1
|
Drobnik M, Tomaszewska A, Ryżko J, Kędzia A, Gałdyszyńska M, Piera L, Rydel J, Szymański J, Drobnik J. Melatonin increases collagen content accumulation and Fibroblast Growth Factor-2 secretion in cultured human cardiac fibroblasts. Pharmacol Rep 2023; 75:560-569. [PMID: 37188903 PMCID: PMC10227126 DOI: 10.1007/s43440-023-00490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The extracellular matrix serves as a scaffold for cardiomyocytes, allowing them to work in accord. In rats, collagen metabolism within a myocardial infarction scar is regulated by melatonin. The present study determines whether melatonin influences matrix metabolism within human cardiac fibroblast cultures and examines the underlying mechanism. METHODS The experiments were performed on cultures of cardiac fibroblasts. The Woessner method, 1,9-dimethylmethylene blue assay, enzyme-linked immunosorbent assay and quantitative PCR were used in the study. RESULTS Melatonin treatment lowered the total cell count within the culture, elevated necrotic and apoptotic cell count as well as augmented cardiac fibroblast proliferation, and increased total, intracellular, and extracellular collagen within the fibroblast culture; it also elevated type III procollagen α1 chain expression, without increasing procollagen type I mRNA production. The pineal hormone did not influence matrix metalloproteinase-2 (MMP-2) release or glycosaminoglycan accumulation by cardiac fibroblasts. Melatonin increased the release of Fibroblast Growth Factor-2 (FGF-2) by human cardiac fibroblasts, but cardiotrophin release was not influenced. CONCLUSION Within human cardiac fibroblast culture, collagen metabolism is regulated by melatonin. The profibrotic effect of melatonin depends on the elevation of procollagen type III gene expression, and this could be modified by FGF-2. Two parallel processes, viz., cell elimination and proliferation, induced by melatonin, lead to excessive replacement of cardiac fibroblasts.
Collapse
Affiliation(s)
- Marta Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Tomaszewska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Joanna Ryżko
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Aleksandra Kędzia
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Małgorzata Gałdyszyńska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Lucyna Piera
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Justyna Rydel
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University of Lodz, Ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jacek Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| |
Collapse
|
2
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
3
|
Li L, Gang X, Wang J, Gong X. Role of melatonin in respiratory diseases (Review). Exp Ther Med 2022; 23:271. [PMID: 35251337 PMCID: PMC8892605 DOI: 10.3892/etm.2022.11197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lijie Li
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaochao Gang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jiajia Wang
- Department of Pediatrics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Xiaoyan Gong
- Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
4
|
Piera L, Szymański J, Juszczak M, Drobnik J. Histamine is involved in the regulation of collagen content in cultured heart myofibroblasts via H 2, H 3 and H 4 histamine receptors. Biomed Rep 2021; 15:71. [PMID: 34276989 PMCID: PMC8278034 DOI: 10.3892/br.2021.1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/07/2021] [Indexed: 11/06/2022] Open
Abstract
Histamine is involved in the regulation of collagen metabolism during healing following a myocardial infarction; however, its effects on the intact heart tissue is unknown. The aim of the present study was to determine whether histamine may influence collagen content in cells isolated from intact heart, and to identify the histamine receptor involved in the regulation of collagen deposition. Cells were isolated from intact rat hearts and subjected to identification by flow cytometry. The effects of histamine and its receptor agonists and antagonists were investigated. The heart cells were found to be actin, desmin and vimentin positive. Histamine (used at a concentrations of 1x10-10-1x10-5 M) increased collagen content within the culture and increased the expression of α1 chain of the procollagen type III gene. The H2, H3 and H4 receptor inhibitors ranitidine, ciproxifan and JNJ 7777120 blocked the effect of histamine on collagen content. All tested histamine receptor agonists, viz. 2-pyridylethylamine dihydrochloride (H1 receptor agonist), amthamine dihydrobromide (H2 receptor agonist), imetit (H3 receptor agonist) and 4-methylhistamine hydrochloride (H4 receptor agonist), elevated collagen content within the heart myofibroblast cultures. The cells isolated from the intact heart were identified as myofibroblasts. Thus, the results of the present study showed that histamine augmented collagen content in the heart myofibroblast culture by activation of three histamine receptors (H2, H3 and H4). The effect of the amine was also dependent on the activation of collagen type III gene expression.
Collapse
Affiliation(s)
- Lucyna Piera
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Łódź, 90-752 Łódź, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University of Łódź, 92-215 Łódź, Poland
| | - Marlena Juszczak
- Department of Pathophysiology and Experimental Neuroendocrinology, Medical University of Łódź, 90-752 Łódź, Poland
| | - Jacek Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Łódź, 90-752 Łódź, Poland
| |
Collapse
|
5
|
Bjørklund G, Dadar M, Aaseth J, Chirumbolo S. Thymosin β4: A Multi-Faceted Tissue Repair Stimulating Protein in Heart Injury. Curr Med Chem 2021; 27:6294-6305. [PMID: 31333080 DOI: 10.2174/0929867326666190716125456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022]
Abstract
Thymosin Beta-4 (Tβ4) is known as a major pleiotropic actin-sequestering protein that is involved in tumorigenesis. Tβ4 is a water-soluble protein that has different promising clinical applications in the remodeling and ulcerated tissues repair following myocardial infarction, stroke, plasticity and neurovascular remodeling of the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). On the other hand, similar effects have been observed for Tβ4 in other kinds of tissues, including cardiac muscle tissue. In recent reports, as it activates resident epicardial progenitor cells and modulates inflammatory-caused injuries, Tβ4 has been suggested as a promoter of the survival of cardiomyocytes. Furthermore, Tβ4 may act in skeletal muscle and different organs in association/synergism with numerous other tissue repair stimulating factors, including melatonin and C-fiber-derived peptides. For these reasons, the present review highlights the promising role of Tβ4 in cardiac healing.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences,
University of Verona, Verona, Italy
| |
Collapse
|
6
|
Melatonin as a protective agent in cardiac ischemia-reperfusion injury: Vision/Illusion? Eur J Pharmacol 2020; 885:173506. [PMID: 32858050 DOI: 10.1016/j.ejphar.2020.173506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Melatonin, an emphatic endogenous molecule exerts protective effects either via activation of G-protein coupled receptors (Melatonin receptors, MTR 1-3), tumor necrosis factor receptor (TNFR), toll like receptors (TLRS), nuclear receptors (NRS) or by directly scavenging the free radicals. MTRs are extensively expressed in the heart as well as in the coronary vasculature. Accumulating evidences have indicated the existence of a strong correlation between reduction in the circulating level of melatonin and precipitation of heart attack. Apparently, melatonin exhibits cardioprotective effects via modulating inextricably interlinked pathways including modulation of mitochondrial metabolism, mitochondrial permeability transition pore formation, nitric oxide release, autophagy, generation of inflammatory cytokines, regulation of calcium transporters, reactive oxygen species, glycosaminoglycans, collagen accumulation, and regulation of apoptosis. Convincingly, this review shall describe the various signaling pathways involved in salvaging the heart against ischemia-reperfusion injury.
Collapse
|
7
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
8
|
Hu J, Cheng P, Huang GY, Cai GW, Lian FZ, Wang XY, Gao S. Effects of Xin-Ji-Er-Kang on heart failure induced by myocardial infarction: Role of inflammation, oxidative stress and endothelial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:245-257. [PMID: 29655692 DOI: 10.1016/j.phymed.2018.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection on cardiovascular diseases like hypertension and myocarditis. PURPOSE To elucidate the protective effects of XJEK on heart failure (HF) induced by myocardial infarction (MI) through the amelioration of inflammation, oxidative stress (OS) and endothelial dysfunction(ED). MATERIALS AND METHODS Fifty-seven male KM mice were randomized into the following six groups (n = 9-10 for each): control group, model group, MI+XJEK low dose group(XJEKL) group, MI+XJEK middle dose group(XJEKM), MI+XJEK high dose group(XJEKH), and MI+fosinopril group (positive control group). After treatment for four weeks, electrocardiography (ECG) and haemodynamics were recorded. Serum and tissues were collected for further analysis. Endothelium-dependent relaxation induced by acetylcholine was assessed in isolated thoracic aorta ring experiment. Hematoxylin and eosin (HE) and Van Gieson (VG) staining were used to detect the pathological changes of heart and thoracic aorta. Colorimetric analysis was employed to determine serum nitric oxide level (NO), malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. ELISA was used to detect serum B-type natriuretic peptide (BNP) and serum inflammatory cytokines, as well as endothelial NO synthetase (eNOS), angiotensinII (Ang II) and endothelin-1(ET-1) concentration in both serum and cardiac tissues. Immunohistochemistry and Western blotting (WB) were employed to detect eNOS and inflammatory cytokine expressions in cardiac tissues. RESULTS XJEK administration markedly ameliorated cardiac dysfunction and abnormal ECG manifested by decreased weight/body weight (HW/BW) ratio, BNP and remedied hypertrophy of cardiomyocytes and deposition of collagen, which might be in part attributed to the increased SOD and decreased MDA in serum. Furthermore, XJEK administration improved ED with boosted eNOS activities in serum and cardiac tissues, as well as up-regulated NO levels in serum, down-regulated Ang II and ET-1 content in serum and cardiac tissues. Lastly, protein expression of pro-inflammation cytokines significantly decreased, and anti-inflammatory cytokine was significantly enhanced in serum and cardiac tissues compared to model group. CONCLUSION XJEK may exert beneficial effects on HF induced by MI in mice, and the underlying mechanism may be attributable to the amelioration of ED, anti-OS and anti-inflammation effects.
Collapse
Affiliation(s)
- Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guang-Yao Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guo-Wei Cai
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Feng-Zhen Lian
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yun Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
9
|
Hu W, Ma Z, Jiang S, Fan C, Deng C, Yan X, Di S, Lv J, Reiter RJ, Yang Y. Melatonin: the dawning of a treatment for fibrosis? J Pineal Res 2016; 60:121-31. [PMID: 26680689 DOI: 10.1111/jpi.12302] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
Fibrosis is a common occurrence following organ injury and failure. To date, there is no effective treatment for this condition. Melatonin targets numerous molecular pathways, a consequence of its antioxidant and anti-inflammatory actions that reduce excessive fibrosis. Herein, we review the multiple protective effects of melatonin against fibrosis. There exist four major phases of the fibrogenic response including primary injury to the organ, activation of effector cells, the elaboration of extracellular matrix (ECM) and dynamic deposition. Melatonin regulates each of these phases. Additionally, melatonin reduces fibrosis levels in numerous organs. Melatonin exhibits its anti-fibrosis effects in heart, liver, lung, kidney, and other organs. In addition, adhesions which occur following surgical procedures are also inhibited by melatonin. The information reviewed here should be significant to understanding the protective role of melatonin against fibrosis, contribute to the design of further experimental studies related to melatonin and the fibrotic response and shed light on a potential treatment for fibrosis.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
- Department of General Surgery, Beidaihe Sanatorium, Beijing Military Area Command, Qinhuangdao, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
- Department of General Surgery, Beidaihe Sanatorium, Beijing Military Area Command, Qinhuangdao, China
| |
Collapse
|
10
|
Crooke A, Guzman-Aranguez A, Mediero A, Alarma-Estrany P, Carracedo G, Pelaez T, Peral A, Pintor J. Effect of melatonin and analogues on corneal wound healing: involvement of Mt2 melatonin receptor. Curr Eye Res 2014; 40:56-65. [PMID: 24892818 DOI: 10.3109/02713683.2014.914540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE We have investigated the effect of melatonin and its analogues on rabbit corneal epithelial wound healing. METHODS New Zealand rabbits were anaesthetised and wounds were made by placing Whatman paper discs soaked in n-heptanol on the cornea. Melatonin and analogues (all 10 nmol) were instilled. Wound diameter was measured every 2 hours by means of fluorescein application with a Topcon SL-8Z slit lamp. Melatonin antagonists (all 10 nmol) were applied 2 hours before the application of the n-heptanol-soaked disc and then every 6 hours together with melatonin. To confirm the presence of MT2 receptors in corneal epithelial cells immunohistochemistry, Western blot and RT-PCR assays in native tissue and in rabbit corneal epithelial cells were performed. The tear components were extracted then processed by HPLC to quantify melatonin in tears. RESULTS Migration assays revealed that melatonin and particularly the treatment with the MT2 agonist IIK7, accelerated the rate of healing (p < 0.001). The application of the non-selective melatonin receptor antagonist luzindole and the MT2 antagonist DH97 (but not prazosin), prevented the effect of melatonin on wound healing (both p < 0.001). Immunohistochemistry, Western blot and RT-PCR assays showed the presence of MT2 melatonin receptor in corneal epithelial cells. In addition, we have identified melatonin in tears and determined its daily variations. CONCLUSIONS These data suggest that MT2 receptors are implicated in the effect of melatonin on corneal wound healing regulating migration rate. This suggests the potential use of melatonin and its analogues to enhance epithelial wound healing in ocular surface disease.
Collapse
Affiliation(s)
- Almudena Crooke
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid , Madrid , Spain , and
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Drobnik J, Owczarek K, Piera L, Tosik D, Olczak S, Ciosek J, Hrabec E. Melatonin-induced augmentation of collagen deposition in cultures of fibroblasts and myofibroblasts is blocked by luzindole--a melatonin membrane receptors inhibitor. Pharmacol Rep 2014; 65:642-9. [PMID: 23950586 DOI: 10.1016/s1734-1140(13)71041-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 02/01/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin has been proven to have a regulatory influence on collagen accumulation in different types of wound. It was found to inhibit collagen accumulation in the superficial wound model but increase it in the myocardial infarction scar. The aim of the study is to determine the mechanism of melatonin action in the two wound types in rats. METHODS Cells were isolated from both the superficial wound (subcutaneously inserted polypropylene net) and myocardial infarction scar (induced by ligation of the left coronary artery) and were identified by electron microscopy. RESULTS Long-shaped cells forming whirl-like structures in culture (mainly identified as fibroblasts) were isolated from the superficial wound model, while myofibroblasts growing in a formless manner were acquired from the infarcted heart scar. Melatonin (10(-7) M) increased collagen accumulation in both fibroblast and myofibroblast cultures. Luzindole (10(-6) M), the blocker of both MT1 and MT2 melatonin membrane receptors, inhibited the effect of melatonin on the two types of cells. CONCLUSION Regardless of various healing potentials demonstrated by the tested cells (different cell composition, growth and organization), their response to melatonin was similar. Moreover, in the two investigated cultures, augmentation of the collagen content by melatonin was reversed by luzindole, which indicates the possibility of melatonin membrane receptor involvement in that process. The present results suggest that the increased melatonin-stimulated deposition of collagen observed in the infarcted heart of rats could be dependent on activation of the melatonin membrane receptors on scar myofibroblasts.
Collapse
Affiliation(s)
- Jacek Drobnik
- Department of Neuropeptides Research, Medical University of Lodz, Łódź, Poland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ciosek J, Drobnik J. Function of the hypothalamo-neurohypophysial system in rats with myocardial infarction is modified by melatonin. Pharmacol Rep 2012; 64:1442-54. [DOI: 10.1016/s1734-1140(12)70942-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/03/2012] [Indexed: 01/19/2023]
|
13
|
Stratos I, Richter N, Rotter R, Li Z, Zechner D, Mittlmeier T, Vollmar B. Melatonin restores muscle regeneration and enhances muscle function after crush injury in rats. J Pineal Res 2012; 52:62-70. [PMID: 21790777 DOI: 10.1111/j.1600-079x.2011.00919.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of this study was to provide evidence that melatonin improves muscle healing following blunt skeletal muscle injury. For this purpose, we used 56 rats and induced an open muscle injury. After injury, all animals received either daily melatonin or vehicle solution intraperitoneally. Subsequent observations were performed at day 1, 4, 7, and 14 after injury. After assessment of fast twitch and tetanic muscle force, we analyzed leukocyte infiltration, satellite cell number, and cell apoptosis. We further quantified the expression of the melatonin receptor and the activation of extracellular-signal-regulated kinase (ERK). Chronic treatment with melatonin significantly increased the twitch and tetanic force of the injured muscle at day 4, 7, and 14. At day 1, melatonin significantly reduced the leukocyte infiltration and significantly increased the number of satellite cells when compared to the control group. Consistent with this observation, melatonin significantly reduced the number of apoptotic cells at day 4. Furthermore, phosphorylation of ERK reached maximal values in the melatonin group at day 1 after injury. Additionally, we detected the MT1a receptor in the injured muscle and showed a significant up-regulation of the MT1a mRNA in the melatonin group at day 4. These data support the hypothesis that melatonin supports muscle restoration after muscle injury, inhibits apoptosis via modulation of apoptosis-associated signaling pathways, increases the number of satellite cells, and reduces inflammation.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Carboxylic Ester Hydrolases/metabolism
- Caspase 3/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Immunohistochemistry
- Male
- Melatonin/pharmacology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/injuries
- Muscle, Skeletal/physiology
- Musculoskeletal Physiological Phenomena/drug effects
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Regeneration/drug effects
- Satellite Cells, Skeletal Muscle/chemistry
- Satellite Cells, Skeletal Muscle/metabolism
- Wound Healing/drug effects
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Ioannis Stratos
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Matrix metalloproteinases (MMPs) are part of a superfamily of metal-requiring proteases that play important roles in tissue remodeling by breaking down proteins in the extracellular matrix that provides structural support for cells. The intricate balance in protease/anti-protease stoichiometry is a contributing factor in a number of diseases. Melatonin possesses multifunctional bioactivities including antioxidative, anti-inflammatory, endocrinologic and behavioral effects. As melatonin affects the redox status of tissues, the association of reactive oxygen species (ROS) with tissue injury under different circumstances may be mitigated by melatonin. Redox signaling is expanding into all areas of basic and clinical sciences, and this timely review focuses on the topic of regulation of MMP activities by melatonin. This is a rapidly growing field. Accumulating evidence indicates that oxidative stress plays an important role in regulating the activities of MMPs that are involved in various cellular processes such as cellular proliferation, angiogenesis, apoptosis, invasion and metastasis. This review offers sections on MMPs, melatonin, major physiological and pathophysiological conditions in the context to MMPs, followed by redox signaling mechanisms that are known to influence the cellular processes. Finally, we discuss the emerging molecular mechanisms relevant to regulatory actions of melatonin on the activities of MMPs. The possibility that melatonin might have therapeutic significance via regulation of MMPs may be a novel approach in the treatment of some diseases.
Collapse
Affiliation(s)
- Snehasikta Swarnakar
- Department of Physiology, Drug Development Diagnostic and Biotechnology Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | | | | | | |
Collapse
|
15
|
Drobnik J, Olczak S, Owczarek K, Hrabec Z, Hrabec E. Melatonin augments expression of the procollagen α1 (I) and α1 (III) genes in the infarcted heart scar of pinealectomized rats. Connect Tissue Res 2010; 51:491-6. [PMID: 20388018 DOI: 10.3109/03008201003686966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pineal gland is involved in the regulation of collagen accumulation in peripheral wounds and scars of the infarcted heart. This study is aimed to provide an explanation of whether the pineal gland and melatonin (MLT) is involved in the regulation of α1 (I) and α1 (III) procollagen gene expression. A secondary aim is the investigation of whether the mechanism of changes could be explained by the direct influence of MLT on myofibroblasts isolated from the scar. Myocardial infarction was induced by left coronary artery ligation in all rats. Animals were divided into groups: control, vehicle-treated rats, those injected with MLT, sham-operated animals, pinealectomized (Px) rats, and Px rats injected with vehicle or treated with MLT. In the second part of the study, cells from the scar of the infarcted heart were isolated and cultured with MLT at concentrations of 10⁻⁷ and 10⁻⁹ M. Both α1 (I) and α1 (III) procollagen gene expressions were evaluated by reverse transcription-polymerase chain reaction. Neither MLT given to intact animals nor pinealectomy alone have an influence on procollagen gene expression. However, administration of MLT to the Px animals increased the expression of α1 (I) and α1 (III) procollagen genes. Cells isolated from the heart scar were identified as myofibroblasts. MLT did not influence collagen gene expression in cultured myofibroblasts. The results indicate that MLT has an influence on procollagen gene expression in Px animals. Because the pineal product does not have an influence on the myofibroblast of the scar, the indirect mechanism of MLT action is suggested. This study may have practical implications in patients with a low level of MLT (elderly subjects, patients treated with β-adrenergic blockers).
Collapse
Affiliation(s)
- Jacek Drobnik
- Department of Connective Tissue Metabolism, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | |
Collapse
|
16
|
Hong Y, Palaksha KJ, Park K, Park S, Kim HD, Reiter RJ, Chang KT. Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury. J Pineal Res 2010; 49:201-9. [PMID: 20626592 DOI: 10.1111/j.1600-079x.2010.00786.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Spinal cord injury (SCI) is damage to the spinal cord caused by the trauma or disease that results in compromised or loss of body function. Subsequent to SCI in humans, many individuals have residual motor and sensory deficits that impair functional performance and quality of life. The available treatments for SCI are rehabilitation therapy, activity-based therapies, and pharmacological treatment using antioxidants and their agonists. Among pharmacological treatments, the most efficient and commonly used antioxidant for experimental SCI treatment is melatonin, an indolamine secreted by pineal gland at night. Melatonin's receptor-independent free radical scavenging action and its broad-spectrum antioxidant activity makes it an ideal antioxidant to protect tissue from oxidative stress-induced secondary damage after SCI. Owing to the limitations of an activity-based therapy and antioxidant treatment singly on the functional recovery and oxidative stress-induced secondary damages after SCI, a melatonin plus exercise treatment may be a more effective therapy for SCI. As suggested herein, supplementation with melatonin in conjunction with exercise not only would improve the functional recovery by enhancing the beneficial effects of exercise but would reduce the secondary tissue damage simultaneously. Finally, melatonin may protect against exercise-induced fatigue and impairments. In this review, based on the documented evidence regarding the beneficial effects of melatonin, activity-based therapy and the combination of both on functional recovery, as well as reduction of secondary damage caused by oxidative stress after SCI, we suggest the melatonin combined with exercise would be a novel neurorehabilitative strategy for the faster recovery after SCI.
Collapse
Affiliation(s)
- Yonggeun Hong
- Department of Physical Therapy, Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, 607 O-bang Dong, Gimhae 621-749, Korea.
| | | | | | | | | | | | | |
Collapse
|