1
|
Zhang H, Hou W, He Y, Liu Y, Ju Y, Shi X, Zhang Y, Qiao L, He J, Jiang J. Enhanced protection for interfacial lipid ozonolysis by sulfur-containing amino acids. J Colloid Interface Sci 2025; 677:244-249. [PMID: 39094485 DOI: 10.1016/j.jcis.2024.07.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Sulfur-containing amino acids have been proposed as drugs for lipid oxidation associated with diseases for a long time, but the molecular-level mechanism on the effectiveness of sulfur-containing amino acids against lipid oxidation remains elusive. In this work, with the interfacial sensitivity mass spectrometry method, oxidation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), a widely used model lipid, was significantly inhibited on hung droplet surface in presence of sulfur-containing amino acids, such as cysteine (Cys) and methionine (Met). Both the Cys and Met showed a self-sacrificing protection. The amino acids with -S-R tails (R referring to methyl or t-butyl group) showed more effective against POPG oxidation than those with -SH tails, and this process was not related to the conformations of amino acids. The low effectiveness of Cys during the interfacial chemistry was proved to arise from the formation of disulfide bond. This study extends the current understanding of chemistry of sulfur-containing amino acids and provides insights to aid the sulfur-containing amino acids against cell oxidation.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wenhao Hou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xiaohui Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yuexin Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Lina Qiao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
2
|
Metabolomic Analyses to Identify Candidate Biomarkers of Cystinosis. Int J Mol Sci 2023; 24:ijms24032603. [PMID: 36768921 PMCID: PMC9916752 DOI: 10.3390/ijms24032603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.
Collapse
|
3
|
Kang C, Jeong S, Kim J, Ju S, Im E, Heo G, Park S, Yoo JW, Lee J, Yoon IS, Jung Y. N-Acetylserotonin is an oxidation-responsive activator of Nrf2 ameliorating colitis in rats. J Pineal Res 2023; 74:e12835. [PMID: 36214640 DOI: 10.1111/jpi.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.
Collapse
Affiliation(s)
- Changyu Kang
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seongkeun Jeong
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jaejeong Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ju
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Soyeong Park
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Liang H, Liu N, Wang R, Zhang Y, Chen J, Dai Z, Yang Y, Wu G, Wu Z. N-Acetyl Serotonin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Antioxidants (Basel) 2020; 9:antiox9040303. [PMID: 32272634 PMCID: PMC7222184 DOI: 10.3390/antiox9040303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases. Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together, we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Haiwei Liang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ning Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-6273-1003
| |
Collapse
|
5
|
Sudhamani H, Syam Prasad G, Venkataramaiah C, Raju CN, Rajendra W. In silico and in vitro antioxidant activity profiles of urea and thiourea derivatives of 5-hydroxytryptophan. J Recept Signal Transduct Res 2019; 39:373-381. [DOI: 10.1080/10799893.2019.1683864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hasti Sudhamani
- Department of Chemistry, Sri Venkateswara University, Tirupati, India
| | | | | | | | | |
Collapse
|
6
|
Jiang ZC, Liang CH, Wang HL, Chen Y, Zheng J, Yu SN, Jiang JY. Effect of N-acetylserotonin on hepatocyte apoptosis after liver ischemia-reperfusion injury in rats. Shijie Huaren Xiaohua Zazhi 2015; 23:1387-1394. [DOI: 10.11569/wcjd.v23.i9.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of N-acetylserotonin (NAS) on hepatocyte apoptosis after liver ischemia-reperfusion (I/R) injury in rats.
METHODS: Adult male SD rats weighting 200-250 g were used. The afferent vessels of the left and median lobes were occluded by a microvascular bulldog clamp and then reperfused after 60 min with or without NAS. The morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. The expression of Bcl-2, Bax and activated Caspase3 was evaluated by immunohistochemistry.
RESULTS: The hepatocytes exhibited marked ballooning hydropic degeneration and focal necrosis in the I/R group. NAS pretreatment rescued the morphological damage. Compared with the sham operation group, the expression of cleaved Caspase3, Bcl-2 and Bax in the liver tissue was increased, and the ratio of Bcl-2/Bax was decreased in the I/R group (P < 0.01). The apoptosis index (AI) and expression of cleaved Caspase3 and Bax were decreased in the NAS intervention group compared with the I/R group (P < 0.01), and the expression of Bcl-2 and Bcl-2/Bax ratio were increased (P < 0.01).
CONCLUSION: NAS could attenuate hepatocyte apoptosis after liver I/R injury via mechanisms possibly associated with induction of Bcl-2 protein expression and inhibition of Bax protein expression in hepatocytes.
Collapse
|
7
|
N-acetyl-serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:310504. [PMID: 25013541 PMCID: PMC4074966 DOI: 10.1155/2014/310504] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity.
Collapse
|
8
|
Protective effect of N-acetylserotonin against acute hepatic ischemia-reperfusion injury in mice. Int J Mol Sci 2013; 14:17680-93. [PMID: 23994834 PMCID: PMC3794748 DOI: 10.3390/ijms140917680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/29/2013] [Accepted: 08/09/2013] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to investigate the possible protective effect of N-acetylserotonin (NAS) against acute hepatic ischemia-reperfusion (I/R) injury in mice. Adult male mice were randomly divided into three groups: sham, I/R, and I/R + NAS. The hepatic I/R injury model was generated by clamping the hepatic artery, portal vein, and common bile duct with a microvascular bulldog clamp for 30 min, and then removing the clamp and allowing reperfusion for 6 h. Morphologic changes and hepatocyte apoptosis were evaluated by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Activated caspase-3 expression was evaluated by immunohistochemistry and Western blot. The activation of aspartate aminotransferase (AST), malondialdehyde (MDA), and superoxide dismutase (SOD) was evaluated by enzyme-linked immunosorbent assay (ELISA). The data show that NAS rescued hepatocyte morphological damage and dysfunction, decreased the number of apoptotic hepatocytes, and reduced caspase-3 activation. Our work demonstrates that NAS ameliorates hepatic IR injury.
Collapse
|
9
|
Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 2011; 15:2011-35. [PMID: 21126177 PMCID: PMC3159108 DOI: 10.1089/ars.2010.3603] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
Schizophrenia (SZ) is a brain disorder that has been intensively studied for over a century; yet, its etiology and multifactorial pathophysiology remain a puzzle. However, significant advances have been made in identifying numerous abnormalities in key biochemical systems. One among these is the antioxidant defense system (AODS) and redox signaling. This review summarizes the findings to date in human studies. The evidence can be broadly clustered into three major themes: perturbations in AODS, relationships between AODS alterations and other systems (i.e., membrane structure, immune function, and neurotransmission), and clinical implications. These domains of AODS have been examined in samples from both the central nervous system and peripheral tissues. Findings in patients with SZ include decreased nonenzymatic antioxidants, increased lipid peroxides and nitric oxides, and homeostatic imbalance of purine catabolism. Reductions of plasma antioxidant capacity are seen in patients with chronic illness as well as early in the course of SZ. Notably, these data indicate that many AODS alterations are independent of treatment effects. Moreover, there is burgeoning evidence indicating a link among oxidative stress, membrane defects, immune dysfunction, and multineurotransmitter pathologies in SZ. Finally, the body of evidence reviewed herein provides a theoretical rationale for the development of novel treatment approaches.
Collapse
Affiliation(s)
- Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System,7180 Highland Drive, Pittsburgh, PA 15206, USA.
| | | |
Collapse
|
10
|
Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:15-24. [PMID: 19794904 PMCID: PMC2715191 DOI: 10.4161/oxim.1.1.6843] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- R John Aitken
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW, Australia.
| | | |
Collapse
|
11
|
Yao JK, Dougherty GG, Reddy RD, Keshavan MS, Montrose DM, Matson WR, Rozen S, Krishnan RR, McEvoy J, Kaddurah-Daouk R. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry 2010; 15:938-53. [PMID: 19401681 PMCID: PMC2953575 DOI: 10.1038/mp.2009.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is characterized by complex and dynamically interacting perturbations in multiple neurochemical systems. In the past, evidence for these alterations has been collected piecemeal, limiting our understanding of the interactions among relevant biological systems. Earlier, both hyper- and hyposerotonemia were variously associated with the longitudinal course of schizophrenia, suggesting a disturbance in the central serotonin (5-hydroxytryptamine (5-HT)) function. Using a targeted electrochemistry-based metabolomics platform, we compared metabolic signatures consisting of 13 plasma tryptophan (Trp) metabolites simultaneously between first-episode neuroleptic-naive patients with schizophrenia (FENNS, n=25) and healthy controls (HC, n=30). We also compared these metabolites between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. N-acetylserotonin was increased in FENNS-BL compared with HC (P=0.0077, which remained nearly significant after Bonferroni correction). N-acetylserotonin/Trp and melatonin (Mel)/serotonin ratios were higher, and Mel/N-acetylserotonin ratio was lower in FENNS-BL (all P-values<0.0029), but not after treatment, compared with HC volunteers. All three groups had highly significant correlations between Trp and its metabolites, Mel, kynurenine, 3-hydroxykynurenine and tryptamine. However, in the HC, but in neither of the FENNS groups, serotonin was highly correlated with Trp, Mel, kynurenine or tryptamine, and 5-hydroxyindoleacetic acid (5HIAA) was highly correlated with Trp, Mel, kynurenine or 3-hydroxykynurenine. A significant difference between HC and FENNS-BL was further shown only for the Trp-5HIAA correlation. Thus, some metabolite interactions within the Trp pathway seem to be altered in the FENNS-BL patients. Conversion of serotonin to N-acetylserotonin by serotonin N-acetyltransferase may be upregulated in FENNS patients, possibly related to the observed alteration in Trp-5HIAA correlation. Considering N-acetylserotonin as a potent antioxidant, such increases in N-acetylserotonin might be a compensatory response to increased oxidative stress, implicated in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- JK Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - GG Dougherty
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - RD Reddy
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - MS Keshavan
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA, Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard University, Boston, MA, USA
| | - DM Montrose
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - WR Matson
- Bedford VA Medical Center, Bedford, MA, USA
| | - S Rozen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - RR Krishnan
- Duke University Medical Center, Durham, NC, USA
| | - J McEvoy
- Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
12
|
Antioxidant systems and oxidative stress in the testes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:154-71. [PMID: 19856167 DOI: 10.1007/978-0-387-09597-4_9] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Gesing A, Karbownik-Lewinska M. Protective effects of melatonin and N-acetylserotonin on aflatoxin B1-induced lipid peroxidation in rats. Cell Biochem Funct 2008; 26:314-9. [PMID: 17868196 DOI: 10.1002/cbf.1438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aflatoxin B1 (AFB1) is a potent hepatotoxic and hepatocarcinogenic mycotoxin. Reactive oxygen species are considered to participate in the main mechanism of aflatoxin toxicity. Melatonin (Mel) is a hormone which has antioxidative activities. N-acetylserotonin (NAc-5HT) is an immediate precursor of Mel. Melatonin is documented to be completely safe in humans and animals. The aim of our study was to examine the potential protective effects of Mel or NAc-5HT against lipid peroxidation (LPO), caused by AFB1 in male Wistar rats. Mel and NAc-5HT were intraperitoneally (i.p.) injected for 3 weeks in late afternoon (16:00-18:00) injections (20 mg kg(-1) BW/daily). AFB1 (50 microg kg(-1) BW/daily) was administered i.p. 6 h prior to indoleamine injections. Concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA), as an index of LPO, were measured in liver, brain, lung, testis and kidney homogenates. The level of LPO in tissue homogenates was expressed as the amount of MDA + 4-HDA (nmol) per milligram of protein. AFB1 increased LPO in the liver, lung, brain and testis, but not the kidney. The increase of LPO caused by AFB1 injections was completely prevented by either Mel or NAc-5HT in all the tissues examined. Melatonin can be considered as a protective pharmacological agent in intoxication with AFB1 and the protective effect of NAc-5HT against aflatoxin-induced LPO broadens the knowledge about its antioxidative properties.
Collapse
Affiliation(s)
- Adam Gesing
- Department of Oncological Endocrinology, Chair of Endocrinology and Metabolic Diseases, Medical University of Łódź, Poland.
| | | |
Collapse
|
14
|
Tang GY, Ip AK, Siu AW. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates. Neurosci Lett 2006; 412:191-4. [PMID: 17125922 DOI: 10.1016/j.neulet.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Glutamate is a neurotransmitter associated with oxidative retinal disorders. Pinoline (PIN) and N-acetylserotonin (NAS) are newly identified neural protectors. We investigated the glutamate-induced lipid peroxidation (LPO) and the protective effects of PIN and NAS in the retina. Porcine retinal homogenates were treated with different concentrations of glutamate. The malondialdehyde (MDA) level per unit weight of protein was quantified spectro-photometrically as an index of LPO. The glutamate concentration that induced a significant increase in retinal MDA was determined. The glutamate-treated retinal homogenate was then co-incubated with 5 different concentrations (0, 35.7, 71.5, 143 and 286 microM) of PIN, NAS or their combinations (concentration corresponding to 25, 50 and 75% of protection). Glutamate induced a significant dose-dependent increase in retinal MDA (p<0.0001). Co-incubation with PIN or NAS significantly suppressed the glutamate-induced MDA (p<0.01) in a dose-dependent manner (p<0.0001). The concentrations to inhibit 50% of LPO were 132.8 and 98.6 microM for PIN and NAS, respectively. In summary, elevated glutamate induced retinal LPO. Both PIN and NAS suppressed the glutamate-induced LPO and a synergic protection was evident after incubation in PIN/NAS mixtures.
Collapse
Affiliation(s)
- Gordon Y Tang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
15
|
Rackova L, Snirc V, Majekova M, Majek P, Stefek M. Free radical scavenging and antioxidant activities of substituted hexahydropyridoindoles. Quantitative structure-activity relationships. J Med Chem 2006; 49:2543-8. [PMID: 16610797 DOI: 10.1021/jm060041r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New synthetic substituted hexahydropyridoindoles were studied for their radical scavenging ability in a system of an ethanolic solution of alpha,alpha'-diphenyl-beta-picrylhydrazyl and for their lipid peroxidation inhibitory properties in a suspension of unilamellar dioleoylphosphatidylcholine liposomes. The activities in both in vitro systems were correlated with several structural parameters. In the homogeneous system of alpha,alpha'-diphenyl-beta-picrylhydrazyl, the sum of aromatic substitution constants (sigma(+)) and the hydration energy were shown to be effective predictors of the radical scavenging activity of the hexahydropyridoindole derivatives. Moreover, in the heterogeneous system comprising a model liposomal membrane, the overall antioxidant activity of the compounds was affected by their lipid-phase availability governed by the lipophilicity and basicity of the molecules.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
16
|
Catalá A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. Int J Biochem Cell Biol 2006; 38:1482-95. [PMID: 16621670 DOI: 10.1016/j.biocel.2006.02.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/24/2022]
Abstract
The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. This article provides current information on the origin and function of polyunsaturated fatty acids in nature, lipid peroxidation of cellular membranes: enzymatic (lipoxygenases) and non-enzymatic. The latest knowledge on in vivo biomarkers of lipid peroxidation including isoprostanes, isofurans and neuroprostanes are discussed. A further focus is placed on analytical methods for studying lipid peroxidation in membranes with emphasis in chemiluminescence and its origin, rod outer segments of photoreceptors, the effect of antioxidants, fatty acid hydroperoxides and lipid protein modifications. Since rhodopsin, the major integral protein of rod outer segments is surrounded by phospholipids highly enriched in docosahexaenoic acid, the author proposes the outer segments of photoreceptors as an excellent model to study lipid peroxidation using the chemiluminescence assay since these membranes contain the highest concentration of polyunsaturated fatty acids of any vertebrate tissue and are highly susceptible to oxidative damage.
Collapse
Affiliation(s)
- Angel Catalá
- INIFTA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CIC. CC 16, Sucursal 4, 1900 La Plata, Argentina.
| |
Collapse
|
17
|
Lardone PJ, Alvarez-García O, Carrillo-Vico A, Vega-Naredo I, Caballero B, Guerrero JM, Coto-Montes A. Inverse correlation between endogenous melatonin levels and oxidative damage in some tissues of SAM P8 mice. J Pineal Res 2006; 40:153-7. [PMID: 16441552 DOI: 10.1111/j.1600-079x.2005.00289.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To assess whether oxidative damage in some tissues was related to their melatonin concentration, endogenous melatonin levels and the age-linked protein and lipid damage in spleen, thymus and liver in 5-month-old SAM P8 mice were examined. The results show that high levels of melatonin in spleen and thymus correlate with lower protein and lipid damage. The liver, which had much lower melatonin concentrations than the other two tissues, had much higher levels of oxidatively damaged protein, as measured by carbonyl values. These results add new evidence concerning the protective role of endogenous melatonin as an antioxidant agent, and suggest that a treatment with this molecule might help to reduce age-associated functional deficits in many organs, including those of the immune system.
Collapse
Affiliation(s)
- Patricia J Lardone
- Department of Medical Biochemistry and Molecular Biology, School of Medicine and Virgen Macarena Hospital, University of Seville, Seville, Asturias, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Leaden PJ, Catalá A. Protective effect of melatonin on ascorbate-Fe2+ lipid peroxidation of polyunsaturated fatty acids in rat liver, kidney and brain microsomes: a chemiluminescence study. J Pineal Res 2005; 39:164-9. [PMID: 16098094 DOI: 10.1111/j.1600-079x.2005.00232.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, is a free radical scavenger that has been found to protect against lipid peroxidation in many experimental models. In the present study the effect of melatonin on lipid peroxidation of long chain polyunsaturated fatty acids located in rat liver, kidney and brain microsomes was determined using gas chromatography and a chemiluminescence assay. In vitro assays showed that after incubation of rat liver, kidney or brain microsomes in an ascorbate-Fe++ system, at 37 degrees C for 180 min, the total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of melatonin. The incubation of rat liver, kidney or brain microsomes in the presence of ascorbate-Fe2+ resulted in lipid-peroxidation of membranes as evidenced by light emission and decrease of docosahexaenoic acid 22:6 n-3 and arachidonic acid 20:4 n-6. In the presence of melatonin (0.5, 1.0, 1.5 mm), light emission percent inhibition of microsomes was: (liver - 3.33, 9.98, 39.40) (kidney - 46.79, 61.88, 68.36) and (brain - 33.36, 28.89, 43.32). Not all fatty acids were equally protected after the addition of melatonin to the incubation medium. Our results indicate a selective protection of C20:4 n6 and C22:6 n3 by melatonin during non-enzymatic lipid peroxidation of rat liver, kidney and brain microsomes.
Collapse
Affiliation(s)
- Patricio J Leaden
- Cátedra de Bioquímica, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Argentina
| | | |
Collapse
|