1
|
Guha S, Nguyen AM, Young A, Mondell E, Farber DB. Decreased CREB phosphorylation impairs embryonic retinal neurogenesis in the Oa1-/- mouse model of Ocular albinism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594013. [PMID: 38798688 PMCID: PMC11118284 DOI: 10.1101/2024.05.14.594013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mutations in the human Ocular albinism type-1 gene OA1 are associated with abnormal retinal pigment epithelium (RPE) melanogenesis and poor binocular vision resulting from misrouting of ipsilateral retinal ganglion cell (iRGC) axons to the brain. We studied the latter using wild-type (WT) and Oa1-/- mouse eyes. At embryonic stages, the WT RPE-specific Oa1 protein signals through cAMP/Epac1-Erk2-CREB. Following CREB phosphorylation, a pCREB gradient extends from the RPE to the differentiating retinal amacrine and RGCs. In contrast to WT, the Oa1-/- RPE and ventral ciliary-margin-zone, a niche for iRGCs, express less pCREB while their retinas have a disrupted pCREB gradient, indicating Oa1's involvement in pCREB maintenance. Oa1-/- retinas also show hyperproliferation, enlarged nuclei, reduced differentiation, and fewer newborn amacrine and RGCs than WT retinas. Our results demonstrate that Oa1's absence leads to reduced binocular vision through a hyperproliferation-associated block in differentiation that impairs neurogenesis. This may affect iRGC axon's routing to the brain.
Collapse
Affiliation(s)
- Sonia Guha
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Andrew M. Nguyen
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Alejandra Young
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Ethan Mondell
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Debora B. Farber
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, Seo JK, Park S, Lee S, Je AR, Huh YH, Kong SY, Kwon T, Suh PG, Chae YC. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell 2023; 58:320-334.e8. [PMID: 36800996 DOI: 10.1016/j.devcel.2023.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
Collapse
Affiliation(s)
- Yu Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun-Jun Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Sun Ryu
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea
| | - Chae Young Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Hyuk Yoon
- Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sabin Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - A Reum Je
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute and Hospital, National Cancer Center, Goyang 10408, Republic of Korea; Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea.
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
4
|
Torriano S, Baulier E, Garcia Diaz A, Corneo B, Farber DB. CRISPR-AsCas12a Efficiently Corrects a GPR143 Intronic Mutation in Induced Pluripotent Stem Cells from an Ocular Albinism Patient. CRISPR J 2022; 5:457-471. [PMID: 35686978 PMCID: PMC9233509 DOI: 10.1089/crispr.2021.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations in the GPR143 gene cause X-linked ocular albinism type 1 (OA1), a disease that severely impairs vision. We recently generated induced pluripotent stem cells (iPSCs) from skin fibroblasts of an OA1 patient carrying a point mutation in intron 7 of GPR143. This mutation activates a new splice site causing the incorporation of a pseudoexon. In this study, we present a high-performance CRISPR-Cas ribonucleoprotein strategy to permanently correct the GPR143 mutation in these patient-derived iPSCs. Interestingly, the two single-guide RNAs available for SpCas9 did not allow the cleavage of the target region. In contrast, the cleavage achieved with the CRISPR-AsCas12a system promoted homology-directed repair at a high rate. The CRISPR-AsCas12a-mediated correction did not alter iPSC pluripotency or genetic stability, nor did it result in off-target events. Moreover, we highlight that the disruption of the pathological splice site caused by CRISPR-AsCas12a-mediated insertions/deletions also rescued the normal splicing of GPR143 and its expression level.
Collapse
Affiliation(s)
- Simona Torriano
- Department of Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, USA
| | - Edouard Baulier
- Department of Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, USA
| | - Alejandro Garcia Diaz
- Stem Cell Core, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA
| | - Barbara Corneo
- Stem Cell Core, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA
| | - Debora B Farber
- Department of Ophthalmology, UCLA School of Medicine, Jules Stein Eye Institute, Los Angeles, California, USA.,Molecular Biology Institute and UCLA, Los Angeles, California, USA.,Brain Research Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
6
|
Le L, Sirés-Campos J, Raposo G, Delevoye C, Marks MS. Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integr Comp Biol 2021; 61:1517-1545. [PMID: 34021746 PMCID: PMC8516112 DOI: 10.1093/icb/icab078] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanins, the main pigments of the skin and hair in mammals, are synthesized within membrane-bound organelles of melanocytes called melanosomes. Melanosome structure and function are determined by a cohort of resident transmembrane proteins, many of which are expressed only in pigment cells and localize specifically to melanosomes. Defects in the genes that encode melanosome-specific proteins or components of the machinery required for their transport in and out of melanosomes underlie various forms of ocular or oculocutaneous albinism, characterized by hypopigmentation of the hair, skin, and eyes and by visual impairment. We review major components of melanosomes, including the enzymes that catalyze steps in melanin synthesis from tyrosine precursors, solute transporters that allow these enzymes to function, and structural proteins that underlie melanosome shape and melanin deposition. We then review the molecular mechanisms by which these components are biosynthetically delivered to newly forming melanosomes-many of which are shared by other cell types that generate cell type-specific lysosome-related organelles. We also highlight unanswered questions that need to be addressed by future investigation.
Collapse
Affiliation(s)
- Linh Le
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, Paris, 75005, France
| | - Michael S Marks
- Department of Pathology & Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Bueschbell B, Manga P, Penner E, Schiedel AC. Evidence for Protein-Protein Interaction between Dopamine Receptors and the G Protein-Coupled Receptor 143. Int J Mol Sci 2021; 22:ijms22158328. [PMID: 34361094 PMCID: PMC8348196 DOI: 10.3390/ijms22158328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson's disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by β-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Erika Penner
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
- Correspondence:
| |
Collapse
|
8
|
Zhao XM, Li YB, Sun P, Pu YD, Shan MJ, Zhang YM. Bioinformatics analysis of key biomarkers for retinoblastoma. J Int Med Res 2021; 49:3000605211022210. [PMID: 34187205 PMCID: PMC8371285 DOI: 10.1177/03000605211022210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective To identify key genes involved in occurrence and development of retinoblastoma. Methods The microarray dataset, GSE5222, was downloaded from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between unilateral and bilateral retinoblastoma were identified and functional enrichment analysis performed. The protein–protein interaction (PPI) network was constructed and analysed by STRING and Cytoscape. Results DEGs were mainly associated with activation of cysteine-type endopeptidase activity involved in apoptotic process and small molecule catabolic process. Seven genes (WAS, GNB3, PTGER1, TACR1, GPR143, NPFF and CDKN2A) were identified as HUB genes. Conclusion Our research provides more understanding of the mechanisms of the disease at a molecular level and may help in the identification of novel biomarkers for retinoblastoma.
Collapse
Affiliation(s)
- Xin-Mei Zhao
- Ophthalmic Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yuan-Bin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Sun
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ya-di Pu
- Qingdao University, Qingdao, Shandong, China
| | - Meng-Jie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan-Meng Zhang
- Department of Cardiology, The Third Medical Centre of Chinese PLA General Hospital, No. 69, Yongding Road, Hai Dian, Beijing, China
| |
Collapse
|
9
|
Masukawa D, Koga M, Sezaki A, Nakao Y, Kamikubo Y, Hashimoto T, Okuyama-Oki Y, Aladeokin AC, Nakamura F, Yokoyama U, Wakui H, Ichinose H, Sakurai T, Umemura S, Tamura K, Ishikawa Y, Goshima Y. L-DOPA sensitizes vasomotor tone by modulating the vascular alpha1-adrenergic receptor. JCI Insight 2017; 2:90903. [PMID: 28931752 DOI: 10.1172/jci.insight.90903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/15/2017] [Indexed: 11/17/2022] Open
Abstract
Blood pressure is regulated by extrinsic factors including noradrenaline, the sympathetic neurotransmitter that controls cardiovascular functions through adrenergic receptors. However, the fine-tuning system of noradrenaline signaling is relatively unknown. We here show that l-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of catecholamines, sensitizes the vascular adrenergic receptor alpha1 (ADRA1) through activation of L-DOPA receptor GPR143. In WT mice, intravenous infusion of the ADRA1 agonist phenylephrine induced a transient elevation of blood pressure. This response was attenuated in Gpr143 gene-deficient (Gpr143-/y) mice. Specific knockout of Gpr143 in vascular smooth muscle cells (VSMCs) also showed a similar phenotype, indicating that L-DOPA directly modulates ADRA1 signaling in the VSMCs. L-DOPA at nanomolar concentrations alone produced no effect on the VSMCs, but it enhanced phenylephrine-induced vasoconstriction and intracellular Ca2+ responses. Phenylephrine also augmented the phosphorylation of extracellular signal-regulated kinases in cultured VSMCs from WT but not Gpr143-/y mice. In WT mice, blood pressure increased during the transition from light-rest to dark-active phases. This elevation was not observed in Gpr143-/y mice. Taken together, our findings provide evidence for L-DOPA/GPR143 signaling that exerts precursor control of sympathetic neurotransmission through sensitizing vascular ADRA1.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Sezaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuka Nakao
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, and
| | | | - Aderemi Caleb Aladeokin
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
10
|
De Filippo E, Manga P, Schiedel AC. Identification of Novel G Protein-Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism. Invest Ophthalmol Vis Sci 2017. [PMID: 28632878 PMCID: PMC5482243 DOI: 10.1167/iovs.16-21128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose GPR143 regulates melanosome biogenesis and organelle size in pigment cells. The mechanisms underlying receptor function remain unclear. G protein–coupled receptors (GPCRs) are excellent pharmacologic targets; thus, we developed and applied a screening approach to identify potential GPR143 ligands and chemical modulators. Methods GPR143 interacts with β-arrestin; we therefore established a β-arrestin recruitment assay to screen for compounds that modulate activity. Because GPR143 is localized intracellularly, screening with the wild-type receptor would be restricted to agents absorbed by the cell. For the screen we used a mutant receptor, which shows similar basal activity as the wild type but traffics to the plasma membrane. We tested two compound libraries and investigated validated hits for their effects on melanocyte pigmentation. Results GPR143, which showed high constitutive activity in the β-arrestin assay, was inhibited by several compounds. The three validated inhibitors (pimozide, niclosamide, and ethacridine lactate) were assessed for impact on melanocytes. Pigmentation and expression of tyrosinase, a key melanogenic enzyme, were reduced by all compounds. Because GPR143 appears to be constitutively active, these compounds may turn off its activity. Conclusions X-linked ocular albinism type I, characterized by developmental eye defects, results from GPR143 mutations. Identifying pharmacologic agents that modulate GPR143 activity will contribute significantly to our understanding of its function and provide novel tools with which to study GPCRs in melanocytes and retinal pigment epithelium. Pimozide, one of three GPR143 inhibitors identified in this study, maybe be a good lead structure for development of more potent compounds and provide a platform for design of novel therapeutic agents.
Collapse
Affiliation(s)
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology and Department of Cell Biology, New York University School of Medicine, New York, New York, United States
| | - Anke C Schiedel
- Pharmaceutical Chemistry I, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
De Filippo E, Schiedel AC, Manga P. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1. J Invest Dermatol 2016; 137:457-465. [PMID: 27720922 DOI: 10.1016/j.jid.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis.
Collapse
Affiliation(s)
| | - Anke C Schiedel
- Pharmaceutical Chemistry I, PharmaCenter Bonn, University of Bonn, Bonn, Germany.
| | - Prashiela Manga
- Ronald O. Perelman, Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
12
|
Ocular Albinism Type 1 Regulates Melanogenesis in Mouse Melanocytes. Int J Mol Sci 2016; 17:ijms17101596. [PMID: 27690000 PMCID: PMC5085629 DOI: 10.3390/ijms17101596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
To investigate whether ocular albinism type 1 (OA1) is differentially expressed in the skin of mice with different coat colors and to determine its correlation with coat color establishment in mouse, the expression patterns and tissue distribution characterization of OA1 in the skin of mice with different coat colors were qualitatively and quantitatively analyzed by real-time quantitative PCR (qRT-PCR), immunofluorescence staining and Western blot. The qRT-PCR analysis revealed that OA1 mRNA was expressed in all mice skin samples tested, with the highest expression level in brown skin, a moderate expression level in black skin and the lowest expression level in gray skin. Positive OA1 protein bands were also detected in all skin samples by Western blot analysis. The relative expression levels of OA1 protein in both black and brown skin were significantly higher than that in gray skin, but there was no significant difference between black and brown mice. Immunofluorescence assays revealed that OA1 was mainly expressed in the hair follicle matrix, the inner and outer root sheath in the skin tissues with different coat colors. To get further insight into the important role of OA1 in the melanocytes’ pigmentation, we transfected the OA1 into mouse melanocytes and then detected the relative expression levels of pigmentation-related gene. Simultaneously, we tested the melanin content of melanocytes. As a result, the overexpression of OA1 significantly increased the expression levels of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP1) and premelanosome protein (PMEL). However, the tyrosinase-related protein 2 (TRP2) level was attenuated. By contrast, the level of glycoprotein non-metastatic melanoma protein b (GPNMB) was unaffected by OA1 overexpression. Furthermore, we observed a significant increase in melanin content in mouse melanocyte transfected OA1. Therefore, we propose that OA1 may participate in the formation of coat color by regulating the level of MITF and the number, size, motility and maturation of melanosome.
Collapse
|
13
|
Young A, Dandekar U, Pan C, Sader A, Zheng JJ, Lewis RA, Farber DB. GNAI3: Another Candidate Gene to Screen in Persons with Ocular Albinism. PLoS One 2016; 11:e0162273. [PMID: 27607449 PMCID: PMC5015898 DOI: 10.1371/journal.pone.0162273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
Ocular albinism type 1 (OA), caused by mutations in the OA1 gene, encodes a G-protein coupled receptor, OA1, localized in melanosomal membranes of the retinal pigment epithelium (RPE). This disorder is characterized by both RPE macro-melanosomes and abnormal decussation of ganglion cell axons at the brain's optic chiasm. We demonstrated previously that Oa1 specifically activates Gαi3, which also signals in the Oa1 transduction pathway that regulates melanosomal biogenesis. In this study, we screened the human Gαi3 gene, GNAI3, in DNA samples from 26 patients who had all clinical characteristics of OA but in whom a specific mutation in the OA1 gene had not been found, and in 6 normal control individuals. Using the Agilent HaloPlex Target Enrichment System and next-generation sequencing (NGS) on the Illumina MiSeq platform, we identified 518 variants after rigorous filtering. Many of these variants were corroborated by Sanger sequencing. Overall, 98.8% coverage of the GNAI3 gene was obtained by the HaloPlex amplicons. Of all variants, 6 non-synonymous and 3 synonymous were in exons, 41 in a non-coding exon embedded in the 3' untranslated region (UTR), 6 in the 5' UTR, and 462 in introns. These variants included novel SNVs, insertions, deletions, and a frameshift mutation. All were found in at least one patient but none in control samples. Using computational methods, we modeled the GNAI3 protein and its non-synonymous exonic mutations and determined that several of these may be the cause of disease in the patients studied. Thus, we have identified GNAI3 as a second gene possibly responsible for X-linked ocular albinism.
Collapse
Affiliation(s)
- Alejandra Young
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
| | - Uma Dandekar
- UCLA-GenoSeq Core, UCLA, Los Angeles, CA, United States of America
| | - Calvin Pan
- UCLA-GenoSeq Core, UCLA, Los Angeles, CA, United States of America
| | - Avery Sader
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
| | - Jie J. Zheng
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Debora B. Farber
- Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States of America
- Molecular Biology Institute, UCLA, Los Angeles, CA, United States of America
- Brain Research Institute, UCLA, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gelis L, Jovancevic N, Veitinger S, Mandal B, Arndt HD, Neuhaus EM, Hatt H. Functional Characterization of the Odorant Receptor 51E2 in Human Melanocytes. J Biol Chem 2016; 291:17772-86. [PMID: 27226631 DOI: 10.1074/jbc.m116.734517] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/17/2022] Open
Abstract
Olfactory receptors, which belong to the family of G-protein-coupled receptors, are found to be ectopically expressed in non-sensory tissues mediating a variety of cellular functions. In this study we detected the olfactory receptor OR51E2 at the transcript and the protein level in human epidermal melanocytes. Stimulation of primary melanocytes with the OR51E2 ligand β-ionone significantly inhibited melanocyte proliferation. Our results further showed that β-ionone stimulates melanogenesis and dendritogenesis. Using RNA silencing and receptor antagonists, we demonstrated that OR51E2 activation elevated cytosolic Ca(2+) and cAMP, which could mediate the observed increase in melanin synthesis. Co-immunocytochemical stainings using a specific OR51E2 antibody revealed subcellular localization of the receptor in early endosomes associated with EEA-1 (early endosome antigen 1). Plasma membrane preparations showed that OR51E2 protein is present at the melanocyte cell surface. Our findings thus suggest that activation of olfactory receptor signaling by external compounds can influence melanocyte homeostasis.
Collapse
Affiliation(s)
- Lian Gelis
- From the Cell Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany,
| | - Nikolina Jovancevic
- From the Cell Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Sophie Veitinger
- From the Cell Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany
| | - Bhubaneswar Mandal
- Organic Chemistry I, Friedrich Schiller University, Humboldtstrasse 10, 07743 Jena, Germany. and
| | - Hans-Dieter Arndt
- Organic Chemistry I, Friedrich Schiller University, Humboldtstrasse 10, 07743 Jena, Germany. and
| | - Eva M Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Strasse 1, 07747 Jena, Germany
| | - Hanns Hatt
- From the Cell Physiology, Ruhr-University Bochum, Universitaetsstrasse 150, 44801 Bochum, Germany
| |
Collapse
|
15
|
Lipid transfer and metabolism across the endolysosomal-mitochondrial boundary. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:880-894. [PMID: 26852832 DOI: 10.1016/j.bbalip.2016.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 01/10/2023]
Abstract
Lysosomes and mitochondria occupy a central stage in the maintenance of cellular homeostasis, by playing complementary roles in nutrient sensing and energy metabolism. Specifically, these organelles function as signaling hubs that integrate environmental and endogenous stimuli with specific metabolic responses. In particular, they control various lipid biosynthetic and degradative pipelines, either directly or indirectly, by regulating major cellular metabolic pathways, and by physical and functional connections established with each other and with other organelles. Membrane contact sites allow the exchange of ions and molecules between organelles, even without membrane fusion, and are privileged routes for lipid transfer among different membrane compartments. These inter-organellar connections typically involve the endoplasmic reticulum. Direct membrane contacts have now been described also between lysosomes, autophagosomes, lipid droplets, and mitochondria. This review focuses on these recently identified membrane contact sites, and on their role in lipid biosynthesis, exchange, turnover and catabolism. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
16
|
Dopamine signaling regulates the projection patterns in the mouse chiasm. Brain Res 2015; 1625:324-36. [PMID: 26363092 DOI: 10.1016/j.brainres.2015.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 08/10/2015] [Accepted: 08/22/2015] [Indexed: 11/22/2022]
Abstract
Ocular albinism (OA) is characterized by inadequate L-3, 4-dihydroxyphenylalanine (L-DOPA) and dopamine (DA) in the eyes. This study investigated DA-related signaling pathways in mouse chiasm projection patterns and the potential role of ocular albinism type 1 (OA1) and dopamine 1A (D1A) receptors in the optic pathway. In embryonic day (E) E13-E15 retina, most L-DOPA and OA1-positive cells were distributed among Müller glial cells on E13 and retinal ganglion cells (RGC) on E14. In the ventral diencephalon, OA1 and L-DOPA were strongly expressed on the optic chiasm (OC) and optic tract (OT), respectively, but weak on the optic stalk (OS). At E13-E15, DA and D1A staining was predominately expressed in radially arranged cells with a neuronal expression pattern. In the ventral diencephalon, DA and D1A were strongly expressed on the OC, OT and OS. Furthermore, L-DOPA significantly inhibited retinal axon outgrowth in both the dorsal nasal (DN) and ventral temporal (VT) groups. DA inhibited retinal axon outgrowth, which was abolished by the D1A antagonist SCH23390. Brain slice cultures indicated that L-DOPA inhibited axons that crossed at the OC of E13 embryos, which was not abolished by DA. L-DOPA also inhibited axons that crossed at the OC of albino mice. Albino mice exhibited reduced ipsilateral retinal projections compared with C57 pigmented mice. No significant difference was identified in the uncrossed projections of albino mice following L-DOPA and DA expression. Furthermore, transcription factor Zic family member 2 (Zic2) upregulated OA1 mRNA expression. Our findings provide critical insights into DA-related signaling in retinal development.
Collapse
|
17
|
Parker R, Vella LJ, Xavier D, Amirkhani A, Parker J, Cebon J, Molloy MP. Phosphoproteomic Analysis of Cell-Based Resistance to BRAF Inhibitor Therapy in Melanoma. Front Oncol 2015; 5:95. [PMID: 26029660 PMCID: PMC4432663 DOI: 10.3389/fonc.2015.00095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/07/2015] [Indexed: 01/01/2023] Open
Abstract
The treatment of melanoma by targeted inhibition of the mutated kinase BRAF with small molecules only temporarily suppresses metastatic disease. In the face of chemical inhibition tumor plasticity, both innate and adaptive, promotes survival through the biochemical and genetic reconfiguration of cellular pathways that can engage proliferative and migratory systems. To investigate this process, high-resolution mass spectrometry was used to characterize the phosphoproteome of this transition in vitro. A simple and accurate, label-free quantitative method was used to localize and quantitate thousands of phosphorylation events. We also correlated changes in the phosphoproteome with the proteome to more accurately determine changes in the activity of regulatory kinases determined by kinase landscape profiling. The abundance of phosphopeptides with sites that function in cytoskeletal regulation, GTP/GDP exchange, protein kinase C, IGF signaling, and melanosome maturation were highly divergent after transition to a drug resistant phenotype.
Collapse
Affiliation(s)
- Robert Parker
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Laura J Vella
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Dylan Xavier
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| | - Jimmy Parker
- NHS Trust Southport and Ormskirk General Hospital , Ormskirk , UK
| | - Jonathan Cebon
- Cancer Immunology Group, Olivia Newton-John Cancer Research Institute, Ludwig Institute for Cancer Research, School of Cancer Medicine, La Trobe University , Heidelberg, VIC , Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
18
|
Haltaufderhyde KD, Oancea E. Genome-wide transcriptome analysis of human epidermal melanocytes. Genomics 2014; 104:482-9. [PMID: 25451175 DOI: 10.1016/j.ygeno.2014.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signaling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 transcript isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets.
Collapse
Affiliation(s)
- Kirk D Haltaufderhyde
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02192, USA
| | - Elena Oancea
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02192, USA.
| |
Collapse
|
19
|
Bellono NW, Oancea EV. Ion transport in pigmentation. Arch Biochem Biophys 2014; 563:35-41. [PMID: 25034214 DOI: 10.1016/j.abb.2014.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 12/01/2022]
Abstract
Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Molecular Physiology, Pharmacology and Biotechnology, Brown University, Providence, RI 02912, United States
| | - Elena V Oancea
- Department of Molecular Physiology, Pharmacology and Biotechnology, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
20
|
Falletta P, Bagnato P, Bono M, Monticone M, Schiaffino MV, Bennett DC, Goding CR, Tacchetti C, Valetti C. Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression. Pigment Cell Melanoma Res 2014; 27:565-79. [PMID: 24650003 DOI: 10.1111/pcmr.12239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
Little is known as to how cells ensure that organelle size and number are coordinated to correctly couple organelle biogenesis to the demands of proliferation or differentiation. OA1 is a melanosome-associated G-protein-coupled receptor involved in melanosome biogenesis during melanocyte differentiation. Cells lacking OA1 contain fewer, but larger, mature melanosomes. Here, we show that OA1 loss of function reduces both the basal expression and the α-melanocyte-stimulating hormone/cAMP-dependent induction of the microphthalmia-associated transcription factor (MITF), the master regulator of melanocyte differentiation. In turn, this leads to a significant reduction in expression of PMEL, a major melanosomal structural protein, but does not affect tyrosinase and melanin levels. In line with its pivotal role in sensing melanosome maturation, OA1 expression rescues melanosome biogenesis, activates MITF expression and thereby coordinates melanosome size and number, providing a quality control mechanism for the organelle in which resides. Thus, resident sensor receptors can activate a transcriptional cascade to specifically promote organelle biogenesis.
Collapse
Affiliation(s)
- Paola Falletta
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Irannejad R, von Zastrow M. GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 2013; 27:109-16. [PMID: 24680436 DOI: 10.1016/j.ceb.2013.10.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
Many G protein-coupled receptors (GPCRs) internalize after agonist-induced activation. While endocytosis has long been associated with homeostatic attenuation of cellular responsiveness, accumulating evidence from study of a wide range of eukaryotes reveals that the endocytic pathway also contributes to generating receptor-initiated signals themselves. Here we review recent progress in this area, discussing primarily but not exclusively GPCR signaling in mammalian cells.
Collapse
Affiliation(s)
- Roshanak Irannejad
- Department of Psychiatry, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco School of Medicine, 600 16th Street, San Francisco, CA 94158-2140, USA.
| |
Collapse
|
22
|
Montoliu L, Grønskov K, Wei AH, Martínez-García M, Fernández A, Arveiler B, Morice-Picard F, Riazuddin S, Suzuki T, Ahmed ZM, Rosenberg T, Li W. Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res 2013; 27:11-8. [PMID: 24066960 DOI: 10.1111/pcmr.12167] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/08/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022]
Abstract
Albinism is a rare genetic condition globally characterized by a number of specific deficits in the visual system, resulting in poor vision, in association with a variable hypopigmentation phenotype. This lack or reduction in pigment might affect the eyes, skin, and hair (oculocutaneous albinism, OCA), or only the eyes (ocular albinism, OA). In addition, there are several syndromic forms of albinism (e.g. Hermansky-Pudlak and Chediak-Higashi syndromes, HPS and CHS, respectively) in which the described hypopigmented and visual phenotypes coexist with more severe pathological alterations. Recently, a locus has been mapped to the 4q24 human chromosomal region and thus represents an additional genetic cause of OCA, termed OCA5, while the gene is eventually identified. In addition, two new genes have been identified as causing OCA when mutated: SLC24A5 and C10orf11, and hence designated as OCA6 and OCA7, respectively. This consensus review, involving all laboratories that have reported these new genes, aims to update and agree upon the current gene nomenclature and types of albinism, while providing additional insights from the function of these new genes in pigment cells.
Collapse
Affiliation(s)
- Lluís Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain; CIBERER, ISCIII, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Burgoyne T, Jolly R, Martin-Martin B, Seabra MC, Piccirillo R, Schiaffino MV, Futter CE. Expression of OA1 limits the fusion of a subset of MVBs with lysosomes - a mechanism potentially involved in the initial biogenesis of melanosomes. J Cell Sci 2013; 126:5143-52. [PMID: 24006264 PMCID: PMC3828590 DOI: 10.1242/jcs.128561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Multivesicular endosomes/bodies (MVBs) deliver proteins, such as activated EGF receptor (EGFR), to the lysosome for degradation, and, in pigmented cells, MVBs containing PMEL are an initial stage in melanosome biogenesis. The mechanisms regulating numbers and fate of different populations of MVB are unclear. Here, we focus on the role of the G-protein-coupled receptor OA1 (also known as GPR143), which is expressed exclusively in pigmented cells and mutations in which cause the most common type of ocular albinism. When exogenously expressing PMEL, HeLa cells have been shown to form MVBs resembling early stage melanosomes. To focus on the role of OA1 in the initial stages of melanosome biogenesis we take advantage of the absence of the later stages of melanosome maturation in HeLa cells to determine whether OA1 activity can regulate MVB number and fate. Expression of wild-type but not OA1 mutants carrying inactivating mutations or deletions causes MVB numbers to increase. Whereas OA1 expression has no effect on delivery of EGFR-containing MVBs to the lysosome, it inhibits the lysosomal delivery of PMEL and PMEL-containing MVBs accumulate. We propose that OA1 activity delays delivery of PMEL-containing MVBs to the lysosome to allow time for melanin synthesis and commitment to melanosome biogenesis.
Collapse
Affiliation(s)
- Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Mártinez-García M, Montoliu L. Albinism in Europe. J Dermatol 2013; 40:319-24. [DOI: 10.1111/1346-8138.12170] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/27/2022]
|
25
|
Rachel RA, Nagashima K, O'Sullivan TN, Frost LS, Stefano FP, Marigo V, Boesze-Battaglia K. Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis. PLoS One 2012; 7:e42446. [PMID: 22984402 PMCID: PMC3439427 DOI: 10.1371/journal.pone.0042446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/05/2012] [Indexed: 12/27/2022] Open
Abstract
Humans with Hermansky-Pudlak Syndrome (HPS) or ocular albinism (OA1) display abnormal aspects of organelle biogenesis. The multigenic disorder HPS displays broad defects in biogenesis of lysosome-related organelles including melanosomes, platelet dense granules, and lysosomes. A phenotype of ocular pigmentation in OA1 is a smaller number of macromelanosomes, in contrast to HPS, where in many cases the melanosomes are smaller than normal. In these studies we define the role of the Mregdsu gene, which suppresses the coat color dilution of Myo5a, melanophilin, and Rab27a mutant mice in maintaining melanosome size and distribution. We show that the product of the Mregdsu locus, melanoregulin (MREG), interacts both with members of the HPS BLOC-2 complex and with Oa1 in regulating melanosome size. Loss of MREG function facilitates increase in the size of micromelanosomes in the choroid of the HPS BLOC-2 mutants ruby, ruby2, and cocoa, while a transgenic mouse overexpressing melanoregulin corrects the size of retinal pigment epithelium (RPE) macromelanosomes in Oa1ko/ko mice. Collectively, these results suggest that MREG levels regulate pigment incorporation into melanosomes. Immunohistochemical analysis localizes melanoregulin not to melanosomes, but to small vesicles in the cytoplasm of the RPE, consistent with a role for this protein in regulating membrane interactions during melanosome biogenesis. These results provide the first link between the BLOC pathway and Oa1 in melanosome biogenesis, thus supporting the hypothesis that intracellular G-protein coupled receptors may be involved in the biogenesis of other organelles. Furthermore these studies provide the foundation for therapeutic approaches to correct the pigment defects in the RPE of HPS and OA1.
Collapse
Affiliation(s)
- Rivka A. Rachel
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, Bethesda, Maryland, United States of America
| | - Kunio Nagashima
- Frederick National Laboratory for Cancer Research, SAIC-Frederick, Frederick, Maryland, United States of America
| | - T. Norene O'Sullivan
- National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Laura S. Frost
- Department of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frank P. Stefano
- Department of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Live Cell Imaging Core, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Valeria Marigo
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Melanosomal dynamics assessed with a live-cell fluorescent melanosomal marker. PLoS One 2012; 7:e43465. [PMID: 22927970 PMCID: PMC3425493 DOI: 10.1371/journal.pone.0043465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin's physiological response to UV radiation.
Collapse
|
27
|
Ghosh A, Sonavane U, Andhirka SK, Aradhyam GK, Joshi R. Structural insights into human GPCR protein OA1: a computational perspective. J Mol Model 2011; 18:2117-33. [DOI: 10.1007/s00894-011-1228-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
|
28
|
The ocular albinism type 1 (OA1) GPCR is ubiquitinated and its traffic requires endosomal sorting complex responsible for transport (ESCRT) function. Proc Natl Acad Sci U S A 2011; 108:11906-11. [PMID: 21730137 DOI: 10.1073/pnas.1103381108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The function of signaling receptors is tightly controlled by their intracellular trafficking. One major regulatory mechanism within the endo-lysosomal system required for receptor localization and down-regulation is protein modification by ubiquitination and downstream interactions with the endosomal sorting complex responsible for transport (ESCRT) machinery. Whether and how these mechanisms operate to regulate endosomal sorting of mammalian G protein-coupled receptors (GPCRs) remains unclear. Here, we explore the involvement of ubiquitin and ESCRTs in the trafficking of OA1, a pigment cell-specific GPCR, target of mutations in Ocular Albinism type 1, which localizes intracellularly to melanosomes to regulate their biogenesis. Using biochemical and morphological methods in combination with overexpression and inactivation approaches we show that OA1 is ubiquitinated and that its intracellular sorting and down-regulation requires functional ESCRT components. Depletion or overexpression of subunits of ESCRT-0, -I, and -III markedly inhibits OA1 degradation with concomitant retention within the modified endosomal system. Our data further show that OA1 ubiquitination is uniquely required for targeting to the intralumenal vesicles of multivesicular endosomes, thereby regulating the balance between down-regulation and delivery to melanosomes. This study highlights the role of ubiquitination and the ESCRT machinery in the intracellular trafficking of mammalian GPCRs and has implications for the physiopathology of ocular albinism type 1.
Collapse
|
29
|
Delevoye C, Giordano F, van Niel G, Raposo G. [Biogenesis of melanosomes - the chessboard of pigmentation]. Med Sci (Paris) 2011; 27:153-62. [PMID: 21382323 DOI: 10.1051/medsci/2011272153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Melanosomes are lysosome-related organelles in retinal pigment epithelial cells and epidermal melanocytes in which melanin pigments are synthesized and stored. Melanosomes are generated by multistep processes in which an immature unpigmented organelle forms and then subsequently matures. Such maturation requires inter-organellar transport of protein cargos required for pigment synthesis but also recruitment of effector proteins necessary for the correct transport of melanosomes to the cell periphery. Several studies have started to unravel the main pathways and mechanisms exploited by melanosomal proteins involved in melanosome structure and melanin synthesis. A major unexpected finding seen early in melanosome biogenesis showed the similarities between the fibrillar sheets of premelanosomes and amyloid fibrils. Late steps of melanosome formation are dependent on pathways regulated by proteins encoded by genes mutated in genetic diseases such as the Hermansky-Pudlak Syndrom (HPS) and different types of albinism. Altogether the findings from the past recent years have started to unravel how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.
Collapse
Affiliation(s)
- Cédric Delevoye
- Institut Curie, Centre de recherche, CNRS UMR144, 26, rue d'Ulm, 75248 Paris, France.
| | | | | | | |
Collapse
|
30
|
Schiaffino MV. Signaling pathways in melanosome biogenesis and pathology. Int J Biochem Cell Biol 2010; 42:1094-104. [PMID: 20381640 DOI: 10.1016/j.biocel.2010.03.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 12/24/2022]
Abstract
Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over 100 genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology.
Collapse
|
31
|
Giordano F, Bonetti C, Surace EM, Marigo V, Raposo G. The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition. Hum Mol Genet 2009; 18:4530-45. [DOI: 10.1093/hmg/ddp415] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
Innamorati G, Giannone F, Guzzi F, Rovati GE, Accomazzo MR, Chini B, Bianchi E, Schiaffino MV, Tridente G, Parenti M. Heterotrimeric G proteins demonstrate differential sensitivity to beta-arrestin dependent desensitization. Cell Signal 2009; 21:1135-42. [PMID: 19275934 DOI: 10.1016/j.cellsig.2009.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 11/15/2022]
Abstract
G15 is a heterotrimeric G protein of the Gq/11 family. In this study, we describe its exceptional poor sensitivity to the general regulatory mechanism of G protein-coupled receptor (GPCR) desensitization. Enhancing beta2 adrenergic receptor desensitization by arrestin overexpression, did not affect signalling to G15. Similarly, increased levels of arrestin did not affect G15 signalling triggered by the activation of V2 vasopressin and delta opioid receptors. Furthermore, co-immunoprecipitation experiments showed that G15 alpha subunit (as opposed to Galphaq and Galphas) is recruited to a V2 vasopressin receptor mutant that is constitutively desensitized by beta-arrestin. Interestingly, co-expression of Galpha15 partially rescued cell surface localization and signalling capabilities of the same mutant receptor and reduced beta2 adrenergic receptor internalization. Taken together, these findings provide evidence for a novel mechanism whereby GPCR desensitization can be bypassed and G15 can support sustained signalling in cells chronically exposed to hormones or neurotransmitters.
Collapse
Affiliation(s)
- Giulio Innamorati
- Department of Pathology, Immunology Unit, University of Verona, c/o Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lopez VM, Decatur CL, Stamer WD, Lynch RM, McKay BS. L-DOPA is an endogenous ligand for OA1. PLoS Biol 2008; 6:e236. [PMID: 18828673 PMCID: PMC2553842 DOI: 10.1371/journal.pbio.0060236] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 08/18/2008] [Indexed: 11/25/2022] Open
Abstract
Albinism is a genetic defect characterized by a loss of pigmentation. The neurosensory retina, which is not pigmented, exhibits pathologic changes secondary to the loss of pigmentation in the retina pigment epithelium (RPE). How the loss of pigmentation in the RPE causes developmental defects in the adjacent neurosensory retina has not been determined, but offers a unique opportunity to investigate the interactions between these two important tissues. One of the genes that causes albinism encodes for an orphan GPCR (OA1) expressed only in pigmented cells, including the RPE. We investigated the function and signaling of OA1 in RPE and transfected cell lines. Our results indicate that OA1 is a selective L-DOPA receptor, with no measurable second messenger activity from two closely related compounds, tyrosine and dopamine. Radiolabeled ligand binding confirmed that OA1 exhibited a single, saturable binding site for L-DOPA. Dopamine competed with L-DOPA for the single OA1 binding site, suggesting it could function as an OA1 antagonist. OA1 response to L-DOPA was defined by several common measures of G-protein coupled receptor (GPCR) activation, including influx of intracellular calcium and recruitment of β-arrestin. Further, inhibition of tyrosinase, the enzyme that makes L-DOPA, resulted in decreased PEDF secretion by RPE. Further, stimulation of OA1 in RPE with L-DOPA resulted in increased PEDF secretion. Taken together, our results illustrate an autocrine loop between OA1 and tyrosinase linked through L-DOPA, and this loop includes the secretion of at least one very potent retinal neurotrophic factor. OA1 is a selective L-DOPA receptor whose downstream effects govern spatial patterning of the developing retina. Our results suggest that the retinal consequences of albinism caused by changes in melanin synthetic machinery may be treated by L-DOPA supplementation. Albinism is the loss of pigmentation caused by mutations in one of several different genes that alter pigment synthesis by different mechanisms. In the eye, albinism impairs sensory retina development and causes significant vision problems. Regardless of the genetic mutation that causes albinism, the associated vision problems are the same. Interestingly, none of the pigmentation genes are expressed by the sensory retinal cells affected by albinism but by neighboring, retinal pigment epithelial cells (RPE). Furthermore, loss of pigmentation in RPE somehow leads to imprecise retinal development. To investigate this cellular relationship, we studied OA1, which is encoded by a gene in which mutations cause ocular albinism. OA1 is unique among proteins involved with albinism because OA1 is a potential receptor that could participate in signal transduction rather than being a direct member of the pigment synthesis machinery. We show that the ligand for OA1 is L-DOPA, thus removing OA1 from orphan G-protein coupled receptor (GPCR) status. L-DOPA is a by-product of pigment synthesis, indicating that pigment synthesis and OA1 signaling are intertwined. OA1 signaling is highly selective for L-DOPA, and we show that two closely related molecules, dopamine and tyrosine, bind to OA1 but fail to stimulate signaling. We also show that OA1 signaling controls secretion of a potent neuron survival factor. Taken together, our data suggest that all forms of albinism produce the same retinal defects because of a final common pathway through OA1 signaling with downstream effects on RPE neurotrophic factor secretion. Albinism produces retinal defects, and OA1 is an orphan G-protein-coupled receptor that leads to albinism without acting directly on melanin synthesis. Here the ligand is identified and a mechanism is proposed by which the various forms of albinism signal through OA1, resulting in the same retinal phenotype.
Collapse
Affiliation(s)
- Vanessa M Lopez
- Department of Ophthalmology and Vision Science, The University of Arizona, Tucson, Arizona, United States of America
| | - Christina L Decatur
- Department of Ophthalmology and Vision Science, The University of Arizona, Tucson, Arizona, United States of America
| | - W. Daniel Stamer
- Department of Ophthalmology and Vision Science, The University of Arizona, Tucson, Arizona, United States of America
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Ronald M Lynch
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Brian S McKay
- Department of Ophthalmology and Vision Science, The University of Arizona, Tucson, Arizona, United States of America
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, Arizona, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Palmisano I, Bagnato P, Palmigiano A, Innamorati G, Rotondo G, Altimare D, Venturi C, Sviderskaya EV, Piccirillo R, Coppola M, Marigo V, Incerti B, Ballabio A, Surace EM, Tacchetti C, Bennett DC, Schiaffino MV. The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum Mol Genet 2008; 17:3487-501. [PMID: 18697795 PMCID: PMC2572695 DOI: 10.1093/hmg/ddn241] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protein product of the ocular albinism type 1 gene, named OA1, is a pigment cell-specific G protein-coupled receptor exclusively localized to intracellular organelles, namely lysosomes and melanosomes. Loss of OA1 function leads to the formation of macromelanosomes, suggesting that this receptor is implicated in organelle biogenesis, however the mechanism involved in the pathogenesis of the disease remains obscure. We report here the identification of an unexpected abnormality in melanosome distribution both in retinal pigment epithelium (RPE) and skin melanocytes of Oa1-knock-out (KO) mice, consisting in a displacement of the organelles from the central cytoplasm towards the cell periphery. Despite their depletion from the microtubule (MT)-enriched perinuclear region, Oa1-KO melanosomes were able to aggregate at the centrosome upon disruption of the actin cytoskeleton or expression of a dominant-negative construct of myosin Va. Consistently, quantification of organelle transport in living cells revealed that Oa1-KO melanosomes displayed a severe reduction in MT-based motility; however, this defect was rescued to normal following inhibition of actin-dependent capture at the cell periphery. Together, these data point to a defective regulation of organelle transport in the absence of OA1 and imply that the cytoskeleton might represent a downstream effector of this receptor. Furthermore, our results enlighten a novel function for OA1 in pigment cells and suggest that ocular albinism type 1 might result from a different pathogenetic mechanism than previously thought, based on an organelle-autonomous signalling pathway implicated in the regulation of both membrane traffic and transport.
Collapse
|
35
|
Maggio R, Innamorati G, Parenti M. G protein-coupled receptor oligomerization provides the framework for signal discrimination. J Neurochem 2007; 103:1741-52. [PMID: 17868304 DOI: 10.1111/j.1471-4159.2007.04896.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The idea that G protein-coupled receptors (GPCRs) may undergo homo- or hetero-oligomerization, although highly controversial up to a few years ago, has recently gained wide acceptance. The recognition that GPCRs may exhibit either dimeric or oligomeric structures is based upon a large body of biochemical and biophysical evidence. While much effort has been spent to demonstrate the mechanism(s) by which GPCRs interact with each other, the physiological relevance of this phenomenon remains rather elusive. GPCR oligomerization has been proposed to play a role in receptor ontogeny by either chaperoning protein folding or controlling trafficking to the cell surface. However, the acquisition of these roles does not rule out the possibility that oligomeric receptors may have additional functions, once they are brought to the cell surface. Herein, we propose that protein-protein as well as protein-lipid interactions may provide the structural basis for organizing distinct cell compartments along the plasma membrane where different extracellular signals may be perceived and discriminated.
Collapse
Affiliation(s)
- Roberto Maggio
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
36
|
Raposo G, Marks MS. Melanosomes--dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 2007; 8:786-97. [PMID: 17878918 PMCID: PMC2786984 DOI: 10.1038/nrm2258] [Citation(s) in RCA: 400] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.
Collapse
Affiliation(s)
- Graça Raposo
- Institut Curie, Centre de Recherche, Paris, F-75248 France.
| | | |
Collapse
|
37
|
Gloriam DE, Fredriksson R, Schiöth HB. The G protein-coupled receptor subset of the rat genome. BMC Genomics 2007; 8:338. [PMID: 17892602 PMCID: PMC2117022 DOI: 10.1186/1471-2164-8-338] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/25/2007] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The superfamily of G protein-coupled receptors (GPCRs) is one of the largest within most mammals. GPCRs are important targets for pharmaceuticals and the rat is one of the most widely used model organisms in biological research. Accurate comparisons of protein families in rat, mice and human are thus important for interpretation of many physiological and pharmacological studies. However, current automated protein predictions and annotations are limited and error prone. RESULTS We searched the rat genome for GPCRs and obtained 1867 full-length genes and 739 pseudogenes. We identified 1277 new full-length rat GPCRs, whereof 1235 belong to the large group of olfactory receptors. Moreover, we updated the datasets of GPCRs from the human and mouse genomes with 1 and 43 new genes, respectively. The total numbers of full-length genes (and pseudogenes) identified were 799 (583) for human and 1783 (702) for mouse. The rat, human and mouse GPCRs were classified into 7 families named the Glutamate, Rhodopsin, Adhesion, Frizzled, Secretin, Taste2 and Vomeronasal1 families. We performed comprehensive phylogenetic analyses of these families and provide detailed information about orthologues and species-specific receptors. We found that 65 human Rhodopsin family GPCRs are orphans and 56 of these have an orthologue in rat. CONCLUSION Interestingly, we found that the proportion of one-to-one GPCR orthologues was only 58% between rats and humans and only 70% between the rat and mouse, which is much lower than stated for the entire set of all genes. This is in mainly related to the sensory GPCRs. The average protein sequence identities of the GPCR orthologue pairs is also lower than for the whole genomes. We found these to be 80% for the rat and human pairs and 90% for the rat and mouse pairs. However, the proportions of orthologous and species-specific genes vary significantly between the different GPCR families. The largest diversification is seen for GPCRs that respond to exogenous stimuli indicating that the variation in their repertoires reflects to a large extent the adaptation of the species to their environment. This report provides the first overall roadmap of the GPCR repertoire in rat and detailed comparisons with the mouse and human repertoires.
Collapse
Affiliation(s)
- David E Gloriam
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
38
|
Sone M, Orlow SJ. The ocular albinism type 1 gene product, OA1, spans intracellular membranes 7 times. Exp Eye Res 2007; 85:806-16. [PMID: 17920058 DOI: 10.1016/j.exer.2007.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/01/2007] [Accepted: 08/21/2007] [Indexed: 11/26/2022]
Abstract
OA1 (GPR143) is a pigment cell-specific intracellular glycoprotein consisting of 404 amino acid residues that is mutated in patients with ocular albinism type 1, the most common form of ocular albinism. While its cellular localization is suggested to be endolysosomal and melanosomal, the physiological function of OA1 is currently unclear. Recent reports predicted that OA1 functions as a G protein coupled receptor (GPCR) based on its weak amino acid sequence similarity to known GPCRs, and on demonstration of GPCR activity in OA1 mislocalized to the plasma membrane. Because mislocalization of proteins is often caused by or induces defects in their proper folding/assembly, the significance of these studies remains unclear. A characteristic feature of GPCRs is a seven transmembrane domain structure. We analyzed the membrane topology of OA1 properly localized to intracellular lysosomal organelles in COS-1 cells. To accomplish this analysis, we established experimental conditions that allowed selective permeabilization of the plasma membrane while leaving endolysosomal membranes intact. Domains were mapped by the insertion of a hemagglutinin (HA) tag into the predicted cytosolic/luminal regions of OA1 molecule and the accessibility of tag to HA antibody was determined by immunofluorescence. HA-tagged lysosome associated membrane protein 1 (LAMP1), a type I membrane protein, was employed as a reporter for selective permeabilization of the plasma membrane. Our results show experimentally that the C-terminus of OA1 is directed to the cytoplasm and that the protein spans the intracellular membrane 7 times. Thus, OA1, properly localized intracellularly, is a 7 transmembrane domain integral membrane protein consistent with its putative role as an intracellular GPCR.
Collapse
Affiliation(s)
- Michio Sone
- Department of Dermatology, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
39
|
Revankar CM, Mitchell HD, Field AS, Burai R, Corona C, Ramesh C, Sklar LA, Arterburn JB, Prossnitz ER. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30. ACS Chem Biol 2007; 2:536-44. [PMID: 17655271 DOI: 10.1021/cb700072n] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Estrogen mediates its effects through multiple cellular receptors. In addition to the classical nuclear estrogen receptors (ERalpha and ERbeta), estrogen also signals through the seven-transmembrane G-protein-coupled receptor (GPCR) GPR30. Although estrogen is a cell-permeable ligand, it is often assumed that all GPCRs function solely as cell surface receptors. Our previous results showed that GPR30 appeared to be expressed predominantly in the endoplasmic reticulum. A critical question that arises is whether this localization represents the site of functional receptor. To address this question, we synthesized a collection of cell-permeable and cell-impermeable estrogen derivatives. We hypothesized that if functional GPR30 were expressed at the cell surface, both permeable and impermeable derivatives would show activity. However, if functional GPR30 were predominantly intracellular, like ERalpha, only the permeable ligands should show activity. Cell permeability was assessed using cells expressing ERalpha as a model intracellular estrogen-binding receptor. Our results reveal that despite exhibiting similar binding affinities for GPR30, only the cell-permeable ligands are capable of stimulating rapid calcium mobilization and phosphoinositide 3-kinase (PI3K) activation. We conclude that GPR30 expressed intracellularly is capable of initiating cellular signaling and that there is insufficient GPR30 expressed on the cell surface to initiate signaling in response to impermeable ligands in the cell lines examined. To our knowledge, this is the first definitive demonstration of a functional intracellular transmembrane estrogen receptor.
Collapse
Affiliation(s)
- Chetana M Revankar
- Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|