1
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
2
|
Doğanlar ZB, Uzun M, Ovali MA, Dogan A, Ongoren G, Doğanlar O. Melatonin attenuates caspase-dependent apoptosis in the thoracic aorta by regulating element balance and oxidative stress in pinealectomised rats. Appl Physiol Nutr Metab 2019; 44:153-163. [DOI: 10.1139/apnm-2018-0205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to explain the possible mechanisms by which melatonin deficiency results in cardiovascular injury and to investigate the effects of melatonin administration on important signalling pathways and element equilibrium in the thoracic aorta (TA). For this purpose, we analysed the cellular and molecular effects of melatonin deficiency or administration on oxidative stress, DNA damage, molecular chaperone response, and apoptosis induction in TA tissues of pinealectomised rats using ELISA, RAPD, qRT-PCR, and Western blot assays. The results showed that melatonin deficiency led to an imbalance in essential element levels, unfolded or misfolded proteins, increased lipid peroxidation, and selectively induced caspase-dependent apoptosis in TA tissues without significantly affecting the Bcl-2/BAX ratio (2.28 in pinealectomised rats, 2.73 in pinealectomised rats treated with melatonin). In pinealectomised rats, the genomic template stability (80.22%) was disrupted by the significantly increased oxidative stress, and heat shock protein 70 (20.96-fold), TNF-α (1.73-fold), caspase-8 (2.03-fold), and caspase-3 (2.87-fold) were markedly overexpressed compared with the sham group. Melatonin treatment was protective against apoptosis and inhibited oxidative damage. In addition, melatonin increased the survivin level and improved the regulation of element equilibrium in TA tissues. The results of the study indicate that melatonin deficiency induces TNF-α-related extrinsic apoptosis signals and that the administration of pharmacological doses of melatonin attenuates cardiovascular toxicity by regulating the increase in the rate of apoptosis caused by melatonin deficiency in TA tissue of Sprague–Dawley rats.
Collapse
Affiliation(s)
- Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Metehan Uzun
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale 17020, Turkey
| | - Mehmet Akif Ovali
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale 17020, Turkey
| | - Ayten Dogan
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Gulin Ongoren
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| |
Collapse
|
3
|
Ovid D, Hayes TB, Bentley GE. Melatonin Administration Methods for Research in Mammals and Birds. J Biol Rhythms 2018; 33:567-588. [PMID: 30246597 DOI: 10.1177/0748730418795802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endocrine research in animals often entails exogenous hormone administration. Special issues arise when developing administration protocols for hormones with circadian and seasonal periodicity. This article reviews various methods for the exogenous administration of hormones with such periodicities by focusing on melatonin. We discuss that methodological variations across studies can affect experimental results. Melatonin administration techniques used in vertebrates includes infusion pumps, beeswax pellets, oral administration, injections, SILASTIC capsules, osmotic pumps, transdermal delivery, beads, and sponges.
Collapse
Affiliation(s)
- Dax Ovid
- University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
4
|
Hu J, Zhang L, Yang Y, Guo Y, Fan Y, Zhang M, Man W, Gao E, Hu W, Reiter RJ, Wang H, Sun D. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J Pineal Res 2017; 62. [PMID: 27696525 DOI: 10.1111/jpi.12368] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Melatonin reportedly protects against several cardiovascular diseases including ischemia/reperfusion (I/R), atherosclerosis, and hypertension. The present study investigated the effects and mechanisms of melatonin on cardiomyocyte autophagy, apoptosis, and mitochondrial injury in the context of myocardial infarction (MI). We demonstrated that melatonin significantly alleviated cardiac dysfunction after MI. Four weeks after MI, echocardiography and Masson staining indicated that melatonin notably mitigated adverse left ventricle remodeling. The mechanism may be associated with increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin significantly inhibited Mst1 phosphorylation while promoting Sirt1 expression after MI, which indicates that Mst1/Sirt1 signaling may serve as the downstream target of melatonin. We thus constructed a MI model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1-/- ) mice. The absence of Mst1 abolished the favorable effects of melatonin on cardiac injury after MI. Consistently, melatonin administration did not further increase autophagy, decrease apoptosis, or alleviate mitochondrial integrity and biogenesis in Mst1 knockout mice subjected to MI injury. These results suggest that melatonin alleviates postinfarction cardiac remodeling and dysfunction by upregulating autophagy, decreasing apoptosis, and modulating mitochondrial integrity and biogenesis. The attributed mechanism involved, at least in part, Mst1/Sirt1 signaling.
Collapse
Affiliation(s)
- Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhong Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wei Hu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Tare M, Parkington HC, Wallace EM, Sutherland AE, Lim R, Yawno T, Coleman HA, Jenkin G, Miller SL. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs. J Physiol 2014; 592:2695-709. [PMID: 24710061 DOI: 10.1113/jphysiol.2014.270934] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with impaired cardiac function in childhood and is linked to short- and long-term morbidities. Placental dysfunction underlies most IUGR, and causes fetal oxidative stress which may impact on cardiac development. Accordingly, we investigated whether antenatal melatonin treatment, which possesses antioxidant properties, may afford cardiovascular protection in these vulnerable fetuses. IUGR was induced in sheep fetuses using single umbilical artery ligation on day 105-110 of pregnancy (term 147). Study 1: melatonin (2 mg h(-1)) was administered i.v. to ewes on days 5 and 6 after surgery. On day 7 fetal heart function was assessed using a Langendorff apparatus. Study 2: a lower dose of melatonin (0.25 mg h(-1)) was administered continuously following IUGR induction and the ewes gave birth normally at term. Lambs were killed when 24 h old and coronary vessels studied. Melatonin significantly improved fetal oxygenation in vivo. Contractile function in the right ventricle and coronary flow were enhanced by melatonin. Ischaemia-reperfusion-induced infarct area was 3-fold greater in IUGR hearts than in controls and this increase was prevented by melatonin. In isolated neonatal coronary arteries, endothelium-dependent nitric oxide (NO) bioavailability was reduced in IUGR, and was rescued by modest melatonin treatment. Melatonin exposure also induced the emergence of an indomethacin-sensitive vasodilation. IUGR caused marked stiffening of the coronary artery and this was prevented by melatonin. Maternal melatonin treatment reduces fetal hypoxaemia, improves heart function and coronary blood flow and rescues cardio-coronary deficit induced by IUGR.
Collapse
Affiliation(s)
- Marianne Tare
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | | - Euan M Wallace
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Harold A Coleman
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia The Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
6
|
Wang H, Li L, Zhao M, Chen YH, Zhang ZH, Zhang C, Ji YL, Meng XH, Xu DX. Melatonin alleviates lipopolysaccharide-induced placental cellular stress response in mice. J Pineal Res 2011; 50:418-26. [PMID: 21355878 DOI: 10.1111/j.1600-079x.2011.00860.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Melatonin protects mice from lipopolysaccharide (LPS)-induced fetal death and intra-uterine growth retardation. Nevertheless, its molecular mechanism remains obscure. In the present study, we investigated the effects of melatonin on LPS-induced cellular stress in placenta. Pregnant mice were given with melatonin [5.0 mg/kg, intraperitoneal (i.p.)] 30 min before and 150 min after LPS (300 μg/kg, i.p.) on gestational day 15. Oxidative stress, endoplasmic reticulum (ER) stress, hypoxic stress, and heat stress in placenta were analyzed at 4 hr after LPS. As expected, maternal LPS administration resulted in placental glutathione (GSH) depletion and up-regulated the expression of placental antioxidative enzymes. In addition, LPS significantly increased the level of inducible nitric oxide synthase (iNOS) and enhanced the intensity of placental 3-nitrotyrosine residues. An ER stress, as determined by a decreased GRP78 expression, an obvious eIF2α and JNK phosphorylation, and an increased CHOP expression, were observed in placenta of pregnant mice injected with LPS. In addition, LPS significantly increased mRNA level of placental HIF-1α, VEGF, and ET-1, the markers of hypoxic stress. Heme oxygenase (HO)-1, a marker of heat stress, was also up-regulated in placenta of LPS-treated pregnant mice. Interestingly, LPS-induced placental oxidative stress, hypoxic stress, and ER stress were significantly alleviated when pregnant mice were given with melatonin, whereas melatonin had little effect on LPS-evoked placental HO-1 expression. In conclusion, maternally administered melatonin alleviates LPS-induced cellular stress in the placenta. Melatonin may be useful as pharmacological agents to protect the fetuses against LPS-induced intra-uterine fetal death and intra-uterine growth restriction.
Collapse
Affiliation(s)
- Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | |
Collapse
|