1
|
Tardelli JDC, Schiavon MA, Dos Reis AC. Chitosan coatings on titanium-based implants - From development to characterization and behavior: A systematic review. Carbohydr Polym 2024; 344:122496. [PMID: 39218539 DOI: 10.1016/j.carbpol.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Chitosan is a promising natural polymer for coatings, it combines intrinsic antibacterial and pro-osteoblastic properties, but the literature still has a gap from the development to behavior of these coatings, so this systematic review aimed to answer, "What is the relationship between the physical and chemical properties of polymeric chitosan coatings on titanium implants on antibacterial activity and osteoblast viability?". PRISMA guidelines was followed, the search was applied into 4 databases and grey literature, without the restriction of time and language. The selection process occurred in 2 blinded steps by the authors. The criteria of eligibility were in vitro studies that evaluated the physical, chemical, microbiological, and biological properties of chitosan coatings on titanium surfaces. The risk of bias was analyzed by the specific tool. Of 734 potential articles 10 were included; all had low risk of bias. The coating was assessed according to the technique of fabrication, FT-IR, thickness, adhesion, roughness, wettability, antibacterial activity, and osteoblast viability. The analyzed coatings showed efficacy on antibacterial activity and cytocompatibility dependent on the class of material incorporated. Thus, this review motivates the development of time-dependent studies to optimize manufacturing and allow for an increase in patents and availability on the market.
Collapse
Affiliation(s)
- Juliana Dias Corpa Tardelli
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marco Antônio Schiavon
- Department of Natural Sciences, Federal University of São João del-Rei (UFSJ), São João del-Rei, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Fu TS, Chen WC, Wang YC, Chang CW, Lin TY, Wong CB. Biomimetic vascularized adipose-derived mesenchymal stem cells bone-periosteum graft enhances angiogenesis and osteogenesis in a male rabbit spine fusion model. Bone Joint Res 2023; 12:722-733. [PMID: 38052231 PMCID: PMC10697772 DOI: 10.1302/2046-3758.1212.bjr-2023-0013.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Aims Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials - acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC - were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups. Biomechanical testing demonstrated higher torque strength in the VBPC group. Notably, the haematoxylin and eosin, Masson's trichrome, and immunohistochemistry-stained histological results revealed that VBPC promoted neovascularization and new bone formation in the spine fusion areas. Conclusion The tissue-engineered VBPC showed great capability in promoting angiogenesis and osteogenesis in vivo. It may provide a novel approach to create a superior blood supply and nutritional environment to overcome the deficits of current artificial bone graft substitutes.
Collapse
Affiliation(s)
- Tsai-Sheng Fu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Ying-Chih Wang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Wei Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tung-yi Lin
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chak-Bor Wong
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Atia GAN, Shalaby HK, Zehravi M, Ghobashy MM, Attia HAN, Ahmad Z, Khan FS, Dey A, Mukerjee N, Alexiou A, Rahman MH, Klepacka J, Najda A. Drug-Loaded Chitosan Scaffolds for Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3192. [PMID: 35956708 PMCID: PMC9371089 DOI: 10.3390/polym14153192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan is a natural anionic polysaccharide with a changeable architecture and an abundance of functional groups; in addition, it can be converted into various shapes and sizes, making it appropriate for a variety of applications. This article examined and summarized current developments in chitosan-based materials, with a focus on the modification of chitosan, and presented an abundance of information about the fabrication and use of chitosan-derived products in periodontal regeneration. Numerous preparation and modification techniques for enhancing chitosan performance, as well as the uses of chitosan and its metabolites, were reviewed critically and discussed in depth in this study. Chitosan-based products may be formed into different shapes and sizes, considering fibers, nanostructures, gels, membranes, and hydrogels. Various drug-loaded chitosan devices were discussed regarding periodontal regeneration.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Khardaha 700118, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland
| |
Collapse
|
4
|
López-Valverde N, Aragoneses J, López-Valverde A, Rodríguez C, Macedo de Sousa B, Aragoneses JM. Role of chitosan in titanium coatings. trends and new generations of coatings. Front Bioeng Biotechnol 2022; 10:907589. [PMID: 35935477 PMCID: PMC9354072 DOI: 10.3389/fbioe.2022.907589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023] Open
Abstract
Survival studies of dental implants currently reach high figures. However, considering that the recipients are middle-aged individuals with associated pathologies, research is focused on achieving bioactive surfaces that ensure osseointegration. Chitosan is a biocompatible, degradable polysaccharide with antimicrobial and anti-inflammatory properties, capable of inducing increased growth and fixation of osteoblasts around chitosan-coated titanium. Certain chemical modifications to its structure have been shown to enhance its antibacterial activity and osteoinductive properties and it is generally believed that chitosan-coated dental implants may have enhanced osseointegration capabilities and are likely to become a commercial option in the future. Our review provided an overview of the current concepts and theories of osseointegration and current titanium dental implant surfaces and coatings, with a special focus on the in vivo investigation of chitosan-coated implants and a current perspective on the future of titanium dental implant coatings.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Javier Aragoneses
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Madrid, Spain
| | - Antonio López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: Antonio López-Valverde,
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I‐Edifício Central Rua Larga, Coimbra, Portugal
| | | |
Collapse
|
5
|
López-Valverde N, López-Valverde A, Cortés MP, Rodríguez C, Macedo De Sousa B, Aragoneses JM. Bone Quantification Around Chitosan-Coated Titanium Dental Implants: A Preliminary Study by Micro-CT Analysis in Jaw of a Canine Model. Front Bioeng Biotechnol 2022; 10:858786. [PMID: 35464727 PMCID: PMC9023049 DOI: 10.3389/fbioe.2022.858786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Surface treatments of Ti in the dental implant industry are performed with the aim of in-creasing its bioactivity and osseointegration capacity. Chitosan (Cht) is a polysaccharide that has been proposed as a promising biomaterial in tissue engineering and bone regeneration, due to its ability to stimulate the recruitment and adhesion of osteogenic progenitor cells. The aim of our preliminary study was to evaluate, by micro-computed tomography (micro-CT), the osseointegration and bone formation around Cht-coated implants and to compare them with conventional surface-etched implants (SLA type). Four im-plants (8.5 mm length × 3.5 mm Ø) per hemiarch, were inserted into the jaws of five dogs, divided into two groups: chitosan-coated implant group (ChtG) and control group (CG). Twelve weeks after surgery, euthanasia was performed, and sectioned bone blocks were obtained and scanned by micro-CT and two bone parameters were measured: bone in contact with the implant surface (BCIS) and peri-implant bone area (PIBA). For BCIS and PIBA statistically significant values were obtained for the ChtG group with respect to CG (p = 0.005; p = 0.014 and p < 0.001 and p = 0.002, respectively). The results, despite the limitations, demonstrated the usefulness of chitosan coatings. However, studies with larger sample sizes and adequate experimental models would be necessary to confirm the results.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Medicine and Medical Specialties, Faculty of Health Sciences, Universidad Alcalá de Henares, Alcalá de Henares, Spain
| | - Antonio López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Sala-manca (IBSAL), Salamanca, Spain
- *Correspondence: Antonio López-Valverde,
| | - Marta Paz Cortés
- Faculty of Dentistry, Universidad Alfonso X El Sabio, Villanueva de la Cañada, Spain
| | - Cinthia Rodríguez
- Department of Dentistry, Universidad Federico Henríquez y Carvajal, Santo Domingo, Dominican Republic
| | - Bruno Macedo De Sousa
- Institute for Occlusion and Orofacial Pain Faculty of Medicine, University of Coimbra, Polo I‐Edifício Central Rua Larga, Coimbra, Portugal
| | | |
Collapse
|
6
|
Guided Bone Regeneration with Ammoniomethacrylate-Based Barrier Membranes in a Radial Defect Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5905740. [PMID: 33150177 PMCID: PMC7603551 DOI: 10.1155/2020/5905740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
Abstract
Large bone defects pose an unsolved challenge for orthopedic surgeons. Our group has previously reported the construction of a barrier membrane made of ammoniomethacrylate copolymer USP (AMCA), which supports the adhesion, proliferation, and osteoblastic differentiation of human mesenchymal stem cells (hMSCs). In this study, we report the use of AMCA membranes to seclude critical segmental defect (~1.0 cm) created in the middle third of rabbit radius and test the efficiency of bone regeneration. Bone regeneration was assessed by radiography, biweekly for 8 weeks. The results were verified by histology and micro-CT at the end of the follow-up. The AMCA membranes were found superior to no treatment in terms of new bone formation in the defect, bone volume, callus surface area normalized to total volume, and the number of bone trabeculae, after eight weeks. Additional factors were then assessed, and these included the addition of simvastatin to the membrane, coating the membrane with human MSC, and a combination of those. The addition of simvastatin to the membranes demonstrated a stronger effect at a similar radiological follow-up. We conclude that AMCA barrier membranes per se and simvastatin delivered in a controlled manner improve bone regeneration outcome.
Collapse
|
7
|
Sah AK, Dewangan M, Suresh PK. Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces 2019; 178:185-198. [PMID: 30856588 DOI: 10.1016/j.colsurfb.2019.02.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Periodontal diseases are chronic infectious diseases and are a major oral health burden. With the progress in the understanding of etiology, epidemiology and pathogenesis of periodontal diseases coupled with the understanding of the polymicrobial synergy in the dysbiotic oral microbial flora, several new therapeutic targets have been identified. The strategies to curb bacterial growth and production of factors that gradually destroy the tissue surrounding and supporting the teeth have been the cornerstone for inhibiting periodontitis. Systemic administration of antibiotics for the treatment of periodontitis have shown several drawbacks including: inadequate antibiotic concentration at the site of the periodontal pocket, a rapid decline of the plasma antibiotic concentration to sub-therapeutic levels, the development of microbial resistance due to sub-therapeutic drug levels and peak-plasma antibiotic concentrations which may be associated with various side effects. These obvious disadvantages have evoked an interest in the development of localized drug delivery systems that can provide an effective concentration of antibiotic at the periodontal site for the duration of the treatment with minimal side effects. A targeted sustained release device which could be inserted in the periodontal pocket and prolong the therapeutic levels at the site of action at a much lower dose is the need of the hour. Chitosan, a deacetylated derivative of chitin has attracted considerable attention owing to its special properties including antimicrobial efficacy, biodegradability, biocompatibility and non-toxicity. It also has the propensity to act as hydrating agent and display tissue healing and osteoinducting effect. The aim of this review is to shine a spotlight on the chitosan based devices developed for drug delivery application in the effective treatment of various periodontal disorders. The chitosan based carriers like fibers, films, sponge, microparticles, nanoparticles, gels that have been designed for sustained release of drug into the periodontal pocket are highlighted.
Collapse
Affiliation(s)
- Abhishek K Sah
- Department of Pharmacy, Shri G. S. Institute of Technology & Science, 23-Park Road, Indore, 452003, MP, India
| | - Mahendra Dewangan
- Department of Pharmaceutics, University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| | - Preeti K Suresh
- Department of Pharmaceutics, University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India.
| |
Collapse
|
8
|
Biomimetic Surfaces Coated with Covalently Immobilized Collagen Type I: An X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy, Micro-CT and Histomorphometrical Study in Rabbits. Int J Mol Sci 2019; 20:ijms20030724. [PMID: 30744023 PMCID: PMC6387268 DOI: 10.3390/ijms20030724] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The process of osseointegration of dental implants is characterized by healing phenomena at the level of the interface between the surface and the bone. Implant surface modification has been introduced in order to increase the level of osseointegration. The purpose of this study is to evaluate the influence of biofunctional coatings for dental implants and the bone healing response in a rabbit model. The implant surface coated with collagen type I was analyzed through X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), micro-CT and histologically. Methods: The sandblasted and double acid etched surface coated with collagen type I, and uncoated sandblasted and double acid etched surface were evaluated by X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) analysis in order evaluate the different morphology. In vivo, a total of 36 implants were positioned in rabbit articular femoral knee-joint, 18 fixtures for each surface. Micro-CT scans, histological and histomorphometrical analysis were conducted at 15, 30 and 60 days. Results: A histological statistical differences were evident at 15, 30 and 60 days (p < 0.001). Both implant surfaces showed a close interaction with newly formed bone. Mature bone appeared in close contact with the surface of the fixture. The AFM outcome showed a similar roughness for both surfaces. Conclusion: However, the final results showed that a coating of collagen type I on the implant surface represents a promising procedure able to improve osseointegration, especially in regions with a low bone quality.
Collapse
|
9
|
Jang CH, Lee H, Kim M, Kim GH. Accelerated osteointegration of the titanium-implant coated with biocomponents, collagen/hydroxyapatite/bone morphogenetic protein-2, for bone-anchored hearing aid. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Biological response of human suture mesenchymal cells to Titania nanotube-based implants for advanced craniosynostosis therapy. Colloids Surf B Biointerfaces 2017; 150:59-67. [DOI: 10.1016/j.colsurfb.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 01/13/2023]
|
11
|
Wise JK, Alford AI, Goldstein SA, Stegemann JP. Synergistic enhancement of ectopic bone formation by supplementation of freshly isolated marrow cells with purified MSC in collagen-chitosan hydrogel microbeads. Connect Tissue Res 2016; 57:516-525. [PMID: 26337827 PMCID: PMC4864208 DOI: 10.3109/03008207.2015.1072519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Bone marrow-derived mesenchymal stem cells (MSC) can differentiate osteogenic lineages, but their tissue regeneration ability is inconsistent. The bone marrow mononuclear cell (BMMC) fraction of adult bone marrow contains a variety of progenitor cells that may potentiate tissue regeneration. This study examined the utility of BMMC, both alone and in combination with purified MSC, as a cell source for bone regeneration. METHODS Fresh BMMC, culture-expanded MSC, and a combination of BMMC and MSC were encapsulated in collagen-chitosan hydrogel microbeads for pre-culture and minimally invasive delivery. Microbeads were cultured in growth medium for 3 days, and then in either growth or osteogenic medium for 17 days prior to subcutaneous injection in the rat dorsum. RESULTS MSC remained viable in microbeads over 17 days in pre-culture, while some of the BMMC fraction were nonviable. After 5 weeks of implantation, microCT and histology showed that supplementation of BMMC with MSC produced a strong synergistic effect on the volume of ectopic bone formation, compared to either cell source alone. Microbeads containing only fresh BMMC or only cultured MSC maintained in osteogenic medium resulted in more bone formation than their counterparts cultured in growth medium. Histological staining showed evidence of residual microbead matrix in undifferentiated samples and indications of more advanced tissue remodeling in differentiated samples. CONCLUSIONS These data suggest that components of the BMMC fraction can act synergistically with predifferentiated MSC to potentiate ectopic bone formation. The microbead system may have utility in delivering desired cell populations in bone regeneration applications.
Collapse
Affiliation(s)
- Joel K. Wise
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Andrea I. Alford
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven A. Goldstein
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA,Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Lotfi G, Shokrgozar MA, Mofid R, Abbas FM, Ghanavati F, Baghban AA, Yavari SK, Pajoumshariati S. Biological Evaluation (In Vitro and In Vivo) of Bilayered Collagenous Coated (Nano Electrospun and Solid Wall) Chitosan Membrane for Periodontal Guided Bone Regeneration. Ann Biomed Eng 2015; 44:2132-44. [DOI: 10.1007/s10439-015-1516-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
|
13
|
Ao HY, Xie YT, Yang SB, Wu XD, Li K, Zheng XB, Tang TT. Covalently immobilised type I collagen facilitates osteoconduction and osseointegration of titanium coated implants. J Orthop Translat 2015; 5:16-25. [PMID: 30035071 PMCID: PMC5987008 DOI: 10.1016/j.jot.2015.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/09/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
Background/Objective Plasma-sprayed titanium coating (TC) with rough surfaces has been successfully applied in hip or knee prostheses. This study aimed to investigate the osteoconduction and osseointegration of Type I collagen covalently immobilised on TC (TC-AAC) compared with those of TC. Methods In vitro, the migration of human mesenchymal stem cells (hMSCs) on TC and TC-AAC was observed by scanning electron microscopy and visualised fluorescent live/dead assay. In vivo, a rabbit model with femur condyle defect was employed, and implants of TC and TC-AAC were embedded into the femur condyles. Results Collagen immobilised on TC could promote hMSCs' migration into the porous structure of the TC. Micro computed tomography images showed that bone trabeculae were significantly more abundant around TC-AAC implants than around TC implants. Fluorescence micrographs indicated more active new-bone formation around implants in the TC-AAC group than in the TC group. The measurement of bone–implant contact on histological sections indicated significantly greater osteointegration around TC-AAC implants than around TC ones. Conclusion Immobilised Type I collagen could improve the osteoconduction and osseointegration of TC implants.
Collapse
Affiliation(s)
- Hai-Yong Ao
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - You-Tao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Sheng-Bing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Wu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Bin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Yan XZ, van den Beucken JJJP, Cai X, Yu N, Jansen JA, Yang F. Periodontal tissue regeneration using enzymatically solidified chitosan hydrogels with or without cell loading. Tissue Eng Part A 2014; 21:1066-76. [PMID: 25345525 DOI: 10.1089/ten.tea.2014.0319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescently labeled PDLCs, were prepared and transplanted into rat intrabony periodontal defects; untreated defects were used as empty controls (n=8; EMPTY). After 4 weeks, maxillae were harvested, decalcified, and used for histological, histomorphometrical, and immunohistochemical assessments. The results showed that PDLCs remained viable upon encapsulation within chitosan hydrogels before transplantation. Histological analysis demonstrated that the chitosan hydrogels were largely degraded after 4 weeks of implantation, without any adverse reaction in the surrounding tissue. In terms of periodontal regeneration, alveolar bone height, alveolar bone area, and epithelial downgrowth were comparable for CHIT, CHIT+CELL, as well as EMPTY groups. In contrast, both CHIT and CHIT+CELL showed a significant increase in functional ligament length compared with EMPTY. From a cellular perspective, the contribution of chitosan hydrogel-incorporated cells to the periodontal regeneration could not be ascertained, as no signal from transplanted PDLCs could be detected at 4 weeks posttransplantation. The results demonstrated that enzymatically solidified chitosan hydrogels are highly biocompatible and biodegradable. Moreover, chitosan hydrogels without cell loading can improve periodontal regeneration in terms of functional ligament length, indicating the great potential of this hydrogel in clinical applications. Further work on the use of chitosan hydrogels as cell carriers is required.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Biomaterials, Radboud UMC , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Lee SW, Hahn BD, Kang TY, Lee MJ, Choi JY, Kim MK, Kim SG. Hydroxyapatite and collagen combination-coated dental implants display better bone formation in the peri-implant area than the same combination plus bone morphogenetic protein-2-coated implants, hydroxyapatite only coated implants, and uncoated implants. J Oral Maxillofac Surg 2014; 72:53-60. [PMID: 24331565 DOI: 10.1016/j.joms.2013.08.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/30/2013] [Accepted: 08/28/2013] [Indexed: 01/29/2023]
Abstract
PURPOSE The objective of this study was to compare peri-implant bone formation among uncoated (UC), hydroxyapatite (HA), collagen plus HA (CH), and collagen, HA, plus bone morphogenetic protein-2 (BMP-2) implant groups. MATERIALS AND METHODS Implants in the UC group had acid-etched surfaces. The surface coating was applied using the aerosol deposition method. The coated surfaces were examined by scanning electron microscopy, x-ray diffraction (XRD), and Fourier-transformed infrared absorption analysis. Subsequently, 6 implants from each group (total, 24 implants) were installed in the tibias of rabbits. The animals were sacrificed at 6 weeks after implant installation. Peri-implant bone formation and bone-to-implant contact (BIC) were measured in histologic sections. Significant differences among groups were evaluated using analysis of variance. RESULTS Based on the measured XRD patterns, there was a characteristic HA phase (International Centre for Diffraction Data [ICDD], 086-0740) coated on the titanium (ICDD, 089-3725). Subsequent coating processes for collagen and BMP-2 did not display additional diffraction peaks, but maintained the diffraction patterns of the HA-coated titanium. The presence of collagen was verified by infrared absorption analysis. When comparing these modifications with UC surfaces, only the CH coating displayed significantly greater peri-implant bone formation and BIC (P = .003 and P < .001, respectively). Adding BMP-2 to the implant surface did not produce any advantage compared with the CH coating. CONCLUSIONS In this study, the CH group displayed significantly greater new bone formation and BIC than the other groups. There was no significant difference among the other groups.
Collapse
Affiliation(s)
- Sang-Woon Lee
- Fellow, Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Byung-Dong Hahn
- Researcher, Functional Materials Division, Korea Institute of Materials Science, Changwon, Korea
| | - Tae Yeon Kang
- Researcher, Gangneung Center, Korea Basic Science Institute, Gangneung, Korea
| | - Myung-Jin Lee
- Researcher, Gangneung Center, Korea Basic Science Institute, Gangneung, Korea
| | - Je-Yong Choi
- Professor, School of Biochemistry and Cell Biology, WCU Project, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu, Korea
| | - Min-Keun Kim
- Assistant Professor, Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Seong-Gon Kim
- Associate Professor, Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea.
| |
Collapse
|
16
|
Li X, Wang X, Zhao T, Gao B, Miao Y, Zhang D, Dong Y. Guided bone regeneration using chitosan-collagen membranes in dog dehiscence-type defect model. J Oral Maxillofac Surg 2013; 72:304.e1-14. [PMID: 24438600 DOI: 10.1016/j.joms.2013.09.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/05/2013] [Accepted: 09/30/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE The purpose of the present study was to compare a newly developed chitosan-collagen membrane (CCM) with a standard collagen membrane (SCM) regarding their effects on guided bone regeneration. MATERIALS AND METHODS The right mandibular premolars and first molar were extracted from 12 beagle dogs. Four months later, acute buccal dehiscence-type defects (4 × 3 mm in height and width) were surgically created after implant site preparation. The defects were randomly assigned to 4 different groups: CCM-1 (weight ratio of chitosan to collagen of 40:1), CCM-2 (weight ratio of chitosan to collagen of 20:1), SCM, and vehicle control. The dogs were sacrificed after 4, 8, and 12 weeks of healing for radiographic examination, histologic observation, and histometric analysis. RESULTS The membrane-treated sites showed more bone formation than the control sites, although no statistically significant differences were found between the membrane-treated sites and the control sites for new bone-to-implant contact and new bone-filled area at any point. At 8 weeks, the new bone height for the membrane-treated sites was significantly greater statistically than that of the untreated group (P < .05). At 12 weeks, the CCM-1 group showed significantly greater new bone height (1.91 ± 0.25 mm) than the untreated group (1.20 ± 0.34 mm; P < .05). However, the CCMs did not show any statistically significant differences compared with the SCMs for any assessed parameter. CONCLUSIONS The results of the present study have shown that the developed CCMs can enhance bone regeneration and could be a candidate for use in guided bone regeneration.
Collapse
Affiliation(s)
- Xiaojing Li
- MD Student, Department of Prosthetic Dentistry, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Xinmu Wang
- Associate Professor, Department of Oral Surgery, First People's Hospital of Hangzhou, Hangzhou, China
| | - Tengfei Zhao
- Resident, Department of Orthopedic Surgery, Second Affiliated Hospital (Binjiang Branch), Hangzhou Binjiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Gao
- MD Student, Department of Prosthetic Dentistry, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yuwen Miao
- MD Student, Department of Prosthetic Dentistry, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Dandan Zhang
- MD Student, Department of Prosthetic Dentistry, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yan Dong
- Associate Professor, Department of Prosthetic Dentistry, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Dimitriou R, Mataliotakis GI, Calori GM, Giannoudis PV. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med 2012; 10:81. [PMID: 22834465 PMCID: PMC3423057 DOI: 10.1186/1741-7015-10-81] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 07/26/2012] [Indexed: 12/27/2022] Open
Abstract
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Although there are several methods for bone reconstruction, they all have specific indications and limitations. The concept of using barrier membranes for restoration of bone defects has been developed in an effort to simplify their treatment by offering a single-staged procedure. Research on this field of bone regeneration is ongoing, with evidence being mainly attained from preclinical studies. The purpose of this review is to summarize the current experimental and clinical evidence on the use of barrier membranes for restoration of bone defects in maxillofacial and orthopedic surgery. Although there are a few promising preliminary human studies, before clinical applications can be recommended, future research should aim to establish the 'ideal' barrier membrane and delineate the need for additional bone grafting materials aiming to 'mimic' or even accelerate the normal process of bone formation. Reproducible results and long-term observations with barrier membranes in animal studies, and particularly in large animal models, are required as well as well-designed clinical studies to evaluate their safety, efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Rozalia Dimitriou
- Department of Trauma and Orthopaedics, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK
| | | | | | | |
Collapse
|
18
|
Bøe BG, Støen RØ, Solberg LB, Reinholt FP, Ellingsen JE, Nordsletten L. Coating of titanium with hydroxyapatite leads to decreased bone formation: A study in rabbits. Bone Joint Res 2012; 1:125-30. [PMID: 23610682 PMCID: PMC3626199 DOI: 10.1302/2046-3758.16.2000050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/30/2012] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits. METHODS A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections. RESULTS Small amounts of bone were observed scattered along the surface of five of the 12 implants coated with porous titanium, and around one out of 12 porous coated surfaces with Bonemaster. No bone formation could be detected around porous coated implants with plasma-sprayed hydroxyapatite. CONCLUSION Porous titanium coating is to some degree osteoinductive in muscles.
Collapse
Affiliation(s)
- B G Bøe
- Vestre Viken HF, Ringerike Hospital, Postboks 3024, 3501 Hønefoss, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Sverzut AT, Crippa GE, Morra M, de Oliveira PT, Beloti MM, Rosa AL. Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater 2012; 7:035007. [PMID: 22406648 DOI: 10.1088/1748-6041/7/3/035007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The investigation of titanium (Ti) surface modifications aiming to increase implant osseointegration is one of the most active research areas in dental implantology. This study was carried out to evaluate the benefits of coating Ti with type I collagen on the osseointegration of dental implants. Acid etched Ti implants (AETi), either untreated or coated with type I collagen (ColTi), were placed in dog mandibles for three and eight weeks for histomorphometric, cellular and molecular evaluations of bone tissue response. While the histological aspects were essentially the same with both implants being surrounded by lamellar bone trabeculae, histomorphometric analysis showed more abundant bone formation in ColTi, mainly at three weeks. Cellular evaluation showed that cells harvested from bone fragments in close contact with ColTi display lower proliferative capacity and higher alkaline phosphatase activity, phenotypic features associated with more differentiated osteoblasts. Confirming these findings, molecular analyses showed that ColTi implants up-regulates the expression of a panel of genes well known as osteoblast markers. Our results present a set of evidences that coating AETi with collagen fastens the osseointegration by stimulating bone formation at the cellular and molecular levels, making this combination of morphological and biochemical modification a promising approach to treat Ti surfaces.
Collapse
Affiliation(s)
- Alexander Tadeu Sverzut
- Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 2012; 8:449-56. [PMID: 21930254 DOI: 10.1016/j.actbio.2011.09.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/28/2011] [Accepted: 09/01/2011] [Indexed: 02/03/2023]
Abstract
Bacterial infection, extensive inflammation and poor osseointegration have been identified as the major reasons for [early] orthopaedic implant failures based on titanium. Creating implants with drug-eluting properties to locally deliver drugs is an appealing way to address some of these problems. To improve properties of titanium for orthopaedic applications, this study explored the modification of titanium surfaces with titaniananotube (TNT) arrays, and approach that combines drug delivery into bone and potentially improved bone integration. A titania layer with an array of nanotube structures (∼120 nm in diameter and 50 μm in length) was synthesized on titanium surfaces by electrochemical anodization and loaded with the water-insoluble anti-inflammatory drug indomethacin. A simple dip-coating process of polymer modification formed thin biocompatible polymer films over the drug-loaded TNTs to create TNTs with predictable drug release characteristics. Two biodegradable and antibacterial polymers, chitosan and poly(lactic-co-glycolic acid), were tested for their ability to extend the drug release time of TNTs and produce favourable bone cell adhesion properties. Dependent on polymer thickness, a significant improvement in the drug release characteristics was demonstrated, with reduced burst release (from 77% to >20%) and extended overall release from 4 days to more than 30 days. Excellent osteoblast adhesion and cell proliferation on polymer-coated TNTs compared with uncoated TNTs were also observed. These results suggest that polymer-modified implants with a TNT layer are capable of delivering a drug to a bone site over an extended period and with predictable kinetics. In addition, favourable bone cell adhesion suggests that such an implant would have good biocompatibility. The described approach is broadly applicable to a wide range of drugs and implants currently used in orthopaedic practice.
Collapse
|