOI: 10.4103/0019-5154.174076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Endothelin-1 (EDN1) and EDN receptor type A (EDNRA) are implicated in melanocyte functions. Aim and Objectives: This study examines the role of EDN1 (G5665T and T-1370G) and EDNRA (C + 70G and G-231A) polymorphisms as a risk factor for vitiligo, and evaluates the relationship between genotypes and clinical characteristics of vitiligo patients. Materials and Methods: We analyzed genotype/allele distributions of EDN1 and EDNRA polymorphisms in 100 patients with vitiligo and 185 healthy controls by real-time polymerase chain reaction. Results: There was no notable risk for vitiligo afflicted by studied polymorphisms. However, the presence of EDNRA +70 variant G allele was found to be related with decreased risk for development of generalized type of vitiligo (odds ratio [OR]: 0.42, 95% confidence interval [CI] = 0.21–0.86, pcorr = 0.03) and showed protective effect against associated diseases seen in vitiligo (OR: 0.49, 95% CI = 0.27–0.88, pcorr = 0.034). Haplotype analysis demonstrated a strong (disequilibrium coefficient = 0.73, r2 = 0.405) linkage disequilibrium between EDN1 G5665T and T-1370G polymorphisms. The EDN1 5665/-1330 TT haplotype was over represented significantly in controls than in patients (P = 0.04). Conclusion: The studied polymorphisms do not seem to be a major risk for vitiligo. Haplotype analysis denoting protective effects against vitiligo may indicate an indirect interaction in the course of vitiligo. In addition, EDNRA + 70 polymorphism is protective against generalized type of vitiligo and associated diseases.
Collapse
Affiliation(s)
- İlknur Bingül
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İkbal Esen Aydıngöz
- Department of Dermatology, Acıbadem University, School of Medicine, Istanbul, Turkey
| | - Pervin Vural
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
36
|
Kim M, Shin S, Lee JA, Park D, Lee J, Jung E. Inhibition of melanogenesis by Gaillardia aristata flower extract. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:449. [PMID: 26702819 PMCID: PMC4690303 DOI: 10.1186/s12906-015-0972-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The purpose of the study was to determine the anti-melanogenic and anti-oxidant properties of Gaillardia aristata flower extract (GAE). METHODS Melanogenesis inhibition by GAE was investigated in cultivated cells and in a human skin model. In cultivated cells, the melanogenesis regulatory effect of GAE was evaluated using melanin content, intracellular tyrosinase activity and anti-oxidant characteristics. In addition, the expression of melanogenesis-related proteins was determined by western blot assay and real-time PCR. RESULTS GAE reduced the amount of melanin in B16F10 and normal human epidermal melanocyte cells and suppressed intracellular tyrosinase activity in a dose-dependent pattern. Also, GAE significantly decreased the expression of melanogenesis-related proteins (microphthalmia associated transcription factor, tyrosinase, tyrosinase-related protein-1, and dopachrome tautomerase). Real-time PCR results revealed a down-regulation of the mRNAs of these proteins. GAE possessed anti-oxidant characteristics as free radical-scavenging capacity and reducing power. In the three-dimensional human skin model, GAE applied to hyperpigmented skin significantly increased the degree of skin lightening within 2 weeks of treatment. The safety of GAE on human skin was confirmed. CONCLUSIONS These results indicate the potential of GAE for use in suppressing skin pigmentation. We proposed GAE as a new candidate of anti-melanogenic and antioxidant agents that could be used for cosmetic skin care products.
Collapse
|
37
|
l-tyrosine induces melanocyte differentiation in novel pink-eyed dilution castaneus mouse mutant showing age-related pigmentation. J Dermatol Sci 2015; 80:203-11. [PMID: 26475433 DOI: 10.1016/j.jdermsci.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND The mouse pink-eyed dilution (oculocutaneous albinism II; p/Oca2(p)) locus is known to control tyrosinase activity, melanin content, and melanosome development in melanocytes. Pink-eyed dilution castaneus (p(cas)/Oca2(p-cas)) is a novel mutant allele on mouse chromosome 7 that arose spontaneously in Indonesian wild mice, Mus musculus castaneus. Mice homozygous for Oca2(p-cas) usually exhibit pink eyes and beige-colored coat on nonagouti C57BL/6 (B6) background. Recently, a novel spontaneous mutation occurred in the progeny between this mutant and B6 mice. The eyes of this novel mutant progressively become black from pink and the coat becomes dark gray from beige with aging. OBJECTIVE The aim of this study is to clarify whatever differences exist in melanocyte proliferation and differentiation between the ordinary (pink-eyed) and novel (black-eyed) mutant using serum-free primary culture system. METHODS The characteristics of melanocyte proliferation and differentiation were investigated by serum-free primary culture system using melanocyte-proliferation medium (MDMD). RESULTS The proliferation of melanoblasts in MDMD did not differ between the two mice. However, when the epidermal cell suspensions were cultured with MDMD supplemented with l-tyrosine (Tyr), the differentiation of black-eyed melanocytes was greatly induced in a concentration-dependent manner compared with pink-eyed melanocytes. Immunocytochemistry demonstrated that the expression of tyrosinase and tyrosinase-related protein-1 (Tyrp1) was greatly induced or stimulated both in pink-eyed and black-eyed melanocytes, whereas the expression of microphthalmia-associated transcription factor (Mitf) was stimulated only in black-eyed melanocytes. CONCLUSION These results suggest that the age-related coat darkening in black-eyed mutant may be caused by the increased ability of melanocyte differentiation dependent on l-Tyr through the upregulation of tyrosinase, Tyrp1, and Mitf. This mutant mouse may be useful for animal model to clarify the mechanisms of age-related pigmentation in human skin, such as melasma and solar lentigines.
Collapse
|
38
|
Murase D, Hachiya A, Kikuchi-Onoe M, Fullenkamp R, Ohuchi A, Kitahara T, Moriwaki S, Hase T, Takema Y. Cooperation of endothelin-1 signaling with melanosomes plays a role in developing and/or maintaining human skin hyperpigmentation. Biol Open 2015; 4:1213-21. [PMID: 26340945 PMCID: PMC4610214 DOI: 10.1242/bio.011973] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022] Open
Abstract
Skin hyperpigmentation is characterized by increased melanin synthesis and deposition that can cause significant psychosocial and psychological distress. Although several cytokine-receptor signaling cascades contribute to the formation of ultraviolet B-induced cutaneous hyperpigmentation, their possible involvement in other types of skin hyperpigmentation has never been clearly addressed. Since our continuous studies using skin specimens from more than 30 subjects with ethnic skin diversity emphasized a consistent augmentation in the expression of endothelin-1 (ET-1) and its receptor (Endothelin B receptor, ET-B) in hyperpigmented lesions, including senile lentigos (SLs), the precise function of ET-1 signaling was investigated in the present study. In line with previous studies, ET-1 significantly induced melanogenesis followed by increases in melanosome transport in melanocytes and in its transfer to keratinocytes while inhibition of ET-B function substantially depressed melanogenic ability in tissue-cultured SLs. Additionally, in agreement with a previous report that the formation of autophagosomes rather than melanosomes is stimulated according to starvation or defective melanosome production, ET-1 was found to remarkably augment the expression of components necessary for early melanosome formation, indicating its counteraction against autophagy-targeting melanosome degradation in melanocytes. Despite the lack of substantial impact of ET-1 on keratinocyte melanogenic functions, the expression of ET-1 was enhanced following melanosome uptake by keratinocytes. Taken together, our data suggest that ET-1 plays a substantial role in the development and/or maintenance of skin hyperpigmentation in reciprocal cooperation with increased melanosome incorporation.
Collapse
Affiliation(s)
- Daiki Murase
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan Biological Science Americas Laboratory, Kao Corporation, Cincinnati, OH 45214, USA
| | - Akira Hachiya
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Mamiko Kikuchi-Onoe
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Rachel Fullenkamp
- Biological Science Americas Laboratory, Kao Corporation, Cincinnati, OH 45214, USA
| | - Atsushi Ohuchi
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Takashi Kitahara
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Shigeru Moriwaki
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi 321-3497, Japan
| | - Yoshinori Takema
- Research and Development Global, Kao Corporation, Sumida-ku, Tokyo 131-8501, Japan
| |
Collapse
|
39
|
Tagashira H, Miyamoto A, Kitamura SI, Tsubata M, Yamaguchi K, Takagaki K, Imokawa G. UVB Stimulates the Expression of Endothelin B Receptor in Human Melanocytes via a Sequential Activation of the p38/MSK1/CREB/MITF Pathway Which Can Be Interrupted by a French Maritime Pine Bark Extract through a Direct Inactivation of MSK1. PLoS One 2015; 10:e0128678. [PMID: 26030901 PMCID: PMC4452497 DOI: 10.1371/journal.pone.0128678] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/29/2015] [Indexed: 01/01/2023] Open
Abstract
Melanogenesis is the physiological process by which melanin is synthesized to protect the skin from UV damage. While paracrine interactions between keratinocytes and melanocytes are crucial for regulating epidermal pigmentation, the endothelin (EDN)-endothelin B-receptor (EDNRB) interaction is one of the key linkages. In this study, we found that a single exposure of normal human melanocytes (NHMs) with UVB stimulates the expression of EDNRB and its upstream transcription factor microphthalmia-associated transcription factor (MITF) at the transcriptional and translational levels. That stimulation can be abrogated by post-irradiation treatment with a French maritime pine bark extract (PBE). UVB stimulated the phosphorylation of p38 and c-jun N-terminal kinase (JNK), but not ERK, followed by the increased phosphorylation of MSK1 and CREB. The post-irradiation treatment with PBE did not affect the increased phosphorylation of p38 and JNK, but distinctly abrogated the phosphorylation of MSK1 and CREB. Post-irradiation treatment with the MSK1 inhibitor H89 significantly down-regulated the increased gene expression of MITF and EDNRB in UVB-exposed NHMs. Our findings indicate for the first time that the increased expression of MITF that leads to the up-regulation of melanocyte-specific proteins in UVB-exposed NHMs is mediated via activation of the p38/MSK1/CREB pathway but not the ERK/RSK/CREB pathway. The mode of action by PBE demonstrates that interrupting MSK1 activation is a new target for antioxidants including PBE which can serve as anti-pigmenting agents in a reactive oxygen species-depletion-independent manner.
Collapse
Affiliation(s)
- Hideki Tagashira
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7–28 Yayoigaoka, Tosu, Saga, 841–0005, Japan
| | - Aki Miyamoto
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7–28 Yayoigaoka, Tosu, Saga, 841–0005, Japan
| | - Sei-ichi Kitamura
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7–28 Yayoigaoka, Tosu, Saga, 841–0005, Japan
| | - Masahito Tsubata
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7–28 Yayoigaoka, Tosu, Saga, 841–0005, Japan
| | - Kazuya Yamaguchi
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7–28 Yayoigaoka, Tosu, Saga, 841–0005, Japan
| | - Kinya Takagaki
- Research and Development Division, Toyo Shinyaku Co., Ltd., 7–28 Yayoigaoka, Tosu, Saga, 841–0005, Japan
| | - Genji Imokawa
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487–8501, Japan
- * E-mail:
| |
Collapse
|
40
|
Raghunath A, Sambarey A, Sharma N, Mahadevan U, Chandra N. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components. BMC Res Notes 2015; 8:170. [PMID: 25925987 PMCID: PMC4424494 DOI: 10.1186/s13104-015-1128-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/17/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. METHODS A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. RESULTS We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. CONCLUSIONS The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.
Collapse
Affiliation(s)
- Arathi Raghunath
- Molecular Connections Private Limited, Bangalore, 560004, India.
| | - Awanti Sambarey
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Neha Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Usha Mahadevan
- Molecular Connections Private Limited, Bangalore, 560004, India.
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
41
|
Niwano T, Terazawa S, Nakajima H, Wakabayashi Y, Imokawa G. Astaxanthin and withaferin A block paracrine cytokine interactions between UVB-exposed human keratinocytes and human melanocytes via the attenuation of endothelin-1 secretion and its downstream intracellular signaling. Cytokine 2015; 73:184-97. [PMID: 25777483 DOI: 10.1016/j.cyto.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Paracrine interactions between keratinocytes and melanocytes via cytokines play an essential role in regulating pigmentation in epidermal hyperpigmentary disorders. There is an urgent need for a human epidermal model in which melanogenic paracrine interactions between UVB-exposed keratinocytes and melanocytes can be precisely evaluated because human epidermal equivalents consisting of multilayered keratinocytes and melanocytes have significant limitations in this respect. OBJECTIVE To resolve this challenge, we established a co-culture system with cell inserts using human keratinocytes and human melanocytes that serves as an appropriate new model for UVB-induced hyperpigmentation. Using that new model, we examined the blocking effects of two natural chemicals, astaxanthin and withaferin A, on paracrine cytokine interactions between UVB-exposed keratinocytes and melanocytes and characterized their mechanisms of action. METHODS AND RESULTS RT-PCR analysis showed that co-culture of human keratinocytes that had been exposed to UVB significantly stimulated human melanocytes to increase their expression of genes encoding microphthalmia-associated transcription factor, tyrosinase and tyrosinase-related protein 1. The catalytic activity of tyrosinase was also increased. ELISA assays revealed that UVB significantly increased the secretion of interleukin-1α, interleukin-6/8, granulocyte macrophage stimulatory factor and endothelin-1 but not α-melanocyte stimulating hormone. The addition of an endothelin-1 neutralizing antibody significantly abrogated the increase of tyrosinase activity. Post-irradiation treatment with astaxanthin or withaferin A significantly abolished the up-regulation of tyrosinase activity induced by UVB. Treatment with astaxanthin or withaferin A significantly reduced the increased levels of interleukin-1α, interleukin-6/8, granulocyte macrophage stimulatory factor and endothelin-1. Withaferin A but not astaxanthin also significantly abrogated the endothelin-1-stimulated activity of tyrosinase in melanocytes. Western blot analysis of intracellular signaling factors revealed that withaferin A but not astaxanthin significantly abolished the endothelin-1-stimulated phosphorylation of Raf-1, MEK, ERK, MITF and CREB in human melanocytes. CONCLUSIONS These results demonstrate that this co-culture system is an appropriate model to characterize melanogenic paracrine interactions and that astaxanthin and withaferin A serve as potent inhibitors of those interactions. Their effects are caused not only by down-regulating the increased secretion of an intrinsic melanogenic cytokine, endothelin-1, by UVB-exposed human keratinocytes, but also by interrupting the endothelin-1-triggered downstream intracellular signaling between protein kinase C and Raf-1 in human melanocytes (only for withaferin A).
Collapse
Affiliation(s)
- Takao Niwano
- Tsuno Rice Fine Chemicals, Co., Ltd., Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Shuko Terazawa
- Research Institute for Biological Functions, Chubu University, Japan
| | - Hiroaki Nakajima
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Yuki Wakabayashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Genji Imokawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan; Research Institute for Biological Functions, Chubu University, Japan.
| |
Collapse
|
42
|
|
43
|
Withaferin A abolishes the stem cell factor-stimulated pigmentation of human epidermal equivalents by interrupting the auto-phosphorylation of c-KIT in human melanocytes. Arch Dermatol Res 2014; 307:73-88. [PMID: 25376854 DOI: 10.1007/s00403-014-1518-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/30/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
We characterized the mechanism(s) underlying the abrogating effect of withaferin A (WFA) on the stem cell factor (SCF)-stimulated pigmentation of human epidermal equivalents (HEEs). Increased gene and protein expression levels of tyrosinase, tyrosinase-related protein1, dopachrome tautomerase, PMEL17, c-KIT and their targeted transcription factor, microphthalmia-associated transcription factor (MITF) were significantly reversed at days 7 and 10, respectively, by treatment with WFA. In WFA-treated normal human melanocytes (NHMs), there was a marked deficiency in the SCF-stimulated series of phosphorylations of c-KIT, Shc, Raf-1, MEK, ERK, MITF and CREB. Treatment with dithiothreitol (DTT) distinctly abolished the suppressive effect of WFA on the SCF-stimulated phosphorylation of c-KIT in NHMs. On the other hand, even after incubation at 4 °C for 2 h with 5 nM SCF, followed by the removal of unbound SCF by washing and then raising the temperature to 37 °C to start the signaling reaction, c-KIT was distinctly phosphorylated to a similar extent by incubation for 15 min with SCF only or with SCF + WFA. These findings indicate that WFA attenuates the SCF-induced activation of c-KIT in NHMs by interrupting the auto-phosphorylation of c-KIT through DTT-suppressible Michael addition thioalkylation reactions without interrupting the binding of SCF to the c-KIT receptor.
Collapse
|
44
|
Kasamatsu S, Hachiya A, Nakamura S, Yasuda Y, Fujimori T, Takano K, Moriwaki S, Hase T, Suzuki T, Matsunaga K. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. J Dermatol Sci 2014; 76:16-24. [PMID: 25082450 DOI: 10.1016/j.jdermsci.2014.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tyrosinase, the rate-limiting enzyme required for melanin production, has been targeted to develop active brightening/lightening materials for skin products. Unexpected depigmentation of the skin characterized with the diverse symptoms was reported in some subjects who used a tyrosinase-competitive inhibiting quasi-drug, rhododendrol. OBJECTIVE To investigate the mechanism underlying the depigmentation caused by rhododendrol-containing cosmetics, this study was performed. METHODS The mechanism above was examined using more than dozen of melanocytes derived from donors of different ethnic backgrounds. The RNAi technology was utilized to confirm the effect of tyrosinase to induce the cytotoxicity of rhododendrol and liquid chromatography-tandem mass spectrometry was introduced to detect rhododendrol and its metabolites in the presence of tyrosinase. RESULTS Melanocyte damage was related to tyrosinase activity at a certain threshold. Treatment with a tyrosinase-specific siRNA was shown to dramatically rescue the rhododendrol-induced melanocyte impairment. Hydroxyl-rhododendrol was detected only in melanocytes with higher tyrosinase activity. When an equivalent amount of hydroxyl-rhododendrol was administered, cell viability was almost equally suppressed even in melanocytes with lower tyrosinase activity. CONCLUSION The generation of a tyrosinase-catalyzed hydroxyl-metabolite is one of the causes for the diminishment of the melanocyte viability by rhododendrol.
Collapse
Affiliation(s)
- Shinya Kasamatsu
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Akira Hachiya
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan.
| | - Shun Nakamura
- Analytical Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Yuka Yasuda
- Analytical Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Taketoshi Fujimori
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Kei Takano
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Shigeru Moriwaki
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kayoko Matsunaga
- Department of Dermatology, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
45
|
Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti-pigmenting agents. Int J Mol Sci 2014; 15:8293-315. [PMID: 24823877 PMCID: PMC4057732 DOI: 10.3390/ijms15058293] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/17/2014] [Accepted: 04/29/2014] [Indexed: 11/16/2022] Open
Abstract
Few anti-pigmenting agents have been designed and developed according to their known hyperpigmentation mechanisms and corresponding intracellular signaling cascades. Most anti-pigmenting agents developed so far are mechanistically involved in the interruption of constitutional melanogenic mechanisms by which skin color is maintained at a normal and unstimulated level. Thus, owing to the difficulty of confining topical application to a specific hyperpigmented skin area, potent anti-pigmenting agents capable of attenuating the natural unstimulated pigmentation process have the risk of leading to hypopigmentation. Since intracellular signaling pathways within melanocytes do not function substantially in maintaining normal skin color and are activated only by environmental stimuli such as UV radiation, specifically down-regulating the activation of melanogenesis to the constitutive level would be an appropriate strategy to develop new potent anti-pigmenting agents with a low risk of hypopigmentation. In this article, we review the hyperpigmentation mechanisms and intracellular signaling pathways that lead to the stimulation of melanogenesis. We also discuss a screening and evaluation system to select candidates for new anti-melanogenic substances by focusing on inhibitors of endothelin-1 or stem cell factor-triggered intracellular signaling cascades. From this viewpoint, we show that extracts of the herbs Withania somnifera and Melia toosendan and the natural chemicals Withaferin A and Astaxanthin are new candidates for potent anti-pigmenting substances that avoid the risk of hypopigmentation.
Collapse
|
46
|
The inhibitory effect of a Platycodon root extract on ultraviolet B-induced pigmentation due to a decrease in Kit expression. J Nat Med 2014; 68:643-6. [PMID: 24799080 PMCID: PMC4050297 DOI: 10.1007/s11418-014-0836-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 03/30/2014] [Indexed: 11/14/2022]
Abstract
The signaling of stem cell factor (SCF) through its receptor Kit is known to play an important role in regulating cutaneous melanogenesis. In the course of UVB-induced pigmentation, the expression of membrane-bound SCF by epidermal keratinocytes is upregulated at an early phase and subsequently activates neighboring melanocytes via their Kit receptors. In order to identify effective skin-lightening materials, we screened botanical extracts to determine their abilities to diminish Kit expression in melanocytes. A Platycodon root extract was consequently found to have a remarkable inhibitory activity on Kit expression. When the extract was applied to three-dimensional human skin substitutes in vitro and to human skin in vivo after UVB irradiation, their pigmentation was significantly reduced, confirming the substantial contribution of the suppression of SCF/Kit signaling to preventing or inhibiting melanin synthesis. These data demonstrate that a Platycodon root extract is a promising material for a skin-lightening product to improve pigmentation-related diseases.
Collapse
|
47
|
Abstract
Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITFsiRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies. [BMB Reports 2013; 46(7): 364-369]
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
48
|
Takata T, Tarutani M, Sano S. A failure in endothelin-1 production from vitiligo keratinocytes in response to ultraviolet B irradiation. J Dermatol Sci 2013; 71:210-2. [PMID: 23815989 DOI: 10.1016/j.jdermsci.2013.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
|
49
|
Kim SH, Choi YJ, Moon KM, Lee HJ, Woo Y, Chung KW, Jung Y, Kim S, Chun P, Byun Y, Ha YM, Moon HR, Chung HY. The inhibitory effect of a synthetic compound, (Z)-5-(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione (MHY498), on nitric oxide-induced melanogenesis. Bioorg Med Chem Lett 2013; 23:4332-5. [PMID: 23806552 DOI: 10.1016/j.bmcl.2013.05.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) and the NO/PKG signaling pathway play crucial roles in ultraviolet (UV)-induced melanogenesis, which is known to be related to the induction of tyrosinase. In an attempt to find a novel anti-melanogenic agent, we synthesized (Z)-5-(2,4-dihydroxybenzylidene)thiazolidine-2,4-dione (MHY498). The purpose of this study was to investigate the effect of MHY498 on NO levels and on the NO-mediated signaling pathway using an in vitro model of melanogenesis. MHY498 inhibited 200 μM sodium nitroprusside (SNP, a NO donor)-induced NO generation, dose-dependently and suppressed tyrosinase activity and melanin synthesis induced by SNP in B16F10 melanoma cells. To investigate the effect of MHY498 on NO-mediated signaling pathway, guanosine cyclic 3',5'-monophosphate (cGMP) activities were measured using a cGMP EIA Kit and western blotting was performed to determine the effects of MHY498 on the gene expressions of tyrosinase and microphthalmia-associated transcription factor (MITF). The increased activity of cGMP by SNP was reduced dose-dependently by pretreatment with MHY498. Furthermore, MHY498 suppressed the expressions of tyrosinase and MITF stimulated by SNP. This study shows that enhancement of tyrosinase gene expression via the cGMP pathway is a probable primary mechanism of NO-induced melanogenesis and that the NO-mediated signaling pathway with the expression of MITF enhances melanogenesis. In addition, MHY498 was found to scavenge NO and to suppress the activity of the NO-mediated signaling pathway, and thus, to subsequently down-regulate tyrosinase expression and melanogenesis. This study suggests that MHY498 is a promising anti-melanogenic agent that targets the NO-induced cGMP signaling pathway.
Collapse
Affiliation(s)
- So Hee Kim
- College of Pharmacy, Pusan National University, Geumjeong-Gu, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hirobe T, Terunuma E. Reduced Proliferative and Differentiative Activity of Mouse Pink-Eyed Dilution Melanoblasts is Related to Apoptosis. Zoolog Sci 2012; 29:725-32. [DOI: 10.2108/zsj.29.725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|