1
|
Huang F, Su Z, Zhou F, Wu Y, Li J, Ren B. Estrogen prevented gingival barrier injury from Porphyromonas gingivalis lipopolysaccharide. Infect Immun 2025; 93:e0041024. [PMID: 39976433 PMCID: PMC11918251 DOI: 10.1128/iai.00410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025] Open
Abstract
The postmenopausal population usually suffers from more severe periodontal disease than non-menopausal women due to the decrease and low levels of estrogen, especially β-estradiol (E2). While additional estrogen therapy can effectively relieve alveolar bone resorption, this suggests that estrogen has played an important role in the development of periodontitis. The integrity of the gingival epithelial barrier plays a key role in protecting gingival tissue from inflammatory injury caused by pathogens. However, it remains unclear whether estrogen can maintain the integrity of the gingival epithelial barrier to reduce inflammatory injury. Here, using an infection model established with Porphyromonas gingivalis lipopolysaccharide (LPS) in human gingival epithelial cells (hGECs) and ovariectomized or Sham mice, we assessed the protective effect of estrogen on the gingival barrier using qPCR, western blotting, immunohistochemistry, and transcriptome analysis. The results showed that estrogen restored epithelial barrier function to inhibit P. gingivalis-LPS invasion and further downregulate the inflammatory reaction (P < 0.05) by upregulating expressions of tight junction proteins (such as JAM1 and OCLN) at mRNA and protein levels in both hGECs and ovariectomized or Sham mice (P < 0.05). Estrogen also protected against alveolar bone resorption and preserved barrier integrity in both ovariectomized and Sham mice (P < 0.05). In conclusion, E2 prevented the progression of gingival epithelial barrier damage and inflammation induced by P. gingivalis-LPS by increasing the expression of tight junction proteins. The protective effect of estrogen on gingival epithelial barrier injury highlighted its potential application in treating periodontitis and inflammatory diseases involving epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Fangting Huang
- State Key Laboratory
of Oral Diseases, National Center for Stomatology, National Clinical
Research Center for Oral Diseases, West China School of Stomatology,
Sichuan University, Chengdu,
Sichuan, China
- Department of
Preventive Dentistry, Hospital of Stomatology, Guanghua School of
Stomatology, Sun Yat-Sen University, Guangzhou,
Guangdong, China
| | - Zhifei Su
- State Key Laboratory
of Oral Diseases, National Center for Stomatology, National Clinical
Research Center for Oral Diseases, West China School of Stomatology,
Sichuan University, Chengdu,
Sichuan, China
- Department of
Cariology and Endodontics, West China School of Stomatology, Sichuan
University, Chengdu,
Sichuan, China
| | - Fangjie Zhou
- State Key Laboratory
of Oral Diseases, National Center for Stomatology, National Clinical
Research Center for Oral Diseases, West China School of Stomatology,
Sichuan University, Chengdu,
Sichuan, China
- Department of
Cariology and Endodontics, West China School of Stomatology, Sichuan
University, Chengdu,
Sichuan, China
| | - Yajie Wu
- State Key Laboratory
of Oral Diseases, National Center for Stomatology, National Clinical
Research Center for Oral Diseases, West China School of Stomatology,
Sichuan University, Chengdu,
Sichuan, China
- Department of
Cariology and Endodontics, West China School of Stomatology, Sichuan
University, Chengdu,
Sichuan, China
| | - Jiyao Li
- State Key Laboratory
of Oral Diseases, National Center for Stomatology, National Clinical
Research Center for Oral Diseases, West China School of Stomatology,
Sichuan University, Chengdu,
Sichuan, China
- Department of
Cariology and Endodontics, West China School of Stomatology, Sichuan
University, Chengdu,
Sichuan, China
| | - Biao Ren
- State Key Laboratory
of Oral Diseases, National Center for Stomatology, National Clinical
Research Center for Oral Diseases, West China School of Stomatology,
Sichuan University, Chengdu,
Sichuan, China
| |
Collapse
|
2
|
Alaei SR, King AJ, Banani K, Reddy A, Ortiz J, Knight AL, Haldeman J, Su TH, Park H, Coats SR, Jain S. Lipid a remodeling modulates outer membrane vesicle biogenesis by Porphyromonas gingivalis. J Bacteriol 2025; 207:e0033624. [PMID: 39660885 PMCID: PMC11784228 DOI: 10.1128/jb.00336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Outer membrane vesicles (OMVs) are small membrane enclosed sacs released from bacteria which serve as carriers of biomolecules that shape interactions with the surrounding environment. The periodontal pathogen, Porphyromonas gingivalis, is a prolific OMV producer. Here, we investigated how the structure of lipid A, a core outer membrane molecule, influences P. gingivalis OMV production, OMV-dependent TLR4 activation, and biofilm formation. We examined mutant strains of P. gingivalis 33277 deficient for enzymes that alter lipid A phosphorylation and acylation status. The lipid A C4'-phosphatase (lpxF)-deficient strain and strains bearing inactivating point mutations in the LpxF active site displayed markedly reduced OMV production relative to WT. In contrast, strains deficient for either the lipid A C1-phosphatase (lpxE) or the lipid A deacylase (PGN_1123; lpxZ) genes did not display alterations in OMV abundance compared to WT. These data indicate that lipid A C4'-phosphate removal is required for typical OMV formation. In addition, OMVs produced by ΔlpxF and ΔlpxZ strains, possessing only penta-acylated lipid A, stimulated robust TLR4 activation, whereas OMVs obtained from WT and ΔlpxE strains, containing predominantly tetra-acylated lipid A, did not. Hence, lipid A remodeling modulates the capacity of OMVs to engage host TLR4-dependent immunity. Finally, we demonstrate an inverse relationship between OMV abundance and biofilm density, with the ∆lpxF mutants forming denser biofilms than either WT, ΔlpxE, or ΔlpxZ strains. Therefore, OMVs may also contribute to pathogenesis by regulating biofilm formation and dispersal.IMPORTANCEPorphyromonas gingivalis is a bacterium strongly associated with periodontitis. P. gingivalis exports lipids, proteins, and other biomolecules that contribute to the bacterium's ability to persist in inflammatory conditions encountered during disease. These biomolecules are exported through several mechanisms, including via outer membrane vesicles (OMVs). Despite their ubiquity, the mechanisms that drive outer membrane vesicle production vary among bacteria and are not fully understood. In this study, we report that C4' dephosphorylation of lipid A, a major outer membrane molecule, is required for robust outer membrane vesicle production and biological function in P. gingivalis. This finding adds to the growing body of evidence that lipid A structure is an important factor in outer membrane vesicle biogenesis in diverse bacterial species.
Collapse
Affiliation(s)
- Sarah R. Alaei
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alisa J. King
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Karim Banani
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Angel Reddy
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Joshua Ortiz
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Alexa L. Knight
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Jessica Haldeman
- Division of Science and Mathematics, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington, USA
| | - Thet Hnin Su
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Hana Park
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Stephen R. Coats
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Sumita Jain
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Moore TC, Pinkerton TS, Petro TM. IRF3 Promotes Production of IL-6 and Nitric Oxide but Represses CCL22 in RAW264.7 Macrophage Cells Exposed to Lipopolysaccharides in Culture. J Inflamm Res 2025; 18:1255-1265. [PMID: 39897523 PMCID: PMC11784258 DOI: 10.2147/jir.s496930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/18/2025] [Indexed: 02/04/2025] Open
Abstract
Introduction Macrophage responses to lipopolysaccharides (LPS) drive inflammatory diseases, such as periodontitis, with production of IL-6 and Nitric Oxide (NO). However, anti-inflammatory macrophages counter inflammation with the production of CCL22. Interferon regulatory factor 3 (IRF3) plays a significant role in expression of both IL-6 and NO during macrophage responses through Interferon-stimulated Response Elements (ISREs) of promoters. Methods To determine the role of IRF3 in LPS-induced pro- and anti-inflammatory macrophage responses, we used the macrophage cell line RAW264.7 modified with an ISRE promoter driving secreted luciferase (RAW264.7-Lucia) to assess IRF3 activity in response to Escherichia coli and Porphyromonas gingivalis LPS. For comparison, responses to poly I:C and IFN-gamma and responses from RAW264.7 cells deficient in IRF3 were also assessed. Results Herein, LPS of P. gingivalis, significantly enhanced production of IL-6 and NO that was induced by E. coli LPS but significantly decreased poly I:C-induced ISRE promoter activity. Moreover, IRF3 deficiency depressed the LPS-induced ISRE promoter activity and NO production but increased IL-6 and CCL22 in response to LPS. Restoration of IRF3 expression in IRF3KO RAW cells increased IL-6, restored NO, and decreased CCL22 production in response to LPS of E. coli. Discussion Therefore, IRF3 is critical to the expression of pro- and anti-inflammatory factors produced by macrophages responding to LPS and could be a target during periodontitis treatment.
Collapse
Affiliation(s)
- Tyler C Moore
- Department of Biology, College of Science and Technology, Bellevue University, Bellevue, NE, 68005, USA
| | - Terrence Scott Pinkerton
- Department of Biology, College of Science and Technology, Bellevue University, Bellevue, NE, 68005, USA
| | - Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| |
Collapse
|
4
|
Zhao J, Jiao J, Chen X, Zhang Y, Chen T, Xie J, Ou X. Procyanidin B2 targeted CCR7 expression to inhibit the senescence-associated secretory phenotype through the NF-κB pathway to promote osteogenic differentiation of periodontal ligament stem cells in periodontitis. Int Immunopharmacol 2024; 143:113435. [PMID: 39500084 DOI: 10.1016/j.intimp.2024.113435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 12/08/2024]
Abstract
Periodontitis is recognized as a chronic inflammatory disease, with aging emerging as a significant risk factor. Cellular senescence plays a crucial role in the biological process of aging. The senescence-associated secretory phenotype (SASP) is characterized by a series of pro-inflammatory factors, chemokines, and proteases, which are hallmark characteristics of senescent cells. These factors collectively alter the local environment, impacting the function of periodontal ligament stem cells (PDLSCs). Procyanidin B2 (PB2), the main dimer of oligomeric procyanidins, possesses antioxidant, anti-inflammatory, and anti-cancer properties. The molecular mechanisms through which PB2 exerts its protective effects against periodontitis remain incompletely understood. Therefore, this research aimed to investigate the effects and underlying mechanisms of PB2 on the osteogenic differentiation of PDLSCs within an inflammatory environment. To simulate a chronic inflammatory condition, PDLSCs were stimulated with Porphyromonas gingivalis Lipopolysaccharide (Pg. LPS). The findings indicated that PB2 significantly alleviated the inflammatory responses, enhanced the activity of antioxidant enzymes, and upregulated the osteogenic differentiation of PDLSCs stimulated by Pg. LPS. RNA sequencing (RNA-Seq) revealed that Pg. LPS influenced the cell cycle, cellular senescence, and NF-κB signaling pathways. In contrast, PB2 treatment reduced the number of senescent cells and diminished the expression of senescence-associated proteins and genes. Western blot analysis verified that PB2 also decreased the levels of CCR7 and suppressed the NF-κB signaling pathways. In conclusion, PB2 targeted CCR7 expression to inhibit the SASP through NF-κB signaling pathway, demonstrating its anti-inflammatory and osteogenic properties, positioning PB2 as a promising therapeutic option for the adjuvant treatment of periodontitis.
Collapse
Affiliation(s)
- Junwei Zhao
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Jilan Jiao
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Xin Chen
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Yuemeng Zhang
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaoyan Ou
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China; Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China.
| |
Collapse
|
5
|
Baddouri L, Hannig M. Probiotics as an adjunctive therapy in periodontitis treatment-reality or illusion-a clinical perspective. NPJ Biofilms Microbiomes 2024; 10:148. [PMID: 39681550 DOI: 10.1038/s41522-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis, a prevalent oral health issue, involves various microorganisms and clinical effects. This review examines probiotics as adjunctive therapy for periodontitis by analyzing forty clinical studies. Findings showed mixed results due to differences in study design, probiotic types, and clinical parameters; however, probiotics improved outcomes in severe cases. Caution is advised when interpreting these results, as longer follow-up periods reveal variability and potential regression in effects.
Collapse
Affiliation(s)
- Lamyae Baddouri
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Pharmacy, Saarland University, Saarbrucken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.
| |
Collapse
|
6
|
Patridge E, Gorakshakar A, Molusky MM, Ogundijo O, Janevski A, Julian C, Hu L, Vuyisich M, Banavar G. Microbial functional pathways based on metatranscriptomic profiling enable effective saliva-based health assessments for precision wellness. Comput Struct Biotechnol J 2024; 23:834-842. [PMID: 38328005 PMCID: PMC10847690 DOI: 10.1016/j.csbj.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
It is increasingly recognized that an important step towards improving overall health is to accurately measure biomarkers of health from the molecular activities prevalent in the oral cavity. We present a general methodology for computationally quantifying the activity of microbial functional pathways using metatranscriptomic data. We describe their implementation as a collection of eight oral pathway scores using a large salivary sample dataset (n = 9350), and we evaluate score associations with oropharyngeal disease phenotypes within an unseen independent cohort (n = 14,129). Through this validation, we show that the relevant oral pathway scores are significantly worse in individuals with periodontal disease, acid reflux, and nicotine addiction, compared with controls. Given these associations, we make the case to use these oral pathway scores to provide molecular health insights from simple, non-invasive saliva samples, and as molecular endpoints for actionable interventions to address the associated conditions.
Collapse
Affiliation(s)
- Eric Patridge
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Anmol Gorakshakar
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | | | - Oyetunji Ogundijo
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Angel Janevski
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Cristina Julian
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | - Lan Hu
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| | | | - Guruduth Banavar
- Viome Research Institute, Viome Life Sciences Inc., New York City, USA
| |
Collapse
|
7
|
Gorr SU, Chen R, Abrahante JE, Joyce PBM. The oral pathogen Porphyromonas gingivalis gains tolerance to the antimicrobial peptide DGL13K by synonymous mutations in hagA. PLoS One 2024; 19:e0312200. [PMID: 39446776 PMCID: PMC11500903 DOI: 10.1371/journal.pone.0312200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen for periodontal disease. The bacteria are black-pigmented and require heme for growth. P. gingivalis exhibit resistance to many antimicrobial peptides, which contributes to their success in the oral cavity. P. gingivalis W50 was resistant to the antimicrobial peptide LGL13K but susceptible to the all-D-amino acid stereoisomer, DGL13K. Upon prolonged exposure to DGL13K, a novel non-pigmented mutant was isolated. Exposure to the L-isomer, LGL13K, did not produce a non-pigmented mutant. The goal of this study was to characterize the genomic and cellular changes that led to the non-pigmented phenotype upon treatment with DGL13K. The non-pigmented mutant showed a low minimum inhibitory concentration and two-fold extended minimum duration for killing by DGL13K, consistent with tolerance to this peptide. The DGL13K-tolerant bacteria exhibited synonymous mutations in the hagA gene. The mutations did not prevent mRNA expression but were predicted to alter mRNA structure. The non-pigmented bacteria were deficient in hemagglutination and hemoglobin binding, suggesting that the HagA protein was not expressed. This was supported by whole cell enzyme-linked immunosorbent assay and gingipain activity assays, which suggested the absence of HagA but not of two closely related gingipains. In vivo virulence was similar for wild type and non-pigmented bacteria in the Galleria mellonella model. The results suggest that, unlike LGL13K, DGL13K can defeat multiple bacterial resistance mechanisms but bacteria can gain tolerance to DGL13K through mutations in the hagA gene.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Juan E. Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul B. M. Joyce
- Department of Chemistry and Biochemistry, Centre for Structural and Functional Genomics, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Pan J, Li X, Sun R, Xu Y, Shi Z, Dai C, Wen H, Han RPS, Ye Q, Zhang F, Liu Q. Hydrogel-based radio frequency H 2S sensor for in situ periodontitis monitoring and antibacterial treatment. Biosens Bioelectron 2024; 259:116404. [PMID: 38772248 DOI: 10.1016/j.bios.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Periodontitis, a chronic disease, can result in irreversible tooth loss and diminished quality of life, highlighting the significance of timely periodontitis monitoring and treatment. Meanwhile, hydrogen sulfide (H2S) in saliva, produced by pathogenic bacteria of periodontitis, is an important marker for periodontitis monitoring. However, the easy volatility and chemical instability of the molecule pose challenges to oral H2S sensing. Here, we report a wearable hydrogel-based radio frequency (RF) sensor capable of in situ H2S detection and antibacterial treatment. The RF sensor comprises an agarose hydrogel containing conjugated silver nanoparticles-chlorhexidine (AG-AgNPs-CHL hydrogel) integrated with split-ring resonators. Adhered to a tooth, the hydrogel-based RF sensor enables wireless transmission of sensing signals to a mobile terminal and a concurrent release of the broad-spectrum antibacterial agent chlorhexidine without complex circuits. With the selective binding of the AgNPs to the sulfidion, the RF sensor demonstrates good sensitivity, a wide detection range (2-30 μM), and a low limit of detection (1.2 μM). Compared with standard H2S measurement, the wireless H2S sensor can distinguish periodontitis patients from healthy individuals in saliva sample tests. The hydrogel-based wearable sensor will benefit patients with periodontitis by detecting disease-related biomarkers for practical oral health management.
Collapse
Affiliation(s)
- Jingying Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rujing Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, School of Medicine, Zhejiang University, Hangzhou, 310027, China
| | - Zhenghan Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chaobo Dai
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ray P S Han
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qing Ye
- Cancer Research Center, College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
9
|
Ohara K, Tomiyama K, Okuda T, Tsutsumi K, Ishihara C, Hashimoto D, Fujii Y, Chikazawa T, Kurita K, Mukai Y. Dipotassium glycyrrhizate prevents oral dysbiosis caused by Porphyromonas gingivalis in an in vitro saliva-derived polymicrobial biofilm model. J Oral Biosci 2024; 66:575-581. [PMID: 38972505 DOI: 10.1016/j.job.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES Oral microbiome dysbiosis prevention is important to avoid the onset and progression of periodontal disease. Dipotassium glycyrrhizate (GK2) is a licorice root extract with anti-inflammatory effects, and its associated mechanisms have been well-reported. However, their effects on the oral microbiome have not been investigated. This study aimed to elucidate the effects of GK2 on the oral microbiome using an in vitro polymicrobial biofilm model. METHODS An in vitro saliva-derived polymicrobial biofilm model was used to evaluate the effects of GK2 on the oral microbiome. One-week anaerobic culture was performed, in which GK2 was added to the medium. Subsequently, microbiome analysis was performed based on the V1-V2 region of the 16 S rRNA gene, and pathogenicity indices were assessed. We investigated the effects of GK2 on various bacterial monocultures by evaluating its inhibitory effects on cell growth, based on culture turbidity. RESULTS GK2 treatment altered the microbiome structure and decreased the relative abundance of periodontal pathogenic bacteria, including Porphyromonas. Moreover, GK2 treatment reduced the DPP4 activity -a pathogenicity index of periodontal disease. Specifically, GK2 exhibited selective antibacterial activity against periodontal pathogenic bacteria. CONCLUSIONS These findings suggest that GK2 has a selective antibacterial effect against periodontal pathogenic bacteria; thus, preventing oral microbiome dysbiosis. Therefore, GK2 is expected to contribute to periodontal disease prevention by modulating the oral microbiome toward a state with low inflammatory potential, thereby utilizing its anti-inflammatory properties on the host.
Collapse
Affiliation(s)
- Kanta Ohara
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan.
| | - Kiyoshi Tomiyama
- Department of Restorative Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Takuma Okuda
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kota Tsutsumi
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Chikako Ishihara
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Daiki Hashimoto
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yuto Fujii
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Takashi Chikazawa
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Kei Kurita
- Research & Development Headquarters, Lion Corporation, Edogawa-ku, Tokyo, Japan
| | - Yoshiharu Mukai
- Department of Restorative Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| |
Collapse
|
10
|
Tang Y, Qi Y, Chen Y, Wang YQ, Zhang C, Sun Y, Huang C, Zhang XZ. Erythrocyte-Mimicking Nanovesicle Targeting Porphyromonas gingivalis for Periodontitis. ACS NANO 2024; 18:21077-21090. [PMID: 39088785 DOI: 10.1021/acsnano.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Porphyromonas gingivalis has been demonstrated to have the strongest association with periodontitis. Within the host, P. gingivalis relies on acquiring iron and heme through the aggregation and lysis of erythrocytes, which are important factors in the growth and virulence of P. gingivalis. Additionally, the excess obtained heme is deposited on the surface of P. gingivalis, protecting the cells from oxidative damage. Based on these biological properties of the interaction between P. gingivalis and erythrocytes, this study developed an erythrocyte membrane nanovesicle loaded with gallium porphyrins to mimic erythrocytes. The nanovesicle can target and adhere with P. gingivalis precisely, being lysed and utilized by P. gingivalis as erythrocytes. Ingested gallium porphyrin replaces iron porphyrin in P. gingivalis, causing intracellular metabolic disruption. Deposited porphyrin generates a large amount of reactive oxygen species (ROS) under blue light, causing oxidative damage, and its lethality is enhanced by bacterial metabolic disruption, synergistically killing P. gingivalis. Our results demonstrate that this strategy can target and inhibit P. gingivalis, reduce its invasion of epithelial cells, and alleviate the progression of periodontitis.
Collapse
Affiliation(s)
- Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yongdan Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yu-Qiang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yunxia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Nadaf R, Kumbar VM, Ghagane S. Unravelling the intricacies of Porphyromonas gingivalis: virulence factors, lifecycle dynamics and phytochemical interventions for periodontal disease management. APMIS 2024. [PMID: 39030947 DOI: 10.1111/apm.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/14/2024] [Indexed: 07/22/2024]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium recognized for its pivotal role in the pathogenesis of periodontal diseases. This review covers an overview of the virulence factors and lifecycle stages of P. gingivalis, with a specific focus on attachment and colonization, biofilm formation, growth and multiplication, dormancy survival and dissemination. Additionally, we explore the significance of inter-bacterial cross-feeding within biofilms. Furthermore, we discuss potential phytochemical-based strategies to target P. gingivalis, including the use of curcumin, apigenin, quercetin and resveratrol. Understanding the virulence factors and lifecycle stages of P. gingivalis, along with the promising phytochemical-based interventions, holds promise for advancing strategies in periodontal disease management and oral health promotion.
Collapse
Affiliation(s)
- Rubeen Nadaf
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| | - Shridhar Ghagane
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Belagavi, Karnataka, India
| |
Collapse
|
12
|
Tanum J, Kim H, Lee S, Kim A, Korostoff J, Hwang G. Photobiomodulation of Gingival Cells Challenged with Viable Oral Microbes. J Dent Res 2024; 103:745-754. [PMID: 38700089 PMCID: PMC11191660 DOI: 10.1177/00220345241246529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
The oral cavity, a unique ecosystem harboring diverse microorganisms, maintains health through a balanced microflora. Disruption may lead to disease, emphasizing the protective role of gingival epithelial cells (GECs) in preventing harm from pathogenic oral microbes. Shifting GECs' response from proinflammatory to antimicrobial could be a novel strategy for periodontitis. Photobiomodulation therapy (PBMT), a nonpharmacologic host modulatory approach, is considered an alternative to drugs. While the host cell response induced by a single type of pathogen-associated molecular patterns (PAMPs) was widely studied, this model does not address the cellular response to intact microbes that exhibit multiple PAMPs that might modulate the response. Inspired by this, we developed an in vitro model that simulates direct interactions between host cells and intact pathogens and evaluated the effect of PBMT on the response of human gingival keratinocytes (HGKs) to challenge viable oral microbes at both the cellular and molecular levels. Our data demonstrated that LED pretreatment on microbially challenged HGKs with specific continuous wavelengths (red: 615 nm; near-infrared: 880 nm) induced the production of various antimicrobial peptides, enhanced cell viability and proliferation, promoted reactive oxygen species scavenging, and down-modulated proinflammatory activity. The data also suggest a potential explanation regarding the superior efficacy of near-infrared light treatment compared with red light in enhancing antimicrobial activity and reducing cellular inflammation of HGKs. Taken together, the findings suggest that PBMT enhances the overall barrier function of gingival epithelium while minimizing inflammation-mediated breakdown of the underlying structures.
Collapse
Affiliation(s)
- J. Tanum
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - H.E. Kim
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S.M. Lee
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A. Kim
- Department of Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - J. Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - G. Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Chemical and Biomolecular Engineering College of Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Śmiga M, Ślęzak P, Olczak T. Comparative analysis of Porphyromonas gingivalis A7436 and ATCC 33277 strains reveals differences in the expression of heme acquisition systems. Microbiol Spectr 2024; 12:e0286523. [PMID: 38289063 PMCID: PMC10913741 DOI: 10.1128/spectrum.02865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
Porphyromonas gingivalis strains exhibit different phenotypes in vitro, different virulence potential in animal models, and different associations with human diseases, with strains classified as virulent/more virulent (e.g., A7436 and W83) or as less virulent/avirulent (e.g., ATCC 33277). In this study, we comparatively analyzed the A7436 and ATCC 33277 strains to better understand their variability. Global gene expression analysis in response to heme and iron limitation revealed more pronounced differences in the A7436 than in the ATCC 33277 strain; however, in both strains, the largest changes were observed in genes encoding hypothetical proteins, genes whose products participate in energy metabolism, and in genes encoding proteins engaged in transport and binding proteins. Our results confirmed that variability between P. gingivalis strains is due to differences in the arrangement of their genomes. Analysis of gene expression of heme acquisition systems demonstrated that not only the availability of iron and heme in the external environment but also the ability to store iron intracellularly can influence the P. gingivalis phenotype. Therefore, we assume that differences in virulence potential may also be due to differences in the production of systems involved in iron and heme acquisition, mainly the Hmu system. In addition, our study showed that hemoglobin, in a concentration-dependent manner, differentially influences the virulence potential of P. gingivalis strains. We conclude that iron and heme homeostasis may add to the variability observed between P. gingivalis strains. IMPORTANCE Periodontitis belongs to a group of multifactorial diseases, characterized by inflammation and destruction of tooth-supporting tissues. P. gingivalis is one of the most important microbial factors involved in the initiation and progression of periodontitis. To survive in the host, the bacterium must acquire heme as a source of iron and protoporphyrin IX. P. gingivalis strains respond differently to changing iron and heme concentrations, which may be due to differences in the expression of systems involved in iron and heme acquisition. The ability to accumulate iron intracellularly, being different in more and less virulent P. gingivalis strains, may influence their phenotypes, production of virulence factors (including proteins engaged in heme acquisition), and virulence potential of this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
Hoy SR, Vucetich JA, Vucetich LM, Hindelang M, Huebner JL, Kraus VB, Peterson RO. Links between three chronic and age-related diseases, osteoarthritis, periodontitis, and osteoporosis, in a wild mammal (moose) population. Osteoarthritis Cartilage 2024; 32:281-286. [PMID: 38043856 DOI: 10.1016/j.joca.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE Osteoarthritis, periodontitis and osteoporosis are chronic, age-related diseases which adversely impact millions of people worldwide. Because these diseases pose a major global public health challenge, there is an urgent need to better understand how these diseases are interrelated. Our objective was to document the age and sex-specific prevalence of each disease and assess interrelationships among the three diseases in a wild mammal (moose, Alces alces) population. METHODS We examined the bones of moose dying from natural causes and recorded the severity of osteoarthritis (typically observed on the hip and lowest vertebrae), osteoporosis (osteoporotic lesions observed on the skull) and periodontitis (observed on maxilla and mandibles). RESULTS Periodontitis was associated with a greater prevalence of both severe osteoarthritis and osteoporotic lesions in moose. We found no evidence to suggest that moose with osteoporotic lesions were more or less likely to exhibit signs of osteoarthritis or severe osteoarthritis. The prevalence of osteoarthritis, periodontitis and osteoporotic lesions was greater among males than for females. CONCLUSIONS Our results were consistent with the hypothesis that bacterial pathogens causing periodontitis are a risk factor for osteoarthritis and osteoporosis. They are also consistent with the hypothesis that the inverse association between osteoarthritis and osteoporosis sometimes observed in humans may be influenced by shared risk factors, such as obesity, smoking or alcohol consumption, which are absent in moose. Together these results provide insights about three diseases which are expected to become more prevalent in the future and that cause substantial socio-economic burdens.
Collapse
Affiliation(s)
- Sarah R Hoy
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - John A Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Leah M Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Mary Hindelang
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| | - Janet L Huebner
- Duke Molecular Physiology Department, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Virginia B Kraus
- Duke Molecular Physiology Department, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Rolf O Peterson
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
15
|
Velayatipour F, Tarrahimofrad H, Zamani J, Fotouhi F, Aminzadeh S. In-vitro antimicrobial activity of AF-DP protein and in-silico approach of cell membrane disruption. J Biomol Struct Dyn 2024:1-18. [PMID: 38319027 DOI: 10.1080/07391102.2024.2308763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024]
Abstract
Microbial resistance against common antibiotics has become one of the most serious threats to human health. The increasing statistics on this problem show the necessity of finding a way to deal with it. In recent years, antimicrobial peptides with unique properties and the capability of targeting a wide range of pathogens, have been considered as a potential for replacing common antibiotics. A small chitin-binding protein with anticandidal activity was isolated from Moringa oleifera seeds by Neto and colleagues in 2017, which very much resembled antimicrobial peptides. In this study, the antimicrobial protein 'AF-DP' was identified and characterized. AF-DP was heterologously expressed, purified, and characterized, and its 3D structure was predicted. Six molecular dynamic simulations were performed to investigate how the protein interacts with Gram-negative inner and outer, Gram-positive, fungal, cancerous, and normal mammalian membranes. Also, its antimicrobial and anticancer activity was assessed in vitro via minimum inhibition concentration (MIC) and MTT assays, respectively. This protein with 111 amino acids and a total net charge (of 10.5) has been predicted to be mainly composed of alpha helix and random coils. Its MIC affecting the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans was 30 µg/ml, 100 µg/ml, and 100 µg/ml, respectively; AF-DP showed anticancer activity against MCF-7 breast cancer cell line. Scanning electron microscopic analysis confirmed the creation of pores and scratches on the surface of the bacterial membrane. The results of this research show that AF-DP can be a candidate for the production of new drugs as an AMP with antimicrobial activity.
Collapse
Affiliation(s)
- Fatemeh Velayatipour
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Fotouhi
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
16
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Kim D, Choi H, Oh H, Lee J, Hwang Y, Kang SS. Mutanolysin-Digested Peptidoglycan of Lactobacillus reuteri Promotes the Inhibition of Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses through the Regulation of Signaling Cascades via TLR4 Suppression. Int J Mol Sci 2023; 25:42. [PMID: 38203215 PMCID: PMC10779245 DOI: 10.3390/ijms25010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1β, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Donghan Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hanhee Choi
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Hyeonjun Oh
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Jiyeon Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Yongjin Hwang
- Novalacto Co., Ltd., Daejon 34016, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
18
|
Zhu L, Tang Z, Hu R, Gu M, Yang Y. Ageing and Inflammation: What Happens in Periodontium? Bioengineering (Basel) 2023; 10:1274. [PMID: 38002398 PMCID: PMC10669535 DOI: 10.3390/bioengineering10111274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with a high incidence and severity in the elderly population, making it a significant public health concern. Ageing is a primary risk factor for the development of periodontitis, exacerbating alveolar bone loss and leading to tooth loss in the geriatric population. Despite extensive research, the precise molecular mechanisms underlying the relationship between ageing and periodontitis remain elusive. Understanding the intricate mechanisms that connect ageing and inflammation may help reveal new therapeutic targets and provide valuable options to tackle the challenges encountered by the rapidly expanding global ageing population. In this review, we highlight the latest scientific breakthroughs in the pathways by which inflammaging mediates the decline in periodontal function and triggers the onset of periodontitis. We also provide a comprehensive overview of the latest findings and discuss potential avenues for future research in this critical area of investigation.
Collapse
Affiliation(s)
| | | | | | | | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China; (L.Z.); (Z.T.); (R.H.); (M.G.)
| |
Collapse
|
19
|
Kim SJ, Lee SH, Quang BD, Tran TT, Kim YG, Ko J, Choi WY, Lee SY, Ryu JH. Avenanthramide-C Shows Potential to Alleviate Gingival Inflammation and Alveolar Bone Loss in Experimental Periodontitis. Mol Cells 2023; 46:627-636. [PMID: 37641936 PMCID: PMC10590710 DOI: 10.14348/molcells.2023.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Periodontal disease is a chronic inflammatory disease that leads to the gradual destruction of the supporting structures of the teeth including gums, periodontal ligaments, alveolar bone, and root cementum. Recently, interests in alleviating symptoms of periodontitis (PD) using natural compounds is increasing. Avenanthramide-C (Avn-C) is a polyphenol found only in oats. It is known to exhibit various biological properties. To date, the effect of Avn-C on PD pathogenesis has not been confirmed. Therefore, this study aimed to verify the protective effects of Avn-C on periodontal inflammation and subsequent alveolar bone erosion in vitro and in vivo. Upregulated expression of catabolic factors, such as matrix metalloproteinase 1 (MMP1), MMP3, interleukin (IL)-6, IL-8, and COX2 induced by lipopolysaccharide and proinflammatory cytokines, IL-1β, and tumor necrosis factor α (TNF-α), was dramatically decreased by Avn-C treatment in human gingival fibroblasts and periodontal ligament cells. Moreover, alveolar bone erosion in the ligature-induced PD mouse model was ameliorated by intra-gingival injection of Avn-C. Molecular mechanism studies revealed that the inhibitory effects of Avn-C on the upregulation of catabolic factors were mediated via ERK (extracellular signal-regulated kinase) and NF-κB pathway that was activated by IL-1β or p38 MAPK and JNK signaling that was activated by TNF-α, respectively. Based on this study, we recommend that Avn-C may be a new natural compound that can be applied to PD treatment.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Se Hui Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Binh Do Quang
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Thanh-Tam Tran
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Young-Gwon Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Jun Ko
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Weon-Young Choi
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
20
|
Čolić M, Miljuš N, Đokić J, Bekić M, Krivokuća A, Tomić S, Radojević D, Radanović M, Eraković M, Ismaili B, Škrbić R. Pomegranate Peel Extract Differently Modulates Gene Expression in Gingiva-Derived Mesenchymal Stromal Cells under Physiological and Inflammatory Conditions. Int J Mol Sci 2023; 24:15407. [PMID: 37895087 PMCID: PMC10607867 DOI: 10.3390/ijms242015407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pomegranate has shown a favorable effect on gingivitis/periodontitis, but the mechanisms involved are poorly understood. The aim of this study was to test the effect of pomegranate peel extract (PoPEx) on gingiva-derived mesenchymal stromal cells (GMSCs) under physiological and inflammatory conditions. GMSC lines from healthy (H) and periodontitis (P) gingiva (n = 3 of each) were established. The lines were treated with two non-toxic concentrations of PoPEX (low-10; high-40 µg/mL), with or without additional lipopolysaccharide (LPS) stimulation. Twenty-four genes in GMSCs involved in different functions were examined using real-time polymerase chain reaction (RT-PCR). PoPEx (mostly at higher concentrations) inhibited the basal expression of IL-6, MCP-1, GRO-α, RANTES, IP-10, HIF-1α, SDF-1, and HGF but increased the expression of IL-8, TLR3, TGF-β, TGF-β/LAP ratio, IDO-1, and IGFB4 genes in H-GMSCs. PoPEx increased IL-6, RANTES, MMP3, and BMP2 but inhibited TLR2 and GRO-α gene expression in P-GMSCs. LPS upregulated genes for proinflammatory cytokines and chemokines, tissue regeneration/repair (MMP3, IGFBP4, HGF), and immunomodulation (IP-10, RANTES, IDO-1, TLR3, COX-2), more strongly in P-GMSCs. PoPEx also potentiated most genes' expression in LPS-stimulated P-GMSCs, including upregulation of osteoblastic genes (RUNX2, BMP2, COL1A1, and OPG), simultaneously inhibiting cell proliferation. In conclusion, the modulatory effects of PoPEx on gene expression in GMSCs are complex and dependent on applied concentrations, GMSC type, and LPS stimulation. Generally, the effect is more pronounced in inflammation-simulating conditions.
Collapse
Grants
- 451-03-68/2020-14/200019 Ministry of Education, Science and Technological Development, Republic of Serbia
- MFVMA/03/20-22 University of Defense in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
- UIS/MFF: I.1.20-22 University of East Sarajevo, Medical Faculty Foča, Foča, Bosnia and Herzegovina
- N/A Medical Faculty Banja Luka, University of Banja Luka, Bosnia and Herzegovina
Collapse
Affiliation(s)
- Miodrag Čolić
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
| | - Nataša Miljuš
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (N.M.); (A.K.); (R.Š.)
| | - Jelena Đokić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.)
| | - Aleksandra Krivokuća
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (N.M.); (A.K.); (R.Š.)
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (S.T.)
| | - Dušan Radojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (J.Đ.); (D.R.)
| | - Marina Radanović
- Medical Faculty Foča, University of East Sarajevo, 73300 Foča, Bosnia and Herzegovina;
| | - Mile Eraković
- Clinic for Stomatology, Medical Faculty of the Military Medical Academy, University of Defense, 11154 Belgrade, Serbia;
| | - Bashkim Ismaili
- Faculty of Dental Medicine, International Balkan University, 1000 Skopje, North Macedonia;
| | - Ranko Škrbić
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (N.M.); (A.K.); (R.Š.)
| |
Collapse
|
21
|
Hirasawa I, Odagiri H, Park G, Sanghavi R, Oshita T, Togi A, Yoshikawa K, Mizutani K, Takeuchi Y, Kobayashi H, Katagiri S, Iwata T, Aoki A. Anti-inflammatory effects of cold atmospheric plasma irradiation on the THP-1 human acute monocytic leukemia cell line. PLoS One 2023; 18:e0292267. [PMID: 37851686 PMCID: PMC10584116 DOI: 10.1371/journal.pone.0292267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Cold atmospheric plasma (CAP) has been studied and clinically applied to treat chronic wounds, cancer, periodontitis, and other diseases. CAP exerts cytotoxic, bactericidal, cell-proliferative, and anti-inflammatory effects on living tissues by generating reactive species. Therefore, CAP holds promise as a treatment for diseases involving chronic inflammation and bacterial infections. However, the cellular mechanisms underlying these anti-inflammatory effects of CAP are still unclear. Thus, this study aimed to elucidate the anti-inflammatory mechanisms of CAP in vitro. The human acute monocytic leukemia cell line, THP-1, was stimulated with lipopolysaccharide and irradiated with CAP, and the cytotoxic effects of CAP were evaluated. Time-course differentiation of gene expression was analyzed, and key transcription factors were identified via transcriptome analysis. Additionally, the nuclear localization of the CAP-induced transcription factor was examined using western blotting. The results indicated that CAP showed no cytotoxic effects after less than 70 s of irradiation and significantly inhibited interleukin 6 (IL6) expression after more than 40 s of irradiation. Transcriptome analysis revealed many differentially expressed genes (DEGs) following CAP irradiation at all time points. Cluster analysis classified the DEGs into four distinct groups, each with time-dependent characteristics. Gene ontology and gene set enrichment analyses revealed CAP-induced suppression of IL6 production, other inflammatory responses, and the expression of genes related to major histocompatibility complex (MHC) class II. Transcription factor analysis suggested that nuclear factor erythroid 2-related factor 2 (NRF2), which suppresses intracellular oxidative stress, is the most activated transcription factor. Contrarily, regulatory factor X5, which regulates MHC class II expression, is the most suppressed transcription factor. Western blotting revealed the nuclear localization of NRF2 following CAP irradiation. These data suggest that CAP suppresses the inflammatory response, possibly by promoting NRF2 nuclear translocation.
Collapse
Affiliation(s)
- Ito Hirasawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Sekisui Chemical Co., Ltd., Ibaraki, Japan
| | | | - Giri Park
- Sekisui Chemical Co., Ltd., Ibaraki, Japan
| | | | | | - Akiko Togi
- Sekisui Chemical Co., Ltd., Ibaraki, Japan
| | | | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Duan A, Zhang Y, Yuan G. Screening of feature genes related to immune and inflammatory responses in periodontitis. BMC Oral Health 2023; 23:234. [PMID: 37085805 PMCID: PMC10122403 DOI: 10.1186/s12903-023-02925-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Immune and inflammatory responses are important in the occurrence and development of periodontitis. The aim of this study was to screen for immune-related genes and construct a disease diagnostic model to further investigate the underlying molecular mechanisms of periodontitis. METHODS GSE16134 and GSE10334 datasets were used in this study. Differentially expressed genes (DEGs) between the periodontitis and control groups were selected. Immune-related genes were identified, and functional analysis and construction of an interaction network were conducted. Immune characteristics were evaluated using gene set variation analysis GSVA. Immunity-related modules were analyzed using weighted gene co-expression network analysis (WGCNA). The LASSO algorithm was applied to optimize the module genes. Correlation between optimized immune-related DEGs and immune cells was analyzed. RESULTS A total of 324 immune-related DEGs enriched in immune- and inflammation-related functions and pathways were identified. Of which, 23 immune cells were significantly different between the periodontitis and control groups. Nine optimal immune-related genes were selected using the WGCNA and LASSO algorithms to construct a diagnostic model. Except for CXCL1, the other eight genes were significantly positively correlated with regulatory T cells, immature B cells, activated B cells, and myeloid-derived suppressor cells. CONCLUSION This study identified nine immune-related genes and developed a diagnostic model for periodontitis.
Collapse
Affiliation(s)
- Azhu Duan
- Department of Stomatology, Children’s Hospital of Shanghai, Children’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1400 Beijing West Road, Jing’an District, Shanghai, 200000 China
| | - Yeming Zhang
- Department of Stomatology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000 China
| | - Gongjie Yuan
- Department of Stomatology, Children’s Hospital of Shanghai, Children’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1400 Beijing West Road, Jing’an District, Shanghai, 200000 China
| |
Collapse
|
23
|
Afacan B, Ilhan HA, Köse T, Emingil G. Gingival crevicular fluid galectin-3 and interleukin-1 beta levels in stage 3 periodontitis with grade B and C. Clin Oral Investig 2023:10.1007/s00784-023-04991-7. [PMID: 37017753 DOI: 10.1007/s00784-023-04991-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES This study aims to evaluate GCF Galectin-3 and Interleukin-1 beta (IL-β) levels in different grades (B and C) of stage 3 periodontitis, concurrently, and also to investigate their discriminative efficiencies in periodontal diseases. MATERIALS AND METHODS A total of 80 systemically healthy and non-smoker individuals, 20 stage 3 grade C (S3GC) periodontitis 20 stage 3 grade B (S3GB) periodontitis, 20 gingivitis, and 20 periodontally healthy were enrolled. Clinical periodontal parameters were recorded and GCF Galectin-3 and IL-1β total amounts were measured by ELISA. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Galectin-3 and IL-1β were detected in all participants. Both periodontitis groups had significantly higher GCF Galectin-3 total amounts than periodontally healthy controls (p <0.05). S3GC periodontitis group had also significantly higher GCF Galectin-3 levels than gingivitis group (p <0.05). GCF IL-1β levels in periodontitis groups were higher than gingivitis and periodontally healthy groups (p <0.05). Galectin-3 exhibited an AUC value of 0.89 with 95% sensitivity to discriminate S3GC periodontitis from periodontal health, an AUC value of 0.87 with 80% sensitivity to discriminate S3GC periodontitis versus gingivitis, while an AUC value of 0.85 with 95% sensitivity to discriminate S3GB periodontitis from healthy controls. CONCLUSIONS GCF Galectin-3 levels are involved in the pathogenesis of periodontal diseases. Galectin-3 showed excellent diagnostic performances to discriminate S3GB and S3GC periodontitis from periodontal health and gingivitis. CLINICAL RELEVANCE The present findings suggest that GCF Galectin-3 levels may be useful in the diagnosis of the periodontal diseases.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca Ilhan
- Department of Biology, Section of Molecular Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
24
|
Lu Z, Li Y, Yu H, Lopes-Virella MF, Huang Y. High-fat diet-induced metabolic syndrome increases ligature-induced alveolar bone loss in mice. Oral Dis 2023; 29:1312-1323. [PMID: 34914154 DOI: 10.1111/odi.14105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND It has been well documented that metabolic syndrome (MetS) increases severity of periodontitis. In this study, we determined the effect of high-fat diet (HFD)-induced MetS on alveolar bone loss in a mouse model with ligature-induced periodontitis. To understand how MetS increases bone loss, we tested our hypothesis that palmitic acid (PA), a most abundant saturated fatty acid in the HFD, interacts with lipopolysaccharide (LPS) to promote osteoclastogenesis. METHODS We induced MetS by feeding mice HFD for 18 weeks and induced periodontitis with ligature placement. After treatments, we assessed alveolar bone loss using micro-computed tomography and determined osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining. To explore the mechanisms, we treated macrophages with PA, LPS or both and analyzed the osteoclast formation and cytokine expression in macrophages. RESULTS While ligature robustly induced periodontitis in mice with or without MetS, the mice with MetS had more bone loss than those without MetS. PA and LPS cooperatively induced osteoclast formation and stimulated the expression of inflammatory cytokines involved in osteoclastogenesis potentially via a FAT/CD36-dependent mechanism in macrophages. CONCLUSIONS HFD-induced MetS increases alveolar bone loss in mice with ligature-induced periodontitis, and PA and LPS cooperatively stimulate osteoclast formation and proinflammatory gene expression in macrophages.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hong Yu
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria F Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Yan Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
25
|
Ikhar AS, Kolte RA, Kolte AP, Purohit AR, Dahake RN. Efficacy of platelet rich fibrin with and without metformin in the treatment of periodontal osseous defects: a systematic review and meta-analysis. Acta Odontol Scand 2023; 81:186-195. [PMID: 35786379 DOI: 10.1080/00016357.2022.2095024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The systematic review and meta-analysis aimed to evaluate the efficacy of Metformin (MF) with Platelet Rich Fibrin (PRF) over PRF alone in the treatment of periodontal osseous defects. MATERIALS AND METHODS An extensive electronic search for articles published up to September 2021 was conducted on 'Embase', 'PubMed' and other library databases accompanied with manual searching. Randomized controlled trials (RCTs), comparing MF plus PRF Vs PRF alone in periodontal osseous defects were identified in which periodontal pocket depth (PPD), Clinical attachment level (CAL) and Intrabony defect depth (IBD Depth) were the outcome measures. RESULTS Four studies compared MF plus PRF vs .PRF alone in periodontal osseous defects. Meta-analysis was carried out for PPD reduction, CAL gain and IBD Depth changes. A standardized mean difference (SMD) of 1.86 for PPD reduction, 1.95 for CAL gain and 1.31 for IBD Depth reduction in all the studies was observed and the findings were statistically significant favouring test group. CONCLUSION The systematic review indicates supplemental benefits of combination therapy of MF + PRF over monotherapy in resolving periodontal osseous defects. In our quest to achieve maximum regeneration in periodontal osseous defects, combination therapies such as MF + PRF have reported to be better treatment choices over other modalities.
Collapse
Affiliation(s)
- Aishwarya S Ikhar
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Rajashri A Kolte
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Abhay P Kolte
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Aishwarya R Purohit
- Department of Periodontology and Implant Dentistry, VSPM Dental College and Research Centre, Nagpur, India
| | - Rahul N Dahake
- Department of Oral and Maxillofacial Surgery, VSPM Dental College and Research Centre, Nagpur, India
| |
Collapse
|
26
|
Chen SY, Delacruz J, Kim Y, Kingston R, Purvis L, Sharma D. Effect of xylitol on Porphyromonas gingivalis: A systematic review. Clin Exp Dent Res 2023; 9:265-275. [PMID: 36894516 PMCID: PMC10098279 DOI: 10.1002/cre2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
OBJECTIVE This review was conducted to assess the effectiveness of xylitol against Porphyromonas gingivalis anaerobic species, a key microbe contributing to periodontal disease pathogenesis. MATERIAL AND METHODS Relevant studies published on seven online databases (Cochrane, Ovid, Pubmed, Pubmed Central, Scopus, Google Scholar, and Web of Science) were included in accordance with the PRISMA guidelines. Inclusion criteria allowed all study designs involving xylitol and P. gingivalis, literature published since the year 2000, and all xylitol delivery forms. RESULTS The initial search yielded 186 papers. After the removal of duplicates, five reviewers screened every article for eligibility and seven articles were selected for data extraction. Four out of seven included studies assessed the dose-dependent effect of xylitol on P. gingivalis growth, two studies assessed the effect of xylitol on P. gingivalis-induced cytokine expression, and one study assessed both domains. CONCLUSIONS From the in vitro studies included in this systematic review, there is some evidence of xylitol's inhibitory effect on P. gingivalis. However, more evidence derived from in vivo studies is required to confirm its effectiveness warranting their routine use.
Collapse
Affiliation(s)
- Sau You Chen
- Department of Periodontics, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joshua Delacruz
- Department of Periodontics, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Yong Kim
- Department of Periodontics, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Roger Kingston
- Department of Periodontics, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Laura Purvis
- Department of Periodontics, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Dileep Sharma
- Department of Periodontics, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,Discipline of Oral Health Thearpy, School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Ourimbah, New South Wales, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
27
|
Indrelid SH, Dongre HN, Nunes IP, Virtej A, Bletsa A, Berggreen E. Human gingival epithelial cells stimulate proliferation, migration, and tube formation of lymphatic endothelial cells in vitro. J Periodontal Res 2023; 58:596-606. [PMID: 36843064 DOI: 10.1111/jre.13110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the response of gingival epithelial cells to microbial and inflammatory signals. BACKGROUND The gingival epithelial barrier provides the first line of defense and supports tissue homeostasis by maintaining the cross-talk between gingival epithelium, oral microbiota, and immune cells. Lymphatic vessels are essential to sustaining this homeostasis. The gingival epithelial cells have been shown to produce prolymphangiogenic factors during physiologic conditions, but their role in response to microbial and inflammatory signals is unknown. METHODS Immortalized human gingival epithelial cells (HGEC) and human dermal lymphatic microvascular endothelial cells (LEC) were cultured. HGEC were exposed to Porphyromonas gingivalis derived-LPS, human IL-1 beta/IL-1F2 protein, or recombinant human IL-6/IL-6R. Levels of vascular growth factors (VEGF-A, VEGF-C, and VEGF-D) in cell supernatants were determined by ELISA. LEC were grown to confluence, and a scratch was induced in the monolayer. Uncovered area was measured up to 48 h after exposure to conditioned medium (CM) from HGEC. Tube formation assays were performed with LEC cocultured with labelled HGEC or exposed to CM. RESULTS VEGF-A, VEGF-C, and low levels of VEGF-D were constitutively expressed by HGEC. The expression of VEGF-C and VEGF-D, but not VEGF-A, was upregulated in response to proinflammatory mediators. VEGF-C was upregulated in response to P. gingivalis LPS, but not to Escherichia coli LPS. A scratch migration assay showed that LEC migration was significantly increased by CM from HGEC. Both the CM and coculture with HGEC induced significant tube formation of LEC. CONCLUSIONS HGEC can regulate production of lymphangiogenic/angiogenic factors during inflammatory insults and can stimulate proliferation, migration, and tube formation of LEC in vitro in a paracrine manner.
Collapse
Affiliation(s)
| | - Harsh Nitin Dongre
- Centre for Cancer Biomarkers and Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Anca Virtej
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Athanasia Bletsa
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Ellen Berggreen
- Oral Health Center of Expertise, Western Norway, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Lee HJ, Lee SJ, Lee SK, Choi BK, Lee DR. Magnolia kobus Extract Inhibits Periodontitis-Inducing Mediators in Porphyromonas gingivalis Lipopolysaccharide-Activated RAW 264.7 Cells. Curr Issues Mol Biol 2023; 45:538-554. [PMID: 36661522 PMCID: PMC9858207 DOI: 10.3390/cimb45010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Periodontitis, a disease caused by inflammation of oral bacteria, contributes to the loss of alveolar bone and destruction of connective tissues. Porphyromonas gingivalis, a Gram-negative bacterium, is known to possess important pathogenic factors for periodontal disease. In this study, we investigated the anti-periodontitis effects of Magnolia kobus extract (MKE) and magnolin as a component of Magnolia kobus (MK) in murine macrophage RAW 264.7 cells stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). Effects of MKE and magnolin on the mechanism of RAW 264.7 cellular inflammation were determined by analyzing nitric oxide (NO) production and Western blot protein expression (n = 3). MKE/magnolin inhibited NO production without affecting cell survival. MKE/magnolin treatment inhibited LPS-induced pro-inflammatory cytokines, expression levels of matrix metalloproteinases (MMPs such as MMP-1, 3, 8, 9, and 13), and protein levels of inflammatory mediators (such as TNF-α, IL-1β, and mPGES-1). MKE/magnolin also suppressed NF-κB activation by inhibiting the TLR4 signaling pathway. These findings suggest that MKE has a therapeutic effect on inflammatory periodontal disease caused by oral bacterium P. gingivalis and that magnolin is a major functional component in the anti-inflammatory effect of MKE.
Collapse
|
29
|
Tsai YL, Wang CY, Chuang FH, Pan YH, Lin YR, Dhingra K, Liao PS, Huang FS, Chang MC, Jeng JH. Stimulation phosphatidylinositol 3-kinase/protein kinase B signaling by Porphyromonas gingivalis lipopolysacch aride mediates interleukin-6 and interleukin-8 mRNA/protein expression in pulpal inflammation. J Formos Med Assoc 2023; 122:47-57. [PMID: 36031486 DOI: 10.1016/j.jfma.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/PURPOSE The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS In response to 5 μg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 μg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 μg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Hsiung Chuang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yan-Ru Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Pai-Shien Liao
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Fong-Shung Huang
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan; Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Bachtiar BM, Bachtiar EW, Kusumaningrum A, Sunarto H, Soeroso Y, Sulijaya B, Apriyanti E, Fragrantia Theodorea C, Putra Pratomo I, Yudhistira, Efendi D. Porphyromonas gingivalis association with inflammatory markers and exosomal miRNA-155 in saliva of periodontitis patients with and without diabetes diagnosed with COVID-19. Saudi Dent J 2023; 35:61-69. [PMID: 36540394 PMCID: PMC9756571 DOI: 10.1016/j.sdentj.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/05/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Background /Purposes: Studies have indicated that salivary molecules from patients with periodontitis and diabetes are confounded with pathological conditions associated with SARS-CoV-2 infection. The study aimed to address whether the abundance of Porphyromonas gingivalis which causes periodontitis, differed compared with that of Aggregatibacter actinomycetemcomitans (used as control) and to analyze the correlation of periodontitis with the expression levels of severe acute respiratory syndrome coronavirus 2 receptor (ACE2) and periodontitis inflammatory markers (TLR-2/TLR-4, TNFα, and miR-155). Materials and Methods A saliva sample (5 mL) was obtained from 23 hospitalized patients with COVID-19, categorized into two groups: diabetic (G1, n = 10) and non-diabetic (G2, n = 13). Saliva from patients with periodontitis without diabetes and coronavirus disease 2019 (COVID-19; n = 6) were included as control. The quantitative real-time polymerase chain reaction measured the levels of P. gingivalis and A. actinomycetemcomitans, as well as periodontitis markers in saliva. The obtained data were analyzed using one-way ANOVA and the Spearman correlation test. Results The abundance of P. gingivalis was observed to be higher (p < 0.05) in saliva of patients with diabetes (G1) than in those without diabetes (G2). A contradictory trend was observed for A. actinomycetemcomitans. The transcription level of ACE2 was comparable in all groups tested, while the expression of periodontitis markers varied. The relationships and sensitivity/specificity among P. gingivalis infection ACE2 expression, and inflammatory markers were also evaluated. Conclusions This study showed that the association between P. gingivalis infection and ACE2 expression might reflect the characteristics of saliva in COVID-19 patients with and without diabetes. However, the relationships between TLR-4 and miR-155 are more specific in discriminating against COVID-19 patients with and without diabetes.
Collapse
Affiliation(s)
- Boy M. Bachtiar
- Department of Oral Biology, Faculty of Dentistry Universitas Indonesia, Indonesia,Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Indonesia
| | - Endang W. Bachtiar
- Department of Oral Biology, Faculty of Dentistry Universitas Indonesia, Indonesia,Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Indonesia,Corresponding author at: Department of oral Biology and Oral Science Research center, Faculty of Dentistry, Universitas Indonesia, Indonesia
| | - Ardiana Kusumaningrum
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia, Indonesia,Clinical Microbiology Medicine Staff Group, Universitas Indonesia Hospital, Indonesia
| | - Hari Sunarto
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Indonesia,Dental Center Universitas Indonesia Hospital, Depok, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Indonesia
| | - Efa Apriyanti
- Department of Pediatric Nursing, Faculty of Nursing Universitas Indonesia, and Paediatric Intensive Care Unit, Universitas Indonesia Hospital, Indonesia
| | - Citra Fragrantia Theodorea
- Department of Oral Biology, Faculty of Dentistry Universitas Indonesia, Indonesia,Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Indonesia
| | - Irandi Putra Pratomo
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Indonesia,Pulmonology and Respiratory Medicine Staff Group - COVID-19 Task Force, Universitas Indonesia Hospital, Universitas Indonesia, Depok, Indonesia,Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Yudhistira
- Clinical Pathology Medicine Staff Group, Universitas Indonesia Hospital, Indonesia
| | - Defi Efendi
- Department of Pediatric Nursing, Faculty of Nursing Universitas Indonesia, and Neonatal Intensive Care Unit, Universitas Indonesia Hospital, Depok, Indonesia
| |
Collapse
|
31
|
Porphyromonas gingivalis-Derived Lipopolysaccharide Promotes Glioma Cell Proliferation and Migration via Activating Akt Signaling Pathways. Cells 2022; 11:cells11244088. [PMID: 36552854 PMCID: PMC9777333 DOI: 10.3390/cells11244088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is significantly associated with the risk of cancers in the lung and the digestive system. Emerging evidence shows a plausible link between periodontitis and several types of brain diseases. However, the association between periodontal infection and glioma remains unclear. In the cultured GL261 glioma cells, P. gingivalis lipopolysaccharide (LPS) significantly promoted cell proliferation at concentrations ranging from 10 to 1000 ng/mL. It promoted cell migration at a higher concentration (100 and 1000 ng/mL). Additionally, exposure to 100 ng/mL P. gingivalis LPS induced a significant increase in the expression of TNF-α, TGF-β, MMP2, and MMP9, as well as the phosphorylation level of Akt at Ser473. These changes induced by P. gingivalis LPS were significantly antagonized by the Akt inhibitor. Furthermore, a total of 48 patients with brain tumors were enrolled to investigate their periodontal status before receiving tumor management. Poor periodontal status [probing depth (PD) ≥ 6 mm and attachment loss (AL) >5 mm] was found in 42.9% (9/21) of patients with glioma, which was significantly higher than that in patients with benign tumors and the relevant data in the 4th National Oral Health Survey in China. The glioma patients with both AL > 5 mm and PD ≥ 6 mm had a higher ki-67 labeling index than those with AL ≤ 5 mm or PD < 6 mm. These findings support the association between periodontal infection and glioma progression.
Collapse
|
32
|
He W, Xie X, Li C, Ding H, Ye J. Adenosine A2A Receptor Antagonist Improves Cognitive Impairment by Inhibiting Neuroinflammation and Excitatory Neurotoxicity in Chronic Periodontitis Mice. Molecules 2022; 27:molecules27196267. [PMID: 36234803 PMCID: PMC9571030 DOI: 10.3390/molecules27196267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
The adenosine A2A receptor antagonist SCH58261 has been reported to have anti-inflammatory effects. However, its role in chronic periodontitis (CP)-induced cognitive impairment, which is associated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS), remains unclear. This study investigated the role of SCH58261 in mice with CP-induced cognitive impairment. C57BL/6J mice were used to develop CP model by injecting 0.5 mg/kg P. gingivalis LPS into the palatal gingival sulcus of maxillary first molars twice a week for four weeks. The mice were divided into control, P. gingivalis LPS (P-LPS), P-LPS + SCH58261, and SCH58261 groups. The passive avoidance test (PAT) and Morris water maze (MWM) were used to assess cognition in mice. Furthermore, CD73/adenosine, neuroinflammation, glutamate transporters, and glutamate were assessed. Compared with the P-LPS group, 0.1 and 0.5 mg/kg SCH58261 increased latency and decreased error times in PAT, but increased platform crossing number in MWM. SCH58261 inhibited microglial activation, and decreased pro-inflammatory cytokines and glutamate levels, but increased GLT-1 and PSD95 expression in the hippocampus. This was the first report of SCH58261 treatment for CP-induced cognitive impairment, which may be related to its anti-inflammatory activities and anti-glutamate excitatory neurotoxicity. This suggests that SCH58261 can be used as a novel agent to treat cognitive impairment.
Collapse
Affiliation(s)
- Wendan He
- Department of Stomatology, The Affiliated Hospital of Wuhan Traditional Chinese and Western Medicine, Tongji Medical College of HUST, Wuhan 430022, China
- Correspondence: ; Tel.: +86-027-8586-0666
| | - Xianlong Xie
- Department of General Practice, The Affiliated Hospital of Wuhan Traditional Chinese and Western Medicine, Tongji Medical College of HUST, Wuhan 430022, China
| | - Chenxi Li
- Laboratory for Tumor Genetics and Regenerative Medicine, Department of Oral and Maxillofacial Surgery, The Head and Neurocenter, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Huang Ding
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Jishi Ye
- Department of Pain, Renmin Hospital, Wuhan University, Wuhan 430060, China
| |
Collapse
|
33
|
Shin SJ, Moon SH, Kim HJ, Oh SH, Bae JM. Oral Microbiome Using Colocasia antiquorum var. esculenta Extract Varnish in a Mouse Model with Oral Gavage of P. gingivalis ATCC 53978. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040506. [PMID: 35454345 PMCID: PMC9029942 DOI: 10.3390/medicina58040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective: There is increasing interest in preventing periodontitis using natural products. The purpose of this study was to investigate the effect of Colocasia antiquorum var. esculenta (CA) varnish on the oral microbiome and alveolar bone loss in a mouse periodontitis model. Materials and Methods: Antibacterial activity against Porphyromonas gingivalis (P. gingivalis) ATCC 53978 and cell cytotoxicity using CCK-8 on L929 cells were measured. Balb/c mice were assigned into five groups (negative control, positive control, CA in drinking water, varnish, and CA varnish). P. gingivalis was administered to the mice by oral gavage three times. After sacrifice, the oral microbiome and the levels of the inflammatory cytokine IL-1β and matrix metalloproteinase-9 were analyzed. Alveolar bone loss was measured using micro-computed tomography. Results: CA extract showed an antibacterial effect against P. gingivalis (p < 0.05) and showed no cytotoxicity at that concentration (p > 0.05). Although alpha diversity of the oral microbiome did not statistically differ between the groups (p > 0.05), the relative abundance of dominant bacteria tended to be different between the groups. The inflammatory cytokine IL-1β was reduced in the CA varnish group (p < 0.05), and no difference was observed in MMP-9 expression and alveolar bone loss (p > 0.05). Conclusions: CA varnish did not affect the overall microflora and exhibited an anti-inflammatory effect, suggesting that it is possibility a suitable candidate for improving periodontitis.
Collapse
Affiliation(s)
- Seong-Jin Shin
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
| | - Seong-Hee Moon
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Hyun-Jin Kim
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Department of Oral Anatomy, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea
| | - Seung-Han Oh
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
| | - Ji-Myung Bae
- Department of Dental Biomaterials, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-J.S.); (S.-H.O.)
- Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, 460 Iksan-daero, Iksan 54538, Jeonbuk, Korea; (S.-H.M.); (H.-J.K.)
- Correspondence: ; Tel.: +82-63-850-6859
| |
Collapse
|
34
|
Pussinen PJ, Kopra E, Pietiäinen M, Lehto M, Zaric S, Paju S, Salminen A. Periodontitis and cardiometabolic disorders: The role of lipopolysaccharide and endotoxemia. Periodontol 2000 2022; 89:19-40. [PMID: 35244966 PMCID: PMC9314839 DOI: 10.1111/prd.12433] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipopolysaccharide is a virulence factor of gram-negative bacteria with a crucial importance to the bacterial surface integrity. From the host's perspective, lipopolysaccharide plays a role in both local and systemic inflammation, activates both innate and adaptive immunity, and can trigger inflammation either directly (as a microbe-associated molecular pattern) or indirectly (by inducing the generation of nonmicrobial, danger-associated molecular patterns). Translocation of lipopolysaccharide into the circulation causes endotoxemia, which is typically measured as the biological activity of lipopolysaccharide to induce coagulation of an aqueous extract of blood cells of the assay. Apparently healthy subjects have a low circulating lipopolysaccharide activity, since it is neutralized and cleared rapidly. However, chronic endotoxemia is involved in the pathogenesis of many inflammation-driven conditions, especially cardiometabolic disorders. These include atherosclerotic cardiovascular diseases, obesity, liver diseases, diabetes, and metabolic syndrome, where endotoxemia has been recognized as a risk factor. The main source of endotoxemia is thought to be the gut microbiota. However, the oral dysbiosis in periodontitis, which is typically enriched with gram-negative bacterial species, may also contribute to endotoxemia. As endotoxemia is associated with an increased risk of cardiometabolic disorders, lipopolysaccharide could be considered as a molecular link between periodontal microbiota and cardiometabolic diseases.
Collapse
Affiliation(s)
- Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Svetislav Zaric
- Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, London, UK
| | - Susanna Paju
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Zhang L, Lv H, Cui Y, Shi R. The role of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in chronic periodontitis progression. Bioengineered 2022; 13:2336-2345. [PMID: 35034548 PMCID: PMC8973655 DOI: 10.1080/21655979.2021.2018387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is a novel pro-inflammatory factor in severe human diseases. Since inflammatory plays important roles in periodontitis progression, we aimed to explore the role of NEAT1 in chronic periodontitis (CP) in vitro. We established a periodontitis cell model was established by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS)-induced periodontal ligament cells (PDLCs). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of NEAT1, microRNA (miR)-200c-3p, and tumor necrosis factor receptor-associated factor 6 (TRAF6). Cell viability, inflammatory factors, and protein expression of Bcl-2, Bax, and TRAF6 were analyzed by MTT, enzyme-linked immunosorbent assay, and Western blot. The target relationships among NEAT1, miR-200c-3p, and TRAF6 were predicted by the StarBase/TargetScan software, and further validated by dual-luciferase reporter assay. In this research, NEAT1 is up-regulated in CP tissues and periodontitis model group. Silencing of NEAT1 and over-expression of miR-200c-3p enhanced cell viability and repressed apoptosis in the periodontitis model group. NEAT1 targets miR-200c-3p, and miR-200c-3p further targets TRAF6. MiR-200c-3p inhibitor or over-expression of TRAF6 reversed the promoting effect of NEAT1 knockdown on cell viability, and the inhibiting effects on inflammatory cytokines and cell apoptosis. Consequently, the silencing of NEAT1 inhibits inflammation and apoptosis via targeting miR-200c-3p/TRAF6 axis, thereby contributing to alleviate the progression of CP. This finding could provide an underlying target for the treatment of CP.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hui Lv
- Shandong Center for Disease Control and Prevention, Infectious Disease Prevention and Control Institute, Jinan City, Shandong Province, China
| | - Yongxin Cui
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Rongji Shi
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
36
|
The Periodontopathic Pathogen, Porphyromonas gingivalis, Involves a Gut Inflammatory Response and Exacerbates Inflammatory Bowel Disease. Pathogens 2022; 11:pathogens11010084. [PMID: 35056032 PMCID: PMC8779656 DOI: 10.3390/pathogens11010084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease (PD) is one of the most prevalent disorders globally and is strongly associated with many other diseases. Inflammatory bowel disease (IBD), an inflammatory condition of the colon and the small intestine, is reported to be associated with PD through undetermined mechanisms. We analyzed taxonomic assignment files from the Crohn’s Disease Viral and Microbial Metagenome Project (PRJEB3206). The abundance of Porphyromonadaceae in fecal samples was significantly different between patients with Crohn’s disease and control volunteers. Dextran sulfate sodium was used to induce colitis in mice to reveal the effect of this periodontopathic pathogen in vivo. After intrarectal implantation of Porphyromonas gingivalis (Pg)—the primary pathogen causing PD—the disease activity index score, colonic epithelial loss, and inflammatory cell infiltration were intensified. In addition, tumor necrosis factor-α and interleukin-6 showed the highest levels in Pg-infected colons. This revealed the importance of Pg in the exacerbation of IBD. Thus, simultaneous treatment of PD should be considered for people with IBD. Moreover, implantation of Pg in the rectum worsened the clinical symptoms of colitis in mice. Because Pg participates in the pathogenesis of IBD, reducing the chances of it entering the intestine might prevent the worsening of this disorder.
Collapse
|
37
|
Zhao D, Zhang X, Feng Y, Bian Y, Fu Z, Wu Y, Ma Y, Li C, Wang J, Dai J, Fu Y, Lin S, Hu J. Taurine Alleviates LPS-Induced Acute Lung Injury by Suppressing TLR-4/NF-κB Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:63-72. [DOI: 10.1007/978-3-030-93337-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
38
|
Zhang L, Xie Z, Yu H, Du H, Wang X, Cai J, Qiu Y, Chen R, Jiang X, Liu Z, Li Y, Chen T. TLR2 inhibition ameliorates the amplification effect of LPS on lipid accumulation and lipotoxicity in hepatic cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1429. [PMID: 34733981 PMCID: PMC8506759 DOI: 10.21037/atm-21-4012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/10/2021] [Indexed: 12/04/2022]
Abstract
Background Gut microbiome dysbiosis is related to the pathogenesis of nonalcoholic fatty liver disease (NAFLD), and the role of toll-like receptor 2 (TLR2) in its molecular mechanism is controversial. Here, we investigated the effects and mechanisms of Escherichia coli-derived lipopolysaccharide (LPS) on lipid accumulation and lipotoxicity in palmitic acid (PA)-treated L02 cell as an NAFLD cell model, and the role of TLR2 in this process. Methods Oil red O staining assay and free fatty acid (FFA) content test were performed to determine the effects of LPS on lipid accumulation in a PA-induced NAFLD cell model with or without TLR2 inhibition. The levels of IL-6 and TNF-α were measured to investigate inflammation conditions. Hoechst 33342 staining assay and Caspase-3 activity assay were used to test cell apoptosis, and the expression levels of proteins in the IRS1/PI3K/AKT signaling pathway, TLR2/MyD88/IKKα/NF-κB signaling pathway, and mitochondrion-dependent apoptotic signaling pathway were detected using Western blot. Results Lipid accumulation, pro-inflammatory cytokine release, and cell apoptosis with high levels were observed in the PA-induced NAFLD cell model, and LPS aggravated these processes. Whereas TLR2 inhibition could significantly ameliorate PA-induced and LPS-amplified lipid accumulation, inflammatory, and cell apoptosis, it had no significant effect on L02 cells treated with LPS alone. Conclusions These results were confirmed by activation or inhibition of the IRS1/PI3K/AKT signaling pathway, TLR2/MyD88/IKKα/NF-κB signaling pathway, and mitochondrion-dependent apoptotic signaling pathway, and were reflected by changes on their proteins expression. TLR2 is involved in PA-induced lipid accumulation and lipotoxicity in L02 cells, which could be aggravated by LPS, although LPS-induced amplification might not be through direct interaction with TLR2.
Collapse
Affiliation(s)
- Liting Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zehui Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hongmiao Yu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haoxuan Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xuqiao Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiazheng Cai
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yingfei Qiu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Rui Chen
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaofeng Jiang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Zelin Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Yi Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Rodríguez Sánchez F, Verspecht T, Castro AB, Pauwels M, Andrés CR, Quirynen M, Teughels W. Antimicrobial Mechanisms of Leucocyte- and Platelet Rich Fibrin Exudate Against Planktonic Porphyromonas gingivalis and Within Multi-Species Biofilm: A Pilot Study. Front Cell Infect Microbiol 2021; 11:722499. [PMID: 34722331 PMCID: PMC8548765 DOI: 10.3389/fcimb.2021.722499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Leucocyte- and platelet rich fibrin (L-PRF) is an autologous biomaterial used in regenerative procedures. It has an antimicrobial activity against P. gingivalis although the mechanism is not fully understood. It was hypothesized that L-PRF exudate releases hydrogen peroxide and antimicrobial peptides that inhibit P. gingivalis growth. Agar plate and planktonic culture experiments showed that the antimicrobial effect of L-PRF exudate against P. gingivalis was supressed by peroxidase or pepsin exposure. In developing multi-species biofilms, the antimicrobial effect of L-PRF exudate was blocked only by peroxidase, increasing P. gingivalis growth with 1.3 log genome equivalents. However, no effect was shown on other bacteria. Pre-formed multi-species biofilm trials showed no antimicrobial effect of L-PRF exudate against P. gingivalis or other species. Our findings showed that L-PRF exudate may release peroxide and peptides, which may be responsible for its antimicrobial effect against P. gingivalis. In addition, L-PRF exudate had an antimicrobial effect against P. gingivalis in an in vitro developing multi-species biofilm.
Collapse
Affiliation(s)
- Fabio Rodríguez Sánchez
- Department of Oral Health Sciences, Section Periodontology, Catholic University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, Section Periodontology, Catholic University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Ana B Castro
- Department of Oral Health Sciences, Section Periodontology, Catholic University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, Section Periodontology, Catholic University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Carlos Rodríguez Andrés
- Department of Preventive Medicine and Public Health, University of the Basque Country, Bilbao, Spain
| | - Marc Quirynen
- Department of Oral Health Sciences, Section Periodontology, Catholic University of Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, Section Periodontology, Catholic University of Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Latimer JM, Maekawa S, Yao Y, Wu DT, Chen M, Giannobile WV. Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects. Front Bioeng Biotechnol 2021; 9:704048. [PMID: 34422781 PMCID: PMC8378232 DOI: 10.3389/fbioe.2021.704048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Additive manufacturing (AM) is the automated production of three-dimensional (3D) structures through successive layer-by-layer deposition of materials directed by computer-aided-design (CAD) software. While current clinical procedures that aim to reconstruct hard and soft tissue defects resulting from periodontal disease, congenital or acquired pathology, and maxillofacial trauma often utilize mass-produced biomaterials created for a variety of surgical indications, AM represents a paradigm shift in manufacturing at the individual patient level. Computer-aided systems employ algorithms to design customized, image-based scaffolds with high external shape complexity and spatial patterning of internal architecture guided by topology optimization. 3D bioprinting and surface modification techniques further enhance scaffold functionalization and osteogenic potential through the incorporation of viable cells, bioactive molecules, biomimetic materials and vectors for transgene expression within the layered architecture. These computational design features enable fabrication of tissue engineering constructs with highly tailored mechanical, structural, and biochemical properties for bone. This review examines key properties of scaffold design, bioresorbable bone scaffolds produced by AM processes, and clinical applications of these regenerative technologies. AM is transforming the field of personalized dental medicine and has great potential to improve regenerative outcomes in patient care.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yao Yao
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T Wu
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States.,Laboratory for Cell and Tissue Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
41
|
Protective Action of L. salivarius SGL03 and Lactoferrin against COVID-19 Infections in Human Nasopharynx. MATERIALS 2021; 14:ma14113086. [PMID: 34200055 PMCID: PMC8200234 DOI: 10.3390/ma14113086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
In this study, we used live viral particles from oral secretions from 17 people infected with SARS-CoV-2 and from 17 healthy volunteers, which were plated on a suitable medium complete for all microorganisms and minimal for L.salivarius growth. Both types of media also contained an appropriately prepared vector system pGEM-5Zf (+) based on the lactose operon (beta-galactosidase system). Incubation was carried out on both types of media for 24 h with the addition of 200 μL of Salistat SGL03 solution in order to test its inhibitory effect on the coronavirus contained in the oral mucosa and nasopharynx, visible as light blue virus particles on the test plates, which gradually disappeared in the material collected from infected persons over time. Regardless of the conducted experiments, swabs were additionally taken from the nasopharynx of infected and healthy people after rinsing the throat and oral mucosa with Salistat SGL03. In both types of experiments, after 24 h of incubation on appropriate media with biological material, we did not find any virus particles. Results were also confirmed by MIC and MBC tests. Results prove that lactoferrin, as one of the ingredients of the preparation, is probably a factor that blocks the attachment of virus particles to the host cells, determining its anti-viral properties. The conducted preliminary experiments constitute a very promising model for further research on the anti-viral properties of the ingredients contained in the Salistat SGL03 dietary supplement.
Collapse
|
42
|
Kaszuba-Zwoińska J, Novak P, Nowak B, Furgała A, Wójcik-Piotrowicz K, Piszczek P, Guzdek P, Pytko-Polończyk J. Low-frequency electromagnetic field influences human oral mucosa keratinocyte viability in response to lipopolysaccharide or minocycline treatment in cell culture conditions. Biomed Pharmacother 2021; 137:111340. [DOI: 10.1016/j.biopha.2021.111340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
|
43
|
Zhang C, Xu C, Gao L, Li X, Zhao C. Porphyromonas gingivalis lipopolysaccharide promotes T-hel per17 cell differentiation by upregulating Delta-like ligand 4 expression on CD14 + monocytes. PeerJ 2021; 9:e11094. [PMID: 33981487 PMCID: PMC8074840 DOI: 10.7717/peerj.11094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022] Open
Abstract
Backgroud To investigate the effect and mechanism of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on Th17 cell differentiation mediated by CD14+ monocytes. Methods P. gingivalis LPS-activated CD14+ monocytes were co-cultured with CD4+T cells in different cell ratios. An indirect co-culture system was also established using transwell chambers. Furthermore, anti- Delta-like ligand 4 (Dll-4) antibody was used to investigate the role of Dll-4 in Th17 cell response. The mRNA expression was analyzed using quantitative reverse transcription-polymerase chain reaction, and secreted cytokines in culture supernatant were detected using enzyme-linked immunosorbent assay. Flow cytometry was used to determine the frequencies of Th17 cells. IL-17 protein expression levels were determined using western blotting assay. Results P. gingivalis LPS increased the expressions of interleukin (IL)-1β, IL-6, IL-23 and transforming growth factor (TGF)-β in CD14+ monocytes. Th17 cell frequency upregulated, which is not solely cytokine-dependent but rather requires cell-cell contact with activated monocytes, particularly in the 1:10 cell ratio. Furthermore, P. gingivalis LPS increased t he expression of Dll-4 on CD14+ monocytes, whereas the anti- Dll-4 a ntibody decreased the response of Th17 cells. The results suggest that P. gingivalis LPS enhances Th17 cell response via Dll-4 upregulation on CD14+ monocytes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenrong Xu
- Department of Periodontology, Guangdong Provincial Hospital of Stomatology, Stomatological Hospital of Southern Medical University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Andrukhov O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. FRONTIERS IN ORAL HEALTH 2021; 2:648901. [PMID: 35048000 PMCID: PMC8757738 DOI: 10.3389/froh.2021.648901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are a promising tool for clinical application in and beyond dentistry. These cells possess multilineage differentiation potential and immunomodulatory properties. Due to their localization in the oral cavity, these cells could sometimes be exposed to different bacteria and viruses. Dental MSCs express various Toll-like receptors (TLRs), and therefore, they can recognize different microorganisms. The engagement of TLRs in dental MSCs by various ligands might change their properties and function. The differentiation capacity of dental MSCs might be either inhibited or enhanced by TLRs ligands depending on their nature and concentrations. Activation of TLR signaling in dental MSCs induces the production of proinflammatory mediators. Additionally, TLR ligands alter the immunomodulatory ability of dental MSCs, but this aspect is still poorly explored. Understanding the role of TLR signaling in dental MSCs physiology is essential to assess their role in oral homeostasis, inflammatory diseases, and tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
46
|
Rowińska I, Szyperska-Ślaska A, Zariczny P, Pasławski R, Kramkowski K, Kowalczyk P. The Influence of Diet on Oxidative Stress and Inflammation Induced by Bacterial Biofilms in the Human Oral Cavity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1444. [PMID: 33809616 PMCID: PMC8001659 DOI: 10.3390/ma14061444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The article is a concise compendium of knowledge on the etiology of pathogenic microorganisms of all complexes causing oral diseases. The influence of particular components of the diet and the role of oxidative stress in periodontal diseases were described. The study investigated the bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated, periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The obtained results suggest the possibility of using a specific diet in the prevention and treatment of periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative compilation of knowledge on this subject and it can be a valuable source of knowledge for professional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis of the oral cavity in order to avoid periodontitis.
Collapse
Affiliation(s)
- Ilona Rowińska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Adrianna Szyperska-Ślaska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Piotr Zariczny
- Toruń City Hall, Business Support Center in Toruń, ul. Marii Konopnickiej 13, 87-100 Toruń, Poland;
| | - Robert Pasławski
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, str. Gagarina 7, 87-100 Toruń, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1str, 15-089 Bialystok, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
47
|
Ben Lagha A, Pellerin G, Vaillancourt K, Grenier D. Effects of a tart cherry (Prunus cerasus L.) phenolic extract on Porphyromonas gingivalis and its ability to impair the oral epithelial barrier. PLoS One 2021; 16:e0246194. [PMID: 33497417 PMCID: PMC7837497 DOI: 10.1371/journal.pone.0246194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023] Open
Abstract
Periodontal diseases, including gingivitis and periodontitis, are a global oral health problem. Porphyromonas gingivalis, a key pathogen involved in the onset of periodontitis, is able to colonize the subgingival epithelium and invade the underlying connective tissue due to the contribution of cysteine proteases known as gingipains. In this study, we investigated the effects of a phenolic extract prepared from tart cherry (Prunus cerasus L.) juice on the growth, adherence, and protease activity of P. gingivalis. We also assessed the protective effect of the tart cherry extract on the disruption of the oral epithelial barrier induced by P. gingivalis. The tart cherry extract that contains procyanidins and quercetin and its derivatives (rutinoside, glucoside) as the most important phenolic compounds attenuated P. gingivalis growth, reduced adherence to an experimental basement membrane matrix model, and decreased the protease activities of P. gingivalis. The tart cherry extract also exerted a protective effect on the integrity of the oral epithelial barrier in an in vitro model infected with P. gingivalis. More specifically, the extract prevented a decrease in transepithelial electrical resistance as well as the destruction of tight junction proteins (zonula occludens-1 and occludin). These results suggest that the tart cherry phenolic extract may be a promising natural product for the treatment of periodontitis through its ability to attenuate the virulence properties of P. gingivalis and curtail the ability of this pathogen to impair the oral epithelial barrier.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Geneviève Pellerin
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Katy Vaillancourt
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
48
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
49
|
Sarmikasoglou E, Faciola AP. Ruminal Lipopolysaccharides Analysis: Uncharted Waters with Promising Signs. Animals (Basel) 2021; 11:ani11010195. [PMID: 33467503 PMCID: PMC7831013 DOI: 10.3390/ani11010195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lipopolysaccharide (LPS) is a component of the outer membranes of Gram-negative bacterial cell wall made of three covalently linked regions: the O-antigen, the core oligosaccharide, and the endotoxin lipid A moiety, which carries the endotoxic activity of LPS. Among Gram-negative bacteria there is significant structural diversity in the lipid A region. Specifically, the number of lipid A acyl chains directly correlates with the ability to induce cytokine production whereas the hexa-acylated forms usually are the most immunostimulant ones, contrary to penta- or tetra- acylated forms that result in weak inflammatory host responses. Ruminal bacteria are predominantly Gram-negative, and their respective LPS presence has been suggested to be associated with ruminal acidosis, a metabolic disorder of cattle with negative effects on health and production. In the rumen, the most predominant phylum is Bacteroidetes which exhibit weak host immunological response compared to widely used Escherichia coli LPS. This review aims to present accumulated knowledge regarding ruminal LPS, pointing out the differences in ruminal LPS compared to widely known LPS, and introduce hypotheses that could contribute to further understanding and planning strategies to tackle ruminal acidosis. Abstract The objective of this review is to present the need for the development of a comprehensive ruminal lipopolysaccharide (LPS) extraction, purification and analysis protocol and state hypotheses that could contribute to planning novel strategies against ruminal acidosis. Lipopolysaccharide is an immunostimulatory molecule of Gram-negative bacterial outer membranes and has been reported to contribute to ruminal acidosis in cattle. Bacterial death and lysis are normal processes, and thus LPS is normally present in ruminal fluid. However, ruminal LPS concentration is much greater during subacute ruminal acidosis (SARA). Contrary to the widely known LPSs, ruminal LPS seems to be composed of a variety of LPS chemotypes that may interact with each other resulting in an LPS “mixture”. Hypotheses regarding the influence of each specific ruminal bacterial specie to innate immunity during SARA, and the representativeness of the exclusive use of the Escherichia coli LPS to rumen epithelial tissue challenges, could expand our knowledge regarding SARA. In addition, possible correlation between the monomeric Toll-like Receptor 4 (TRL4) and the antagonistic penta-acylated lipid A of LPS could contribute to novel strategies to tackle this nutrition disorder.
Collapse
|
50
|
Yang KM, Kim JS, Kim HS, Kim YY, Oh JK, Jung HW, Park DS, Bae KH. Lactobacillus reuteri AN417 cell-free culture supernatant as a novel antibacterial agent targeting oral pathogenic bacteria. Sci Rep 2021; 11:1631. [PMID: 33452304 PMCID: PMC7810884 DOI: 10.1038/s41598-020-80921-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 01/27/2023] Open
Abstract
Lactobacillus reuteri AN417 is a newly characterized probiotic strain. The activity of AN417 against oral pathogenic bacteria is unknown. We investigated the antibacterial activity of cell-free L. reuteri AN417 culture supernatant (LRS) against three oral pathogens: Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans. P. gingivalis and F. nucleatum have been implicated in periodontal disease, whereas S. mutans causes dental caries. Exposing these oral pathogenic bacteria to LRS significantly reduced their growth rates, intracellular ATP levels, cell viability, and time-to-kill. The minimal inhibitory volume of LRS was 10% (v/v) against P. gingivalis, 20% (v/v) for F. nucleatum, and 30% (v/v) for S. mutans. LRS significantly reduced the integrity of biofilms and significantly suppressed the expression of various genes involved in P. gingivalis biofilm formation. The L. reuteri AN417 genome lacked genes encoding reuterin, reuteran, and reutericyclin, which are major antibacterial compounds produced in L. reuteri strains. LRS treated with lipase and α-amylase displayed decreased antibacterial activity against oral pathogens. These data suggest that the antibacterial substances in LRS are carbohydrates and/or fatty acid metabolites. Our results demonstrate that LRS has antimicrobial activity against dental pathogenic bacteria, highlighting its potential utility for the prevention and treatment of P. gingivalis periodontal disease.
Collapse
Affiliation(s)
- Kyung Mi Yang
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Ji-Sun Kim
- Biological Resources Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeong-up, 56212, Republic of Korea
| | - Hye-Sung Kim
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Young-Youn Kim
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Jeong-Kyu Oh
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Hye-Won Jung
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea
| | - Doo-Sang Park
- Biological Resources Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeong-up, 56212, Republic of Korea.
| | - Kwang-Hak Bae
- Institute of Biomedical Science, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 10387, Republic of Korea.
| |
Collapse
|