1
|
Chen C, Zou Y, Zheng X, Hu T, Ni J, Kan D, Yin Z, Ye L, Liu B. TICRR Overexpression Enhances Disease Aggressiveness and Immune Infiltration of Cutaneous Melanoma. Pharmgenomics Pers Med 2024; 17:423-435. [PMID: 39246575 PMCID: PMC11380494 DOI: 10.2147/pgpm.s469972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Objective To investigate the role of the TopBP1 interacting checkpoint and replication regulator (TICRR) in cutaneous melanoma (CM) as a prognostic biomarker and therapeutic target. Methods TICRR expression in tumour samples was explored using the TCGA and the GTEx database. The Kaplan-Meier survival curve, nomogram model and risk score curve were established to evaluate the prognostic role of TICRR in CM. Tissue samples of CM patients were obtained to validate the TICRR expression further. Several experiments in vitro were conducted to investigate the effect of TICRR upon CM aggressiveness and to explore underlying mechanisms. Results TICRR was overexpressed in CM tissue and was correlated with poor prognosis of CM patients. The knockdown of TICRR decreased the proliferation, migration, and invasion of CM cells, whereas overexpression produced the opposite effect. Furthermore, TICRR suppression substantially attenuated the activation of PI3K/AKT/mTOR signalling, while the PI3K/AKT inhibitor LY294002 could partially reverse the aggressiveness-enhancing effect induced by TICRR overexpression. It was further confirmed that TICRR was closely related to immune cell infiltration activities by using immune infiltration and immunofluorescence analysis. Conclusion TICRR overexpression may enhance CM aggressiveness by activating the PI3K/Akt/mTOR pathway and promoting immune infiltration. TICRR was verified as a potential prognostic biomarker and therapeutic target for CM.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Yong Zou
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Xiangbing Zheng
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Taotao Hu
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Jie Ni
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Daohong Kan
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Zongyin Yin
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Lingxiao Ye
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| | - Bing Liu
- Department of Burn and Plastic Surgery, The Second People's Hospital of Yibin (West China Yibin Hospital, Sichuan University), Yibin, Sichuan, People's Republic of China
| |
Collapse
|
2
|
Dainese-Marque O, Garcia V, Andrieu-Abadie N, Riond J. Contribution of Keratinocytes in Skin Cancer Initiation and Progression. Int J Mol Sci 2024; 25:8813. [PMID: 39201498 PMCID: PMC11354502 DOI: 10.3390/ijms25168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Keratinocytes are major cellular components of the skin and are strongly involved in its homeostasis. Oncogenic events, starting mainly from excessive sun exposure, lead to the dysregulation of their proliferation and differentiation programs and promote the initiation and progression of non-melanoma skin cancers (NMSCs). Primary melanomas, which originate from melanocytes, initiate and develop in close interaction with keratinocytes, whose role in melanoma initiation, progression, and immune escape is currently being explored. Recent studies highlighted, in particular, unexpected modes of communication between melanocytic cells and keratinocytes, which may be of interest as sources of new biomarkers in melanomagenesis or potential therapeutic targets. This review aims at reporting the various contributions of keratinocytes in skin basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and melanoma, with a greater focus on the latter in order to highlight some recent breakthrough findings. The readers are referred to recent reviews when contextual information is needed.
Collapse
Affiliation(s)
| | | | - Nathalie Andrieu-Abadie
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31037 Toulouse, France
| |
Collapse
|
3
|
Tang T, Zhang P, Zhang Q, Man X, Xu Y. Fabrication of heterocellular spheroids with controllable core-shell structure using inertial focusing effect for scaffold-free 3D cell culture models. Biofabrication 2024; 16:045013. [PMID: 39019062 DOI: 10.1088/1758-5090/ad647e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Three-dimensional (3D) cell culture models capable of emulating the biological functions of natural tissues are pivotal in tissue engineering and regenerative medicine. Despite progress, the fabrication ofin vitroheterocellular models that mimic the intricate structures of natural tissues remains a significant challenge. In this study, we introduce a novel, scaffold-free approach leveraging the inertial focusing effect in rotating hanging droplets for the reliable production of heterocellular spheroids with controllable core-shell structures. Our method offers precise control over the core-shell spheroid's size and geometry by adjusting the cell suspension density and droplet morphology. We successfully applied this technique to create hair follicle organoids, integrating dermal papilla cells within the core and epidermal cells in the shell, thereby achieving markedly enhanced hair inducibility compared to mixed-structure models. Furthermore, we have developed melanoma tumor spheroids that accurately mimic the dynamic interactions between tumor and stromal cells, showing increased invasion capabilities and altered expressions of cellular adhesion molecules and proteolytic enzymes. These findings underscore the critical role of cellular spatial organization in replicating tissue functionalityin vitro. Our method represents a significant advancement towards generating heterocellular spheroids with well-defined architectures, offering broad implications for biological research and applications in tissue engineering.
Collapse
Affiliation(s)
- Tan Tang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, People's Republic of China
| | - Pengfei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, People's Republic of China
| | - Qiuting Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, People's Republic of China
| | - Xingkun Man
- School of Physics, Beihang University, Beijing, People's Republic of China
| | - Ye Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Wu LY, Park SH, Jakobsson H, Shackleton M, Möller A. Immune Regulation and Immune Therapy in Melanoma: Review with Emphasis on CD155 Signalling. Cancers (Basel) 2024; 16:1950. [PMID: 38893071 PMCID: PMC11171058 DOI: 10.3390/cancers16111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Melanoma is commonly diagnosed in a younger population than most other solid malignancies and, in Australia and most of the world, is the leading cause of skin-cancer-related death. Melanoma is a cancer type with high immunogenicity; thus, immunotherapies are used as first-line treatment for advanced melanoma patients. Although immunotherapies are working well, not all the patients are benefitting from them. A lack of a comprehensive understanding of immune regulation in the melanoma tumour microenvironment is a major challenge of patient stratification. Overexpression of CD155 has been reported as a key factor in melanoma immune regulation for the development of therapy resistance. A more thorough understanding of the actions of current immunotherapy strategies, their effects on immune cell subsets, and the roles that CD155 plays are essential for a rational design of novel targets of anti-cancer immunotherapies. In this review, we comprehensively discuss current anti-melanoma immunotherapy strategies and the immune response contribution of different cell lineages, including tumour endothelial cells, myeloid-derived suppressor cells, cytotoxic T cells, cancer-associated fibroblast, and nature killer cells. Finally, we explore the impact of CD155 and its receptors DNAM-1, TIGIT, and CD96 on immune cells, especially in the context of the melanoma tumour microenvironment and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Li-Ying Wu
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Su-Ho Park
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haakan Jakobsson
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
| | - Mark Shackleton
- Department of Medical Oncology, Paula Fox Melanoma and Cancer Centre, Alfred Health, Melbourne, VIC 3004, Australia;
- School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Möller
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- JC STEM Lab, Department of Otorhinolaryngology, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Rodrigues DB, Moreira HR, Jarnalo M, Horta R, Marques AP, Reis RL, Pirraco RP. Generation of 3D melanoma models using an assembloid-based approach. Acta Biomater 2024; 178:93-110. [PMID: 38382833 DOI: 10.1016/j.actbio.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
While 3D tumor models have greatly evolved over the past years, there is still a strong requirement for more biosimilar models which are capable of recapitulating cellular crosstalk within the tumor microenvironment while equally displaying representative levels of tumor aggressiveness and invasion. Herein, we disclose an assembloid melanoma model based on the fusion of individual stromal multicellular spheroids (MCSs). In contrast to more traditional tumor models, we show that it is possible to develop self-organizing, heterotypic melanoma models where tumor cells present stem-cell like features like up-regulated pluripotency master regulators SOX2, POU5F1 and NANOG. Additionally, these assembloids display high levels of invasiveness while embedded in 3D matrices as evidenced by stromal cell promotion of melanoma cell invasion via metalloproteinase production. Furthermore, sensitivity to anticancer drug doxorubicin was demonstrated for the melanoma assembloid model. These findings suggest that melanoma assembloids may play a significant role in the field of 3D cancer models as they more closely mimic the tumor microenvironment when compared to more traditional MCSs, opening the doors to a better understanding of the role of tumor microenvironment in supporting tumor progression. STATEMENT OF SIGNIFICANCE: The development of complex 3D tumor models that better recapitulate the tumor microenvironment is crucial for both an improved comprehension of intercellular crosstalk and for more efficient drug screening. We have herein developed a self-organizing heterotypic assembloid-based melanoma model capable of closely mimicking the tumor microenvironment. Key features recapitulated were the preservation of cancer cell stemness, sensitivity to anti-cancer agents and tumor cell invasion promoted by stromal cells. The approach of pre-establishing distinct stromal domains for subsequent combination into more complex tumor constructs provides a route for developing superior tumor models with a higher degree of similarity to native cancer tissues.
Collapse
Affiliation(s)
- Daniel B Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Helena R Moreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, Porto, Portugal; Faculty of Medicine - University of Porto, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães 4805-017, Portugal.
| |
Collapse
|
6
|
Bertrand JU, Petit V, Aktary Z, de la Grange P, Elkoshi N, Sohier P, Delmas V, Levy C, Larue L. Loss of Dicer in Newborn Melanocytes Leads to Premature Hair Graying and Changes in Integrin Expression. J Invest Dermatol 2024; 144:601-611. [PMID: 37739336 DOI: 10.1016/j.jid.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.
Collapse
Affiliation(s)
- Juliette U Bertrand
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Valérie Petit
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Zackie Aktary
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | | | - Nadav Elkoshi
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Pierre Sohier
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Véronique Delmas
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.
| |
Collapse
|
7
|
Ishikawa T, Irie N, Tashiro J, Osaki T, Warita T, Warita K, Naito M. Comparison of the anticancer effects of various statins on canine oral melanoma cells. Vet Comp Oncol 2024; 22:156-161. [PMID: 38044042 DOI: 10.1111/vco.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Canine oral melanoma is a highly malignant cancer with a poor prognosis. Statins, commonly used drugs for treating dyslipidemia, exhibit pleiotropic anticancer effects and marked anti-proliferative effects against melanoma cells. The anticancer effects among statins vary; in human cancers, lipophilic statins have shown stronger anticancer effects compared with hydrophilic statins. However, data on the differences in the effects of various statins on canine cancer cells are lacking, hence the optimal statins for treating canine melanoma remain unknown. Therefore, this study aimed to clarify the most effective statin by comparing the anticancer effects of hydrophilic rosuvastatin and lipophilic atorvastatin, simvastatin, fluvastatin and pitavastatin on three canine oral melanoma cell lines. Time-dependent measurement of cell confluence showed that lipophilic statins had a stronger anti-proliferative effect on all cell lines than hydrophilic rosuvastatin. Quantification of lactate dehydrogenase release, an indicator of cytotoxicity, showed that lipophilic statins more effectively induced cell death than hydrophilic rosuvastatin. Lipophilic statins affected both inhibition of cell proliferation and induction of cell death. The anticancer effects of statins on canine oral melanoma cells differed in the following ascending order of IC50 values: pitavastatin < fluvastatin = simvastatin < atorvastatin < rosuvastatin. The required concentration of pitavastatin was approximately 1/20th that of rosuvastatin. Among the statins used in this study, pitavastatin had the highest anticancer effect. Our results suggest lipophilic pitavastatin as the optimal statin for treating canine oral melanoma.
Collapse
Affiliation(s)
- Takuro Ishikawa
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Nanami Irie
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
8
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
9
|
Stark MS, Sturm RA, Pan Y, Smit DJ, Kommajosyula V, Lee KJ, Jagirdar K, McLean C, Duffy DL, Soyer HP, Mar VJ. Assessing the genetic risk of nodular melanoma using a candidate gene approach. Br J Dermatol 2024; 190:199-206. [PMID: 37766469 DOI: 10.1093/bjd/ljad365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Nodular melanoma (NM) is a challenge to diagnose early due to its rapid growth and more atypical clinical presentation, making it the largest contributor to melanoma mortality. OBJECTIVES Our study aim was to perform a rare-variant allele (RVA) analysis of whole-exome sequencing of patients with NM and non-NM (minor allele frequency ≤ 1% non-Finnish European) for a set of 500 candidate genes potentially implicated in melanoma. METHODS This study recruited 131 participants with NM and 194 with non-NM from South-east Queensland and patients with NM from Victoria to perform a comparative analysis of possible genetic differences or similarities between the two melanoma cohorts. RESULTS Phenotypic analysis revealed that a majority of patients diagnosed with NM were older males with a higher frequency of fair skin and red hair than is seen in the general population. The distribution of common melanoma polygenic risk scores was similar in patients with NM and non-NM, with over 28% in the highest quantile of scores. There was also a similar frequency of carriage of familial/high-penetrant melanoma gene and loss-of-function variants. We identified 39 genes by filtering 500 candidate genes based on the greatest frequency in NM compared with non-NM cases. The genes with RVAs of greatest frequency in NM included PTCH1, ARID2 and GHR. Rare variants in the SMO gene, which interacts with PTCH1 as ligand and receptor, were also identified, providing evidence that the Hedgehog pathway may contribute to NM risk. There was a cumulative effect in carrying multiple rare variants in the NM-associated genes. A 14.8-fold increased ratio for NM compared with non-NM was seen when two RVAs of the 39 genes were carried by a patient. CONCLUSIONS This study highlights the importance of considering frequency of RVA to identify those at risk of NM in addition to known high penetrance genes.
Collapse
Affiliation(s)
- Mitchell S Stark
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
| | - Richard A Sturm
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
| | - Yan Pan
- Victorian Melanoma Service, The Alfred Hospital, Melbourne, Vic, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences
| | - Darren J Smit
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
| | - Varsha Kommajosyula
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
| | - Katie J Lee
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
| | - Kasturee Jagirdar
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
| | - Catriona McLean
- Victorian Melanoma Service, The Alfred Hospital, Melbourne, Vic, Australia
- Central Clinical School, Faculty of Medicine, Nursing and Health Sciences
| | - David L Duffy
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Qld, Australia
| | - H Peter Soyer
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Qld, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | - Victoria J Mar
- Victorian Melanoma Service, The Alfred Hospital, Melbourne, Vic, Australia
- School of Public Health and Preventive Medicine; Monash University, Melbourne, Vic, Australia
| |
Collapse
|
10
|
Noujarède J, Carrié L, Garcia V, Grimont M, Eberhardt A, Mucher E, Genais M, Schreuder A, Carpentier S, Ségui B, Nieto L, Levade T, Puig S, Torres T, Malvehy J, Harou O, Lopez J, Dalle S, Caramel J, Gibot L, Riond J, Andrieu-Abadie N. Sphingolipid paracrine signaling impairs keratinocyte adhesion to promote melanoma invasion. Cell Rep 2023; 42:113586. [PMID: 38113139 DOI: 10.1016/j.celrep.2023.113586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer due to its propensity to metastasize. It arises from melanocytes, which are attached to keratinocytes within the basal epidermis. Here, we hypothesize that, in addition to melanocyte-intrinsic modifications, dysregulation of keratinocyte functions could initiate early-stage melanoma cell invasion. We identified the lysolipid sphingosine 1-phosphate (S1P) as a tumor paracrine signal from melanoma cells that modifies the keratinocyte transcriptome and reduces their adhesive properties, leading to tumor invasion. Mechanistically, tumor cell-derived S1P reduced E-cadherin expression in keratinocytes via S1P receptor dependent Snail and Slug activation. All of these effects were blocked by S1P2/3 antagonists. Importantly, we showed that epidermal E-cadherin expression was inversely correlated with the expression of the S1P-producing enzyme in neighboring tumors and the Breslow thickness in patients with early-stage melanoma. These findings support the notion that E-cadherin loss in the epidermis initiates the metastatic cascade in melanoma.
Collapse
Affiliation(s)
- Justine Noujarède
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Lorry Carrié
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Virginie Garcia
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Maxime Grimont
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre de Recherches en Cancérologie de Lyon, Lyon, France
| | - Anaïs Eberhardt
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre de Recherches en Cancérologie de Lyon, Lyon, France; Service de Dermatologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Elodie Mucher
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Matthieu Genais
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Anne Schreuder
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Stéphane Carpentier
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Bruno Ségui
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Laurence Nieto
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Thierry Levade
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France; Laboratoire de Biochimie Métabolique, CHU de Toulouse, Toulouse, France
| | - Susana Puig
- Melanoma Unit, Department of Dermatology, University of Barcelona, Barcelona, Spain & CIBER of Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Teresa Torres
- Melanoma Unit, Department of Dermatology, University of Barcelona, Barcelona, Spain & CIBER of Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, University of Barcelona, Barcelona, Spain & CIBER of Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Olivier Harou
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre de Recherches en Cancérologie de Lyon, Lyon, France; Service de Dermatologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Jonathan Lopez
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre de Recherches en Cancérologie de Lyon, Lyon, France; Service de Dermatologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Stéphane Dalle
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre de Recherches en Cancérologie de Lyon, Lyon, France; Service de Dermatologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Julie Caramel
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre de Recherches en Cancérologie de Lyon, Lyon, France
| | - Laure Gibot
- Université Toulouse III Paul-Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, CNRS UMR5623, Toulouse, France
| | - Joëlle Riond
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
11
|
Burks HE, Pokorny JL, Koetsier JL, Roth-Carter QR, Arnette CR, Gerami P, Seykora JT, Johnson JL, Ren Z, Green KJ. Melanoma cells repress Desmoglein 1 in keratinocytes to promote tumor cell migration. J Cell Biol 2023; 222:e202212031. [PMID: 37733372 PMCID: PMC10512973 DOI: 10.1083/jcb.202212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/25/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Melanoma is an aggressive cancer typically arising from transformation of melanocytes residing in the basal layer of the epidermis, where they are in direct contact with surrounding keratinocytes. The role of keratinocytes in shaping the melanoma tumor microenvironment remains understudied. We previously showed that temporary loss of the keratinocyte-specific cadherin, Desmoglein 1 (Dsg1), controls paracrine signaling between normal melanocytes and keratinocytes to stimulate the protective tanning response. Here, we provide evidence that melanoma cells hijack this intercellular communication by secreting factors that keep Dsg1 expression low in the surrounding keratinocytes, which in turn generate their own paracrine signals that enhance melanoma spread through CXCL1/CXCR2 signaling. Evidence suggests a model whereby paracrine signaling from melanoma cells increases levels of the transcriptional repressor Slug, and consequently decreases expression of the Dsg1 transcriptional activator Grhl1. Together, these data support the idea that paracrine crosstalk between melanoma cells and keratinocytes resulting in chronic keratinocyte Dsg1 reduction contributes to melanoma cell movement associated with tumor progression.
Collapse
Affiliation(s)
- Hope E. Burks
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jenny L. Pokorny
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer L. Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Quinn R. Roth-Carter
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christopher R. Arnette
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pedram Gerami
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi L. Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ziyou Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
13
|
Castro-Pérez E, Singh M, Sadangi S, Mela-Sánchez C, Setaluri V. Connecting the dots: Melanoma cell of origin, tumor cell plasticity, trans-differentiation, and drug resistance. Pigment Cell Melanoma Res 2023; 36:330-347. [PMID: 37132530 PMCID: PMC10524512 DOI: 10.1111/pcmr.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.
Collapse
Affiliation(s)
- Edgardo Castro-Pérez
- Center for Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama City, Panama
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Mithalesh Singh
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Shreyans Sadangi
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
| | - Carmen Mela-Sánchez
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, U.S.A
- William S. Middleton VA Hospital, Madison, WI, U.S.A
| |
Collapse
|
14
|
Rapanotti MC, Cugini E, Campione E, Di Raimondo C, Costanza G, Rossi P, Ferlosio A, Bernardini S, Orlandi A, De Luca A, Bianchi L. Epithelial-to-Mesenchymal Transition Gene Signature in Circulating Melanoma Cells: Biological and Clinical Relevance. Int J Mol Sci 2023; 24:11792. [PMID: 37511550 PMCID: PMC10380315 DOI: 10.3390/ijms241411792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The most promising method for monitoring patients with minimal morbidity is the detection of circulating melanoma cells (CMCs). We have shown that CD45-CD146+ABCB5+ CMCs identify a rare primitive stem/mesenchymal CMCs population associated with disease progression. The epithelial-to-mesenchymal transition (EMT) confers cancer cells a hybrid epithelial/mesenchymal phenotype promoting metastatization. Thus, we investigated the potential clinical value of the EMT gene signature of these primitive CMCs. A reliable quantitative real-time polymerase chain reaction (qRT-PCR) protocol was settled up using tumor cell lines RNA dilutions. Afterwards, immune-magnetically isolated CMCs from advanced melanoma patients, at onset and at the first checkpoint (following immune or targeted therapy), were tested for the level of EMT hallmarks and EMT transcription factor genes. Despite the small cohort of patients, we obtained promising results. Indeed, we observed a deep gene rewiring of the EMT investigated genes: in particular we found that the EMT gene signature of isolated CMCs correlated with patients' clinical outcomes. In conclusion, We established a reliable qRT-PCR protocol with high sensitivity and specificity to characterize the gene expression of isolated CMCs. To our knowledge, this is the first evidence demonstrating the impact of immune or targeted therapies on EMT hallmark gene expressions in CMCs from advanced melanoma patients.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Pimenta J, Pires I, Prada J, Cotovio M. E-Cadherin Immunostaining in Equine Melanocytic Tumors. Animals (Basel) 2023; 13:2216. [PMID: 37444014 DOI: 10.3390/ani13132216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Melanocytic tumors are an important neoplastic disease in human and veterinary medicine, presenting large differences regarding tumor behavior between species. In horses, these tumors present a prolonged benign behavior, with rare invasiveness and metastases. In humans and small animals, invasion and metastasis have been associated with an Epithelial-Mesenchymal Transition, where the loss of E-cadherin expression plays a key role in tumor progression. This process and the role of E-cadherin have not yet been evaluated in equine melanocytic tumors. This study aimed to assess the immunolabeling of E-cadherin in equine melanocytic tumors and relate this with clinicopathological variables. A total of 72 equine melanocytic tumors were classified as benign and malignant and evaluated by immunohistochemistry for E-cadherin expression. A different pattern of immunostaining was found, contrasting with other species. A total of 69.4% of tumors presented raised immunolabeling of E-cadherin, with 70.7% of melanomas remaining with high expression. The typical loss of immunostaining was not seen in malignant melanomas and no differences were found between benign and malignant melanomas regarding E-cadherin immunostaining. The high immunolabeling of E-cadherin may contribute to the low invasiveness of these tumors, and it is in accordance with the benign behavior of equine melanoma and with the genetic factors associated with its development.
Collapse
Affiliation(s)
- José Pimenta
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Isabel Pires
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Justina Prada
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
16
|
Romano B, Maresca DC, Somma F, Ahmadi P, Putra MY, Rahmawati SI, Chianese G, Formisano C, Ianaro A, Ercolano G. Ircinia ramosa Sponge Extract (iSP) Induces Apoptosis in Human Melanoma Cells and Inhibits Melanoma Cell Migration and Invasiveness. Mar Drugs 2023; 21:371. [PMID: 37504902 PMCID: PMC10381260 DOI: 10.3390/md21070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Marine compounds represent a varied source of new drugs with potential anticancer effects. Among these, sponges, including those belonging to the Irciniidae family, have been demonstrated to exert cytotoxic effects on different human cancer cells. Here, we investigated, for the first time, the therapeutic effect of an extract (referred as iSP) from the sponge, Ircinia ramosa (Porifera, Dictyoceratida, and Irciniidae), on A375 human melanoma cells. We found that iSP impaired A375 melanoma cells proliferation, induced cell death through caspase-dependent apoptosis and arrested cells in the G1 phase of the cell cycle, as demonstrated via both flow cytometry and qPCR analysis. The proapoptotic effect of iSP is associated with increased ROS production and mitochondrial modulation, as observed by using DCF-DHA and mitochondrial probes. In addition, we performed wound healing, invasion and clonogenic assays and found that iSP was able to restrain A375 migration, invasion and clonogenicity. Importantly, we observed that an iSP treatment modulated the expression of the EMT-associated epithelial markers, E-CAD and N-CAD, unveiling the mechanism underlying the effect of iSP in modulating A375 migration and invasion. Collectively, this study provides the first evidence to support the role of Ircinia ramosa sponge extracts as a potential therapeutic resource for the treatment of human melanoma.
Collapse
Affiliation(s)
- Benedetta Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Claudia Maresca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Somma
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Peni Ahmadi
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong 16911, Indonesia
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
17
|
Penas C, Arroyo-Berdugo Y, Apraiz A, Rasero J, Muñoa-Hoyos I, Andollo N, Cancho-Galán G, Izu R, Gardeazabal J, Ezkurra PA, Subiran N, Alvarez-Dominguez C, Alonso S, Bosserhoff AK, Asumendi A, Boyano MD. Pirin is a prognostic marker of human melanoma that dampens the proliferation of malignant cells by downregulating JARID1B/KDM5B expression. Sci Rep 2023; 13:9561. [PMID: 37308689 DOI: 10.1038/s41598-023-36684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Originally considered to act as a transcriptional co-factor, Pirin has recently been reported to play a role in tumorigenesis and the malignant progression of many tumors. Here, we have analyzed the diagnostic and prognostic value of Pirin expression in the early stages of melanoma, and its role in the biology of melanocytic cells. Pirin expression was analyzed in a total of 314 melanoma biopsies, correlating this feature with the patient's clinical course. Moreover, PIR downregulated primary melanocytes were analyzed by RNA sequencing, and the data obtained were validated in human melanoma cell lines overexpressing PIR by functional assays. The immunohistochemistry multivariate analysis revealed that early melanomas with stronger Pirin expression were more than twice as likely to develop metastases during the follow-up. Transcriptome analysis of PIR downregulated melanocytes showed a dampening of genes involved in the G1/S transition, cell proliferation, and cell migration. In addition, an in silico approach predicted that JARID1B as a potential transcriptional regulator that lies between PIR and its downstream modulated genes, which was corroborated by co-transfection experiments and functional analysis. Together, the data obtained indicated that Pirin could be a useful marker for the metastatic progression of melanoma and that it participates in the proliferation of melanoma cells by regulating the slow-cycling JARID1B gene.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA, 15213, USA
| | - Iraia Muñoa-Hoyos
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | | | - Rosa Izu
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Basurto University Hospital, 48013, Bilbo, Spain
| | - Jesús Gardeazabal
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Dermatology, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Pilar A Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
| | - Carmen Alvarez-Dominguez
- MEDONLINE Multidisciplinary Research Group, Faculty of Health Sciences and Faculty of Education, International University of La Rioja, 26006, Logroño, Spain
| | - Santos Alonso
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940, Leioa, Spain
| | - Anja K Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054, Erlangen, Germany
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain.
| |
Collapse
|
18
|
Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, Abdel-Wahab H, Kundu RV, Le Poole IC. Melanocyte-keratinocyte cross-talk in vitiligo. Front Med (Lausanne) 2023; 10:1176781. [PMID: 37275386 PMCID: PMC10235633 DOI: 10.3389/fmed.2023.1176781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Vitiligo is a common acquired pigmentary disorder that presents as progressive loss of melanocytes from the skin. Epidermal melanocytes and keratinocytes are in close proximity to each other, forming a functional and structural unit where keratinocytes play a pivotal role in supporting melanocyte homeostasis and melanogenesis. This intimate relationship suggests that keratinocytes might contribute to ongoing melanocyte loss and subsequent depigmentation. In fact, keratinocyte dysfunction is a documented phenomenon in vitiligo. Keratinocyte apoptosis can deprive melanocytes from growth factors including stem cell factor (SCF) and other melanogenic stimulating factors which are essential for melanocyte function. Additionally, keratinocytes control the mobility/stability phases of melanocytes via matrix metalloproteinases and basement membrane remodeling. Hence keratinocyte dysfunction may be implicated in detachment of melanocytes from the basement membrane and subsequent loss from the epidermis, also potentially interfering with repigmentation in patients with stable disease. Furthermore, keratinocytes contribute to the autoimmune insult in vitiligo. Keratinocytes express MHC II in perilesional skin and may present melanosomal antigens in the context of MHC class II after the pigmented organelles have been transferred from melanocytes. Moreover, keratinocytes secrete cytokines and chemokines including CXCL-9, CXCL-10, and IL-15 that amplify the inflammatory circuit within vitiligo skin and recruit melanocyte-specific, skin-resident memory T cells. In summary, keratinocytes can influence vitiligo development by a combination of failing to produce survival factors, limiting melanocyte adhesion in lesional skin, presenting melanocyte antigens and enhancing the recruitment of pathogenic T cells.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rohan S. Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Harika Echuri
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | | | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Roopal V. Kundu
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
Boyce ST, Kagan RJ. Composition and Performance of Autologous Engineered Skin Substitutes for Repair or Regeneration of Excised, Full-Thickness Burns. J Burn Care Res 2023; 44:S50-S56. [PMID: 35917370 PMCID: PMC10185147 DOI: 10.1093/jbcr/irac107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/27/2022]
Abstract
Prompt and permanent wound closure after burn injuries remains a requirement for patient recovery. Historically, split-thickness skin autograft (STAG) has served as the prevailing standard of care for closure of extensive, deep burns. Because STAG availability may be insufficient in life-threatening burns, alternatives have been evaluated for safety and efficacy of wound closure. Since the 1970s, alternatives consisting of cultured epidermal keratinocytes, and/or acellular dermal substitutes were studied and translated into services and devices that facilitated wound closure, survival, and recovery after major burns. Cultured epithelial autografts (CEA) promoted epidermal closure of wounds but were not stable during long-term recovery. An acellular dermal substitute consisting of collagen and glycosaminoglycans (C-GAG) provided more uniform dermal repair, and reduced needs for epidermal harvesting but was subject to loss from microbial contamination. More recently, an autologous engineered skin substitute (ESS) has been reported and includes a C-GAG polymer populated with fibroblasts and keratinocytes which form basement membrane. ESS can be applied clinically over a vascularized dermal substitute and generates stable wound closure that is smooth, soft, and strong. Despite these advances, no current alternatives for permanent wound closure restore the anatomy and physiology of uninjured skin. Current alternatives act by mechanisms of wound healing, not by developmental biology by which skin forms in utero with pigment, hair, sweat and sebaceous glands, microvasculature, and nerve. Until full-thickness burns are restored with all of the normal structures and functions of uninjured skin, regenerative medicine of skin will remain an ambitious aspiration for future researchers and engineers to achieve.
Collapse
Affiliation(s)
- Steven T Boyce
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Richard J Kagan
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Ogawa T, Ishitsuka Y. NRF2 in the Epidermal Pigmentary System. Biomolecules 2022; 13:biom13010020. [PMID: 36671405 PMCID: PMC9855619 DOI: 10.3390/biom13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Melanogenesis is a major part of the environmental responses and tissue development of the integumentary system. The balance between reduction and oxidation (redox) governs pigmentary responses, for which coordination among epidermal resident cells is indispensable. Here, we review the current understanding of melanocyte biology with a particular focus on the "master regulator" of oxidative stress responses (i.e., the Kelch-like erythroid cell-derived protein with cap'n'collar homology-associated protein 1-nuclear factor erythroid-2-related factor 2 system) and the autoimmune pigment disorder vitiligo. Our investigation revealed that the former is essential in pigmentogenesis, whereas the latter results from unbalanced redox homeostasis and/or defective intercellular communication in the interfollicular epidermis (IFE). Finally, we propose a model in which keratinocytes provide a "niche" for differentiated melanocytes and may "imprint" IFE pigmentation.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
- Correspondence: ; Tel.: +81-66-879-3031; Fax: +81-66-879-3039
| |
Collapse
|
21
|
Hamdy NM, Eskander G, Basalious EB. Insights on the Dynamic Innovative Tumor Targeted-Nanoparticles-Based Drug Delivery Systems Activation Techniques. Int J Nanomedicine 2022; 17:6131-6155. [PMID: 36514378 PMCID: PMC9741821 DOI: 10.2147/ijn.s386037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Anti-cancer conventional chemotherapeutic drugs novel formula progress, nowadays, uses nano technology for targeted drug delivery, specifically tailored to overcome therapeutic agents' delivery challenges. Polymer drug delivery systems (DDS) play a crucial role in minimizing off-target side effects arising when using standard cytotoxic drugs. Using nano-formula for targeted localized action, permits using larger effective cytotoxic doses on a single special spot, that can seriously cause harm if it was administered systemically. Therefore, various nanoparticles (NPs) specifically have attached groups for targeting capabilities, not seen in bulk materials, which then need activation. In this review, we will present a simple innovative, illustrative, in a cartoon-way, enumeration of NP anti-cancer drug targeting delivery system activation-types. Area(s) covered in this review are the mechanisms of various NP activation techniques.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Georgette Eskander
- Faculty of Pharmacy, Ain Shams University, Postgraduate Student, Cairo, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
22
|
Current Understanding of the Role of Senescent Melanocytes in Skin Ageing. Biomedicines 2022; 10:biomedicines10123111. [PMID: 36551868 PMCID: PMC9775966 DOI: 10.3390/biomedicines10123111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Melanocytes reside within the basal epidermis of human skin, and function to protect the skin from ultraviolet light through the production of melanin. Prolonged exposure of the skin to UV light can induce irreparable DNA damage and drive cells into senescence, a sustained cell cycle arrest that prevents the propagation of this damage. Senescent cells can also be detrimental and contribute to skin ageing phenotypes through their senescence-associated secretory phenotype. Senescent cells can act in both an autocrine and paracrine manner to produce widespread tissue inflammation and skin ageing. Recently, melanocytes have been identified as the main senescent cell population within the epidermis and have been linked to a variety of skin ageing phenotypes, such as epidermal thinning and the presence of wrinkles. However, the literature surrounding melanocyte senescence is limited and tends to focus on the role of senescence in the prevention of melanoma. Therefore, this review aims to explore the current understanding of the contribution of senescent melanocytes to human skin ageing.
Collapse
|
23
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Zhao S, Wen S, Liu H, Zhou Z, Liu Y, Zhong J, Xie J. High Expression of TIMELESS Predicts Poor Prognosis: A Potential Therapeutic Target for Skin Cutaneous Melanoma. Front Surg 2022; 9:917776. [PMID: 36034394 PMCID: PMC9406824 DOI: 10.3389/fsurg.2022.917776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the most lethal skin cancer with an increasing incidence worldwide. The poor prognosis of SKCM urgently requires us to discover prognostic biomarkers for accurate therapy. As a regulator of DNA replication, TIMELESS (TIM) has been found to be highly expressed in various malignancies but rarely reported in SKCM. The objective of this study was to evaluate the relationship between TIM and SKCM tumorigenesis and prognosis. Methods We obtained RNA sequencing data from TCGA and GTEx to analyze TIM expression and differentially expressed genes (DEGs). Subsequently, GO/KEGG, GSEA, immune cell infiltration analysis, and protein-protein interaction (PPI) network were used to perform the functional enrichment analysis of TIM-related DEGs. Moreover, the receiver operating characteristic (ROC) curves, Cox regression analysis, Kaplan–Meier (K-M) analysis, and nomograms were applied to figure out the clinical significance of TIM in SKCM. In addition, we investigated the relationship between TIM promoter methylation and SKCM prognosis through the UALCAN database. Finally, the immunohistochemical (IHC) results of normal skin and SKCM were analyzed to determine expression differences. Results TIM was significantly elevated in various malignancies, including SKCM, and high expression of TIM was associated with poor prognosis. Moreover, a total of 402 DEGs were identified between the two distinct TIM expression groups, and functional annotation showed enrichment with positive regulation of cell cycle and classic oncogenic pathways in the high TIM expression phenotype, while keratinization pathways were negatively regulated and enriched. Further analysis showed that TIM was correlated with infiltration of multiple immune cells. Finally, IHC validated the differential expression of TIM in SKCM. Conclusion TIM might play a pivotal role in tumorigenesis of SKCM and is closely related to its prognosis.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shifeng Wen
- Department of Orthopedics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hengdeng Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziheng Zhou
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yiling Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinbao Zhong
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Kiuru M, Kriner MA, Wong S, Zhu G, Terrell JR, Li Q, Hoang M, Beechem J, McPherson JD. High-Plex Spatial RNA Profiling Reveals Cell Type‒Specific Biomarker Expression during Melanoma Development. J Invest Dermatol 2022; 142:1401-1412.e20. [PMID: 34699906 PMCID: PMC9714472 DOI: 10.1016/j.jid.2021.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023]
Abstract
Early diagnosis of melanoma is critical for improved survival. However, the biomarkers of early melanoma evolution and their origin within the tumor and its microenvironment, including the keratinocytes, are poorly defined. To address this, we used spatial transcript profiling that maintains the morphological tumor context to measure the expression of >1,000 RNAs in situ in patient-derived formalin-fixed, paraffin-embedded tissue sections in primary melanoma and melanocytic nevi. We profiled 134 regions of interest (each 200 μm in diameter) enriched in melanocytes, neighboring keratinocytes, or immune cells. This approach captured distinct expression patterns across cell types and tumor types during melanoma development. Unexpectedly, we discovered that S100A8 is expressed by keratinocytes within the tumor microenvironment during melanoma growth. Immunohistochemistry of 252 tumors showed prominent keratinocyte-derived S100A8 expression in melanoma but not in benign tumors and confirmed the same pattern for S100A8's binding partner S100A9, suggesting that injury to the epidermis may be an early and readily detectable indicator of melanoma development. Together, our results establish a framework for high-plex, spatial, and cell type‒specific resolution of gene expression in archival tissue applicable to the development of biomarkers and characterization of tumor microenvironment interactions in tumor evolution.
Collapse
Affiliation(s)
- Maija Kiuru
- Department of Dermatology, University of California Davis, Sacramento, California, USA,Department of Pathology & Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | | | - Samantha Wong
- Department of Dermatology, University of California Davis, Sacramento, California, USA
| | - Guannan Zhu
- Department of Dermatology, University of California Davis, Sacramento, California, USA,Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jessica R. Terrell
- Department of Dermatology, University of California Davis, Sacramento, California, USA
| | - Qian Li
- Center for Oncology Hematology Outcomes Research and Training (COHORT) and Division of Hematology and Oncology, University of California, Davis, Sacramento, CA
| | | | | | - John D. McPherson
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
27
|
Extracellular Vesicles Derived from Acidified Metastatic Melanoma Cells Stimulate Growth, Migration, and Stemness of Normal Keratinocytes. Biomedicines 2022; 10:biomedicines10030660. [PMID: 35327461 PMCID: PMC8945455 DOI: 10.3390/biomedicines10030660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is a highly malignant tumor. Melanoma cells release extracellular vesicles (EVs), which contribute to the growth, metastasis, and malignancy of neighboring cells by transfer of tumor-promoting miRNAs, mRNA, and proteins. Melanoma microenvironment acidification promotes tumor progression and determines EVs’ properties. We studied the influence of EVs derived from metastatic melanoma cells cultivated at acidic (6.5) and normal (7.4) pH on the morphology and homeostasis of normal keratinocytes. Acidification of metastatic melanoma environment made EVs more prooncogenic with increased expression of prooncogenic mi221 RNA, stemless factor CD133, and pro-migration factor SNAI1, as well as with downregulated antitumor mir7 RNA. Incubation with EVs stimulated growth and migration both of metastatic melanoma cells and keratinocytes and changed the morphology of keratinocytes to stem-like phenotype, which was confirmed by increased expression of the stemness factors KLF and CD133. Activation of the AKT/mTOR and ERK signaling pathways and increased expression of epidermal growth factor receptor EGFR and SNAI1 were detected in keratinocytes upon incubation with EVs. Moreover, EVs reduced the production of different cytokines (IL6, IL10, and IL12) and adhesion factors (sICAM-1, sICAM-3, sPecam-1, and sCD40L) usually secreted by keratinocytes to control melanoma progression. Bioinformatic analysis revealed the correlation between decreased expression of these secreted factors and worse survival prognosis for patients with metastatic melanoma. Altogether, our data mean that metastatic melanoma EVs are important players in the transformation of normal keratinocytes.
Collapse
|
28
|
Wang P, Hu G, Zhao W, Du J, You M, Xv M, Yang H, Zhang M, Yan F, Huang M, Wang X, Zhang L, Chen Y. Continuous ZnO nanoparticle exposure induces melanoma-like skin lesions in epidermal barrier dysfunction model mice through anti-apoptotic effects mediated by the oxidative stress–activated NF-κB pathway. J Nanobiotechnology 2022; 20:111. [PMID: 35248056 PMCID: PMC8898538 DOI: 10.1186/s12951-022-01308-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Increasing interest in the hazardous properties of zinc oxide nanoparticles (ZnO NPs), commonly used as ultraviolet filters in sunscreen, has driven efforts to study the percutaneous application of ZnO NPs to diseased skin; however, in-depth studies of toxic effects on melanocytes under conditions of epidermal barrier dysfunction remain lacking. Methods Epidermal barrier dysfunction model mice were continuously exposed to a ZnO NP-containing suspension for 14 and 49 consecutive days in vivo. Melanoma-like change and molecular mechanisms were also verified in human epidermal melanocytes treated with 5.0 µg/ml ZnO NPs for 72 h in vitro. Results ZnO NP application for 14 and 49 consecutive days induced melanoma-like skin lesions, supported by pigmented appearance, markedly increased number of melanocytes in the epidermis and dermis, increased cells with irregular nuclei in the epidermis, recruited dendritic cells in the dermis and dysregulated expression of melanoma-associated gene Fkbp51, Trim63 and Tsp 1. ZnO NPs increased oxidative injury, inhibited apoptosis, and increased nuclear factor kappa B (NF-κB) p65 and Bcl-2 expression in melanocytes of skin with epidermal barrier dysfunction after continuously treated for 14 and 49 days. Exposure to 5.0 µg/ml ZnO NPs for 72 h increased cell viability, decreased apoptosis, and increased Fkbp51 expression in melanocytes, consistent with histological observations in vivo. The oxidative stress–mediated mechanism underlying the induction of anti-apoptotic effects was verified using the reactive oxygen species scavenger N-acetylcysteine. Conclusions The entry of ZnO NPs into the stratum basale of skin with epidermal barrier dysfunction resulted in melanoma-like skin lesions and an anti-apoptotic effect induced by oxidative stress, activating the NF-κB pathway in melanocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01308-w.
Collapse
|
29
|
Farshidfar F, Rhrissorrakrai K, Levovitz C, Peng C, Knight J, Bacchiocchi A, Su J, Yin M, Sznol M, Ariyan S, Clune J, Olino K, Parida L, Nikolaus J, Zhang M, Zhao S, Wang Y, Huang G, Wan M, Li X, Cao J, Yan Q, Chen X, Newman AM, Halaban R. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat Commun 2022; 13:898. [PMID: 35197475 PMCID: PMC8866401 DOI: 10.1038/s41467-022-28566-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Acral melanoma, the most common melanoma subtype among non-White individuals, is associated with poor prognosis. However, its key molecular drivers remain obscure. Here, we perform integrative genomic and clinical profiling of acral melanomas from 104 patients treated in North America (n = 37) or China (n = 67). We find that recurrent, late-arising focal amplifications of cytoband 22q11.21 are a leading determinant of inferior survival, strongly associated with metastasis, and linked to downregulation of immunomodulatory genes associated with response to immune checkpoint blockade. Unexpectedly, LZTR1 - a known tumor suppressor in other cancers - is a key candidate oncogene in this cytoband. Silencing of LZTR1 in melanoma cell lines causes apoptotic cell death independent of major hotspot mutations or melanoma subtypes. Conversely, overexpression of LZTR1 in normal human melanocytes initiates processes associated with metastasis, including anchorage-independent growth, formation of spheroids, and an increase in MAPK and SRC activities. Our results provide insights into the etiology of acral melanoma and implicate LZTR1 as a key tumor promoter and therapeutic target.
Collapse
Affiliation(s)
- Farshad Farshidfar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | - Cong Peng
- Xiangya Hospital, Central South University, Changsha, China
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06520, USA
| | | | - Juan Su
- Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhu Yin
- Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - James Clune
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Olino
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Joerg Nikolaus
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Meiling Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuang Zhao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Dermatologic Surgery Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Gang Huang
- Department of Bone and Soft Tissue oncology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Miaojian Wan
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianan Li
- Department of Bone and Soft Tissue oncology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Jian Cao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiang Chen
- Xiangya Hospital, Central South University, Changsha, China.
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
In Vivo Melanoma Cell Morphology Reflects Molecular Signature and Tumor Aggressiveness. J Invest Dermatol 2022; 142:2205-2216.e6. [PMID: 35007555 DOI: 10.1016/j.jid.2021.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
Melanoma is the deadliest type of skin cancer, characterized by high cellular heterogeneity which contributes to therapy resistance and unpredictable disease outcome. Recently, by correlating Reflectance-Confocal-Microscopy (RCM) morphology with histopathological type, we identified four distinct melanoma-subtypes: dendritic-cell (DC), round-cell (RC), dermal-nest (DN), and combined-type (CT) melanomas. In the present study, each RCM-melanoma subtype expressed a specific biomolecular profile and biological behavior in vitro. Markers of tumor aggressiveness, including Ki67, MERTK, nestin and stemness markers, were highest in the most invasive CT and DN melanomas, as compared to DC and RC. This was also confirmed in multicellular tumor spheroids. Transcriptomic analysis showed a modulation of cancer progression-associated genes from DC to CT melanomas. The switch from E- to N-cadherin expression proved the epithelial-to-mesenchymal transition from DC to CT subtypes. The DN melanoma was predominantly located in the dermis, as also shown in skin reconstructs. It displayed a unique behavior and a molecular profile associated with a high degree of aggressiveness. Altogether, our results demonstrate that each RCM-melanoma subtype has a distinct biological and gene expression profile, related to tumor aggressiveness, confirming that RCM can be a dependable tool for in vivo detecting different types of melanoma and for early diagnostic screening.
Collapse
|
31
|
Rapanotti MC, Cugini E, Nuccetelli M, Terrinoni A, Di Raimondo C, Lombardo P, Costanza G, Cosio T, Rossi P, Orlandi A, Campione E, Bernardini S, Blot-Chabaud M, Bianchi L. MCAM/MUC18/CD146 as a Multifaceted Warning Marker of Melanoma Progression in Liquid Biopsy. Int J Mol Sci 2021; 22:12416. [PMID: 34830300 PMCID: PMC8623757 DOI: 10.3390/ijms222212416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- CD146 Antigen/blood
- CD146 Antigen/chemistry
- CD146 Antigen/genetics
- Disease Progression
- Female
- Follow-Up Studies
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Liquid Biopsy
- Longitudinal Studies
- Male
- Melanoma/blood
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/genetics
- Neoplasm, Residual/blood
- Neoplasm, Residual/genetics
- Neoplastic Cells, Circulating/metabolism
- Skin Neoplasms/blood
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Solubility
- Young Adult
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Paolo Lombardo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Piero Rossi
- Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Augusto Orlandi
- Anatomic Pathology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; (E.C.); (M.N.); (A.T.); (G.C.); (S.B.)
| | - Marcel Blot-Chabaud
- Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 13005 Marseille, France;
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (C.D.R.); (P.L.); (T.C.); (E.C.); (L.B.)
| |
Collapse
|
32
|
Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokinet Pharmacodyn 2021; 49:19-37. [PMID: 34671863 PMCID: PMC8528185 DOI: 10.1007/s10928-021-09790-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex diseases and improve drug development.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
33
|
Yang LX, Guo HB, Liu SY, Feng HP, Shi J. ETS1 promoted cell growth, metastasis and epithelial-mesenchymal transition process in melanoma by regulating miR-16-mediated SOX4 expression. Melanoma Res 2021; 31:298-308. [PMID: 34039939 DOI: 10.1097/cmr.0000000000000743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma is a malignant tumor with high metastasis and mortality. Epithelial-mesenchymal transition (EMT) was reported to be involved in the growth and metastasis of melanoma. To investigate these sections further, we showed that E26 transformation specific 1 (ETS1) could regulate growth, metastasis and EMT process of melanoma by regulating microRNA(miR)-16/SRY-related HMG box (SOX) 4 expression. MiR-16, ETS1, SOX4 and nuclear factor κB (NF-κB) expression levels in melanoma cells were examined using qPCR. ETS1, SOX4, EMT-related proteins and NF-κB signaling pathway-related proteins were examined using western blot. Cell counting kit-8 assay, transwell assay were applied to evaluate the cell proliferation, migration and invasion of melanoma cells, respectively. Besides, a dual-luciferase reporter assay was employed to verify the binding relationship between ETS1 and miR-16, miR-16 and SOX4, miR-16 and NF-κB1. We showed that ETS1 and SOX4 were upregulated in melanoma cells, while miR-16 was downregulated. MiR-16 overexpression suppressed growth, metastasis and EMT process of melanoma. We found ETS1 could bind to the promoter region of miR-16 and inhibited its transcription. ETS1 silence could inhibit growth, metastasis and EMT process of melanoma, and inhibition of miR-16 could reverse the effects. Besides, miR-16 is directly bound to SOX4 and downregulated its expression. Rescued experiments confirmed that SOX4 overexpression abolished the inhibition effect of miR-16 mimics on growth, metastasis and EMT process of melanoma. Finally, NF-κB1 as the target of miR-16 mediated downstream biological responses. ETS1 activated NF-κB signaling pathway through miR-16 via targeting SOX4, thus promoting growth, metastasis and EMT of melanoma.
Collapse
Affiliation(s)
| | - Hu-Bing Guo
- The First Department of Orthopaedic Surgery, The First Hospital of Tianshui, Tianshui, Gansu Province, P.R. China
| | | | | | | |
Collapse
|
34
|
Eom DS, Patterson LB, Bostic RR, Parichy DM. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes. Dev Biol 2021; 476:314-327. [PMID: 33933422 PMCID: PMC10069301 DOI: 10.1016/j.ydbio.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Raegan R Bostic
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Zhang X, Hu Z, Wang X, Li L, Zhu B, Lin X, Zhang J, Hua Z. ANXA10 promotes melanoma metastasis by suppressing E3 ligase TRIM41-directed PKD1 degradation. Cancer Lett 2021; 519:237-249. [PMID: 34324862 DOI: 10.1016/j.canlet.2021.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Melanoma is a highly metastatic cancer that requires effective and targeted curative therapy. Annexin A10 (ANXA10), a member of the annexin family, is a calcium- and phospholipid-binding protein. Considerable evidence indicates that ANXA10 is involved in tumour progression, but little is known about its role in melanoma development. In this study, we find that ANXA10 expression is significantly upregulated, and correlates with melanoma progression. ANXA10 knockout profoundly reduces cell migration and the metastatic activity of melanoma. In addition, ANXA10 knockout induces the N- to E-cadherin switch by upregulating SMAD6, an inhibitory SMAD in the TGF-β/SMAD pathway. The negative regulation of SMAD6 by ANXA10 is dependent on PKD1. ANXA10 interacts with PKD1 and inhibits E3 ligase TRIM41-targeted PKD1 degradation. In B16F10 melanoma cells, protein levels of ANXA10 and PKD1 are inversely correlated with SMAD6 level, but correlated with cell migration. Interestingly, ANXA10 and SMAD6 levels are inversely correlated in clinical samples of melanoma progression. Our findings suggest that the ANXA10-PKD1-SMAD6 axis is a new target for therapeutic strategies against melanoma metastasis.
Collapse
Affiliation(s)
- Xuerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| | - Zhaoqing Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinran Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Banghui Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaolei Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China; School of Biopharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
36
|
Scatolini M, Patel A, Grosso E, Mello-Grand M, Ostano P, Coppo R, Vitiello M, Venesio T, Zaccagna A, Pisacane A, Sarotto I, Taverna D, Poliseno L, Bergamaschi D, Chiorino G. GJB5 association with BRAF mutation and survival in cutaneous malignant melanoma. Br J Dermatol 2021; 186:117-128. [PMID: 34240406 DOI: 10.1111/bjd.20629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Gap junctional intercellular communication is crucial for epidermal cellular homeostasis. Inability to establish melanocyte-keratinocytes contacts and loss of intercellular junction's integrity may contribute to melanoma development. Connexins, laminins and desmocollins have been implicated in the control of melanoma growth, where their reduced expression has been reported in metastatic lesions. OBJECTIVES The aim of this study was to investigate Connexin 31.1 (GJB5) expression and identify any association with BRAF mutational status, melanoma patient prognosis and MAPK inhibitors (MAPKi) treatment. MATERIAL AND METHODS GJB5 expression was measured at RNA and protein level in melanoma clinical samples and established cell lines treated or not with BRAF and MEK inhibitors, as well as in cell lines which developed MAPK inhibitors resistance. Findings were further validated and confirmed by analysis of independent datasets. RESULTS Our analysis reveals significant downregulation of GJB5 expression in metastatic melanoma lesions compared to primary ones and in BRAF mutated versus BRAF wild-type melanomas. Likewise, GJB5 expression is significantly lower in BRAFV600E compared with BRAFWT cell lines and increases upon MAPKi treatment. MAPKi-resistant melanoma cells display a similar expression pattern compared to BRAFWT cells, with increased GJB5 expression associated with morphological changes. Enhancement of BRAFV600E expression in BRAFWT melanoma cells significantly upregulates miR-335-5p expression with consequent downregulation of GJB5, one of its targets. Furthermore, overexpression of miR-335-5p in two BRAFWT cell lines confirms specific GJB5 protein downregulation. RT-qPCR analysis also revealed upregulation of miR-335 in BRAFV600E melanoma cells, which is significantly downregulated in cells resistant to MEK inhibitors. Our data were further validated using the TCGA-SKCM dataset, where BRAF mutations associate with increased miR-335 expression and inversely correlate with GJB5 expression. In clinical samples, GJB5 underexpression is also associated with patient overall worse survival, especially at early stages. CONCLUSION We identified a significant association between metastases / BRAF mutation and low GJB5 expression in melanoma. Our results identify a novel mechanism of Gap-junctional protein regulation, suggesting a prognostic role for GJB5 in cutaneous melanoma.
Collapse
Affiliation(s)
- M Scatolini
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875, Ponderano, BI, Italy
| | - A Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London SMD, QMUL, London, E1 2AT, UK
| | - E Grosso
- Molecular Oncology Laboratory, Fondazione Edo ed Elvo Tempia, 13875, Ponderano, BI, Italy
| | - M Mello-Grand
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - P Ostano
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - R Coppo
- Molecular Biotechnology Centre, 10126, Torino, Italy.,Department of Clinical Bio-Resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Institute of Clinical Physiology, CNR, 56124, Pisa, Italy
| | - T Venesio
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - A Zaccagna
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - A Pisacane
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - I Sarotto
- Pathology and Dermosurgery Units, Candiolo Cancer Institute (FPO-IRCCS), 10060, Candiolo, Turin, Italy
| | - D Taverna
- Molecular Biotechnology Centre, 10126, Torino, Italy
| | - L Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori, Institute of Clinical Physiology, CNR, 56124, Pisa, Italy
| | - D Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London SMD, QMUL, London, E1 2AT, UK
| | - G Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| |
Collapse
|
37
|
Vandyck HHLD, Hillen LM, Bosisio FM, van den Oord J, zur Hausen A, Winnepenninckx V. Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev 2021; 40:603-624. [PMID: 33870460 PMCID: PMC8213587 DOI: 10.1007/s10555-021-09960-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts. Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumorigenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a tumor model, this review will shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic pathways that dictate tumor and patient fate.
Collapse
Affiliation(s)
- Hendrik HLD Vandyck
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Lisa M Hillen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Francesca M Bosisio
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
38
|
Romano V, Belviso I, Venuta A, Ruocco MR, Masone S, Aliotta F, Fiume G, Montagnani S, Avagliano A, Arcucci A. Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape. Int J Mol Sci 2021; 22:5283. [PMID: 34067929 PMCID: PMC8157224 DOI: 10.3390/ijms22105283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Cutaneous melanoma (CM) tissue represents a network constituted by cancer cells and tumor microenvironment (TME). A key feature of CM is the high structural and cellular plasticity of TME, allowing its evolution with disease and adaptation to cancer cell and environmental alterations. In particular, during melanoma development and progression each component of TME by interacting with each other and with cancer cells is subjected to dramatic structural and cellular modifications. These alterations affect extracellular matrix (ECM) remodelling, phenotypic profile of stromal cells, cancer growth and therapeutic response. The stromal fibroblast populations of the TME include normal fibroblasts and melanoma-associated fibroblasts (MAFs) that are highly abundant and flexible cell types interacting with melanoma and stromal cells and differently influencing CM outcomes. The shift from the normal microenvironment to TME and from normal fibroblasts to MAFs deeply sustains CM growth. Hence, in this article we review the features of the normal microenvironment and TME and describe the phenotypic plasticity of normal dermal fibroblasts and MAFs, highlighting their roles in normal skin homeostasis and TME regulation. Moreover, we discuss the influence of MAFs and their secretory profiles on TME remodelling, melanoma progression, targeted therapy resistance and immunosurveillance, highlighting the cellular interactions, the signalling pathways and molecules involved in these processes.
Collapse
Affiliation(s)
- Veronica Romano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Immacolata Belviso
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Alessandro Venuta
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Aliotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (F.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| | - Angelica Avagliano
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, 80125 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli “Federico II”, 80131 Naples, Italy; (V.R.); (I.B.); (A.V.); (S.M.)
| |
Collapse
|
39
|
Jobe NP, Åsberg L, Andersson T. Reduced WNT5A signaling in melanoma cells favors an amoeboid mode of invasion. Mol Oncol 2021; 15:1835-1848. [PMID: 33969605 PMCID: PMC8253101 DOI: 10.1002/1878-0261.12974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/25/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor cells invade and spread via either a mesenchymal or an amoeboid mode of migration. Amoeboid tumor cells have a rounded morphology and pronounced RhoA activity. Here, we investigate how WNT5A signaling, a tumor promotor in melanoma, relates to Rho GTPase activity and amoeboid migration. We compared melanoma cells with low (HTB63 cells) and high (WM852 cells) WNT5A expression. HTB63 cells exhibited an amoeboid morphology and had higher RhoA activity but lower invasiveness than WM852 cells in a three‐dimensional (3D) collagen matrix. We next explored the relationships between WNT5A, morphology, and invasive behavior. WNT5A knockdown impaired Rho GTPase Cdc42 activity, resulting in reduced invasion of amoeboid and mesenchymal melanoma cells. Interestingly, knockdown of WNT5A or inhibition of its secretion in WM852 cells expressing wild‐type BRAF also led to increased RhoA activity via decreased RND3 expression, resulting in predominantly amoeboid morphology. In contrast, such treatments had the opposite effects on RND3 expression and RhoA activity in HTB63 cells expressing the active BRAFV600 mutation. However, treatment of HTB63 cells with a BRAF inhibitor made them respond to WNT5A knockdown in a similar manner as WM852 cells expressing wild‐type BRAF. We next found that dual targeting of WNT5A and RhoA more effectively reduced melanoma cell invasion than targeting either protein individually. Taken together, our results suggest that low WNT5A signaling in melanoma cells promotes a rounded amoeboid type of invasion, which quite likely serves as a compensatory response to decreased WNT5A/Cdc42‐driven invasion. This phenomenon partially explains the enduring melanoma cell invasion observed after impaired WNT5A signaling and has therapeutic implications. Our results suggest that dual targeting of WNT5A and RhoA signaling is a more effective strategy for controlling the invasion of BRAF wild‐type and BRAFV600 mutated melanomas treated with a BRAF inhibitor than targeting either of the proteins individually.
Collapse
Affiliation(s)
- Njainday Pulo Jobe
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Lisa Åsberg
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
40
|
Worrede A, Douglass SM, Weeraratna AT. The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression. J Clin Invest 2021; 131:143763. [PMID: 33720046 DOI: 10.1172/jci143763] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth's surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as "photoaging." We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.
Collapse
Affiliation(s)
- Asurayya Worrede
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen M Douglass
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
42
|
Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021; 22:ijms22041591. [PMID: 33562431 PMCID: PMC7914888 DOI: 10.3390/ijms22041591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
Collapse
Affiliation(s)
- Hernán Mauricio Rivera
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Esther Natalia Muñoz
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Daniel Osuna
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Mauro Florez
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Michael Carvajal
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Luis Alberto Gómez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
43
|
Schneckenreither G, Tschandl P, Rippinger C, Sinz C, Brunmeir D, Popper N, Kittler H. Reproduction of patterns in melanocytic proliferations by agent-based simulation and geometric modeling. PLoS Comput Biol 2021; 17:e1008660. [PMID: 33539342 PMCID: PMC7888658 DOI: 10.1371/journal.pcbi.1008660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/17/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Spatio-temporal patterns of melanocytic proliferations observed in vivo are important for diagnosis but the mechanisms that produce them are poorly understood. Here we present an agent-based model for simulating the emergence of the main biologic patterns found in melanocytic proliferations. Our model portrays the extracellular matrix of the dermo-epidermal junction as a two-dimensional manifold and we simulate cellular migration in terms of geometric translations driven by adhesive, repulsive and random forces. Abstracted cellular functions and melanocyte-matrix interactions are modeled as stochastic events. For identification and validation we use visual renderings of simulated cell populations in a horizontal perspective that reproduce growth patterns observed in vivo by sequential dermatoscopy and corresponding vertical views that reproduce the arrangement of melanocytes observed in histopathologic sections. Our results show that a balanced interplay of proliferation and migration produces the typical reticular pattern of nevi, whereas the globular pattern involves additional cellular mechanisms. We further demonstrate that slight variations in the three basic cellular properties proliferation, migration, and adhesion are sufficient to produce a large variety of morphological appearances of nevi. We anticipate our model to be a starting point for the reproduction of more complex scenarios that will help to establish functional connections between abstracted microscopic behavior and macroscopic patterns in all types of melanocytic proliferations including melanoma.
Collapse
Affiliation(s)
- Günter Schneckenreither
- Institute of Information Systems Engineering, TU Wien, Vienna, Austria.,Institute of Analysis and Scientific Computing, TU Wien, Vienna, Austria.,dwh simulation service, dwh GmbH, Vienna, Austria
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Sinz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Nikolas Popper
- Institute of Information Systems Engineering, TU Wien, Vienna, Austria.,dwh simulation service, dwh GmbH, Vienna, Austria
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Jahan S, Karim ME, Chowdhury EH. Nanoparticles Targeting Receptors on Breast Cancer for Efficient Delivery of Chemotherapeutics. Biomedicines 2021; 9:114. [PMID: 33530291 PMCID: PMC7910939 DOI: 10.3390/biomedicines9020114] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
The journey of chemotherapeutic drugs from the site of administration to the site of action is confronted by several factors including low bioavailability, uneven distribution in major organs, limited accessibility of drug molecules to the distant tumor tissues, and lower therapeutic indexes. These unavoidable features of classical chemotherapeutics necessitate an additional high, repetitive dose of drugs to obtain maximum therapeutic responses with the result of unintended adverse side effects. An erratic tumor microenvironment, notable drawbacks of conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells warrant precisely designed therapeutics for the treatment of cancers. In recent decades, nanoparticles have been deployed for the delivery of standard anticancer drugs to maximize the therapeutic potency while minimizing the adverse effects to increase the quality and span of life. Several organic and inorganic nanoplatforms that have been designed exploiting the distinctive features of the tumor microenvironment and tumor cells offer favorable physicochemical properties and pharmacokinetic profiles of a parent drug, with delivery of higher amounts of the drug to the pathological site and its controlled release, thereby improving the balance between its efficacy and toxicity. Advances to this front have included design and construction of targeted nanoparticles by conjugating homing devices like peptide, ligand, and Fab on the surface of nanomaterials to navigate nanoparticledrug complexes towards the target tumor cell with minimal destruction of healthy cells. Furthermore, actively targeting nanoparticles can facilitate the delivery and cellular uptake of nanoparticle-loaded drug constructs via binding with specific receptors expressed aberrantly on the surface of a tumor cell. Herein, we present an overview of the principle of targeted delivery approaches, exploiting drug-nanoparticle conjugates with multiple targeting moieties to target specific receptors of breast cancer cells and highlighting therapeutic evaluation in preclinical studies. We conclude that an understanding of the translational gap and challenges would show the possible future directions to foster the development of novel targeted nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya 47500, Malaysia; (S.J.); (M.E.K.)
| |
Collapse
|
45
|
Tavaddod S, Shojaedin-Givi B, Mahmoudi-Rad M, Naderi-Manesh H. Morphometry and Modeling of Label-Free Human Melanocytes and Melanoma Cells. Cell Biochem Biophys 2021; 79:253-260. [PMID: 33443651 DOI: 10.1007/s12013-020-00963-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
A combination of light microscopy and image processing was applied to investigate morphology of label-free primary-melanocytes and melanoma cells. A novel methodological approach based on morphology of nuclear body was used to find those single cells, which were at the same phase of cell cycle. The area and perimeter of melanocytes and melanoma cells were quantified. We found that there was a significant difference between area and perimeter of adendritic-shaped melanocytes with melanoma cells and the reason(s) of this finding was speculated. Finally, a theoretical model based on losing dendrites was proposed, which was in agreement with our experimental data.
Collapse
Affiliation(s)
- Sharareh Tavaddod
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK. .,Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Behnaz Shojaedin-Givi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahnaz Mahmoudi-Rad
- Skin Research Center, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
46
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
47
|
Minimal Residual Disease in Melanoma:molecular characterization of in transit cutaneous metastases and Circulating Melanoma Cells recognizes an expression panel potentially related to disease progression. Cancer Treat Res Commun 2020; 25:100262. [PMID: 33338742 DOI: 10.1016/j.ctarc.2020.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Isolating circulating melanoma cells (CMCs) represents a powerful method to monitor minimal residual disease. We documented that MCAM/MUC18/CD146 expression is strongly associated with disease progression. ABCB5 is melanoma-stem antigen with self-renewal, proliferation, differentiation, tumorigenicity capabilities. These findings supported us to improve CMC detection, investigating MCAM/MUC18/CD146 and ABCB5 as enrichment targets in MM progression. Moreover, we decided to compare possible molecular diversity of these CMC fractions with metastatic tissue expression, collecting concomitantly cutaneous in transit metastases (CTM). We enriched CMCs from eight melanoma patients staged ≥pT1b AJCC, who developed CTMs at baseline or during follow up. We assessed a gene expression panel comprising ABCB5, the differentiation markers (Tyrosinase, MART1), angiogenic factors (VEGF, bFGF), the cell-cell adhesion molecules (MCAM/MUC18/CD146 5'-portion, Long, and Short isoforms, E-Cadherin, N-Cadherin, VE-Cadherin) and matrix-metallo-proteinases (MMP2 and MMP9) via high-sensitive RT-PCR. Preliminary findings defined three distinct sub-populations: "endothelial" CD45-CD146+CMCs, "stem" CD45-ABCB5+CMCs and a "hybrid- stem-endothelial"- CD45-MCAM+ABCB5+CMCs. The expression panel documented that - almost high expression found in CTMs - like in 73.5% of CMCs resulted positive for at least one transcript at baseline, showing gene-expression variability. Longitudinal monitoring documented shut-down of all gene-expressions in "endothelial"- and "hybrid stem-endothelial"-subsets, whilst persistency or acquisition of MCAM/MUC18/CD146, VE-CADH and MMPs was documented in disease-progression status.Conversely, a drastic expression shut-down was documented when patients achieved clinical remission. The "stem"- CMCs fraction" showed quite lower gene expression frequencies. MCAM/MUC18/CD146 and ABCB5 as melanoma-specific-targets are effective in the selection of highly primitive CMCs and highlights those putative genes associated with disease spreading progression.
Collapse
|
48
|
Bellei B, Migliano E, Picardo M. A Framework of Major Tumor-Promoting Signal Transduction Pathways Implicated in Melanoma-Fibroblast Dialogue. Cancers (Basel) 2020; 12:cancers12113400. [PMID: 33212834 PMCID: PMC7697272 DOI: 10.3390/cancers12113400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Melanoma cells reside in a complex stromal microenvironment, which is a critical component of disease onset and progression. Mesenchymal or fibroblastic cell type are the most abundant cellular element of tumor stroma. Factors secreted by melanoma cells can activate non-malignant associated fibroblasts to become melanoma associate fibroblasts (MAFs). MAFs promote tumorigenic features by remodeling the extracellular matrix, supporting tumor cells proliferation, neo-angiogenesis and drug resistance. Additionally, environmental factors may contribute to the acquisition of pro-tumorigenic phenotype of fibroblasts. Overall, in melanoma, perturbed tissue homeostasis contributes to modulation of major oncogenic intracellular signaling pathways not only in tumor cells but also in neighboring cells. Thus, targeted molecular therapies need to be considered from the reciprocal point of view of melanoma and stromal cells. Abstract The development of a modified stromal microenvironment in response to neoplastic onset is a common feature of many tumors including cutaneous melanoma. At all stages, melanoma cells are embedded in a complex tissue composed by extracellular matrix components and several different cell populations. Thus, melanomagenesis is not only driven by malignant melanocytes, but also by the altered communication between melanocytes and non-malignant cell populations, including fibroblasts, endothelial and immune cells. In particular, cancer-associated fibroblasts (CAFs), also referred as melanoma-associated fibroblasts (MAFs) in the case of melanoma, are the most abundant stromal cells and play a significant contextual role in melanoma initiation, progression and metastasis. As a result of dynamic intercellular molecular dialogue between tumor and the stroma, non-neoplastic cells gain specific phenotypes and functions that are pro-tumorigenic. Targeting MAFs is thus considered a promising avenue to improve melanoma therapy. Growing evidence demonstrates that aberrant regulation of oncogenic signaling is not restricted to transformed cells but also occurs in MAFs. However, in some cases, signaling pathways present opposite regulation in melanoma and surrounding area, suggesting that therapeutic strategies need to carefully consider the tumor–stroma equilibrium. In this novel review, we analyze four major signaling pathways implicated in melanomagenesis, TGF-β, MAPK, Wnt/β-catenin and Hyppo signaling, from the complementary point of view of tumor cells and the microenvironment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
- Correspondence: ; Tel.: +39-0652666246
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy;
| |
Collapse
|
49
|
Carrié L, Virazels M, Dufau C, Montfort A, Levade T, Ségui B, Andrieu-Abadie N. New Insights into the Role of Sphingolipid Metabolism in Melanoma. Cells 2020; 9:E1967. [PMID: 32858889 PMCID: PMC7565650 DOI: 10.3390/cells9091967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma is a deadly skin cancer whose aggressiveness is directly linked to its metastatic potency. Despite remarkable breakthroughs in term of treatments with the emergence of targeted therapy and immunotherapy, the prognosis for metastatic patients remains uncertain mainly because of resistances. Better understanding the mechanisms responsible for melanoma progression is therefore essential to uncover new therapeutic targets. Interestingly, the sphingolipid metabolism is dysregulated in melanoma and is associated with melanoma progression and resistance to treatment. This review summarises the impact of the sphingolipid metabolism on melanoma from the initiation to metastatic dissemination with emphasis on melanoma plasticity, immune responses and resistance to treatments.
Collapse
Affiliation(s)
- Lorry Carrié
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Mathieu Virazels
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Carine Dufau
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Anne Montfort
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Thierry Levade
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
- Laboratoire de Biochimie Métabolique, CHU, 31059 Toulouse, France
| | - Bruno Ségui
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Nathalie Andrieu-Abadie
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| |
Collapse
|
50
|
Pambianchi E, Ferrara F, Pecorelli A, Woodby B, Grace M, Therrien JP, Lila MA, Valacchi G. Blueberry Extracts as a Novel Approach to Prevent Ozone-Induced Cutaneous Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9571490. [PMID: 32855770 PMCID: PMC7443250 DOI: 10.1155/2020/9571490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
The World Health Organization estimates that 7 million people die every year due to pollution exposure. Among the different pollutants to which living organism are exposed, ozone (O3) represents one of the most toxic, because its location which is the skin is one of the direct tissues exposed to the outdoor environment. Chronic exposure to outdoor stressors can alter cutaneous redox state resulting in the activation of inflammatory pathways. Recently, a new player in the inflammation mechanism was discovered: the multiprotein complex NLRP1 inflammasome, which has been shown to be also expressed in the skin. The topical application of natural compounds has been studied for the last 40 years as a possible approach to prevent and eventually cure skin conditions. Recently, the possibility to use blueberry (BB) extract to prevent pollution-induced skin toxicity has been of great interest in the cosmeceutical industry. In the present study, we analyzed the cutaneous protective effect of BB extract in several skin models (2D, 3D, and human skin explants). Specifically, we observed that in the different skin models used, BB extracts were able to enhance keratinocyte wound closure and normalize proliferation and migration responses previously altered by O3. In addition, pretreatment with BB extracts was able to prevent ozone-induced ROS production and inflammasome activation measured as NRLP1-ASC scaffold formation and also prevent the transcripts of key inflammasome players such as CASP1 and IL-18, suggesting that this approach as a possible new technology to prevent cutaneous pollution damage. Our data support the hypothesis that BB extracts can effectively reduce skin inflammation and be a possible new technology against cutaneous pollution-induced damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Francesca Ferrara
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Brittany Woodby
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Mary Grace
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | | | - Mary Ann Lila
- Plants for Human Health Institute, Food Bioprocessing & Nutrition Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus Kannapolis, NC State University, 28081, NC, USA
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|