1
|
Sadiq Z, Varghese E, Büsselberg D. Cisplatin's dual-effect on the circadian clock triggers proliferation and apoptosis. Neurobiol Sleep Circadian Rhythms 2020; 9:100054. [PMID: 33364523 PMCID: PMC7752721 DOI: 10.1016/j.nbscr.2020.100054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/16/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock, which generates the internal daily rhythm largely mediated through release of melatonin, can be disrupted in various ways. Multiple factors result in a disruption of the circadian cycle in the clinical context, of interest are anti-cancer drugs such as cisplatin. Cisplatin modulates the circadian clock through two mechanisms: 1) the circadian clock control of DNA excision repair and 2) the effect of circadian clock disruption on apoptosis. Cisplatin can stimulate multiple classified molecules, including DNA repair factors, DNA damage recognition factors and transcription factors in drug resistance and cisplatin-induced signal transduction. These factors interact with each other and can be transformed by DNA damage. Hence, these molecular interactions are intimately involved in cell proliferation and damage-induced apoptosis. Cisplatin has a dual-effect on circadian genes: upregulation of CLOCK expression causes an increase in proliferation but upregulation of BMAL1 expression causes an increase in apoptosis. Therefore, the interference of circadian genes by cisplatin can have multiple, opposing effects on apoptosis and cell proliferation, which may have unintended pro-cancer effects. Melatonin and intracellular Ca2+ also have a dual-effect on cell proliferation and apoptosis and can disrupt circadian rhythms. Cisplatin has a dual-effect on components of the circadian clock, increasing or decreasing cell proliferation and apoptosis. DNA excision repair and apoptosis are controlled by circadian rhythms. When cisplatin is combined with other agents, the effects are enhanced. These findings provide clinicians with the prospect to create effective chrono-cisplatin regimens for patients.
Collapse
Affiliation(s)
- Zuhair Sadiq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, P.O. Box, 24144, Qatar
| |
Collapse
|
2
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
3
|
Estaras M, Peña FJ, Tapia JA, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Blanco G, Lopez D, Salido GM, Gonzalez A. Melatonin modulates proliferation of pancreatic stellate cells through caspase-3 activation and changes in cyclin A and D expression. J Physiol Biochem 2020; 76:345-355. [PMID: 32361979 DOI: 10.1007/s13105-020-00740-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
In this study, the effects of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and proliferation, caspase-3 activation, and the expression of cyclin A and cyclin D were analyzed. Our results show that melatonin decreased PSC viability in a time- and concentration-dependent manner. This effect was not inhibited by treatment of cells with MT1, MT2, calmodulin, or ROR-alpha inhibitors prior to melatonin addition. Activation of caspase-3 in response to melatonin was detected. The expression of cyclin A and cyclin D was decreased in cells treated with melatonin. Finally, changes in BrdU incorporation into the newly synthesized DNA of proliferating cells were also observed in the presence of melatonin. We conclude that melatonin, at pharmacological concentrations, modulates proliferation of PSC through activation of apoptosis and involving crucial regulators of the cell cycle. These actions might not require specific melatonin receptors. Our observations suggest that melatonin, at high doses, could potentially exert anti-fibrotic effects and, thus, could be taken into consideration as supportive treatment in the therapy of pancreatic diseases.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain.
| |
Collapse
|
4
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
5
|
Estaras M, Ameur FZ, Roncero V, Fernandez-Bermejo M, Blanco G, Lopez D, Mateos JM, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces Ca 2+ mobilization, reactive oxygen species generation and impairs trypsin secretion in mouse pancreatic acinar cells. Biochim Biophys Acta Gen Subj 2019; 1863:129407. [PMID: 31381958 DOI: 10.1016/j.bbagen.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 μM-50 μM) on isolated mouse pancreatic acinar cells. METHODS Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 μM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 μM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 μM). Incubation of pancreatic acinar cells with luzindole (10 μM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1, Ahmed BenBella, Algeria
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
6
|
Estaras M, Moreno N, Santofimia-Castaño P, Martinez-Morcillo S, Roncero V, Blanco G, Lopez D, Fernandez-Bermejo M, Mateos JM, Iovanna JL, Salido GM, Gonzalez A. Melatonin induces reactive oxygen species generation and changes in glutathione levels and reduces viability in human pancreatic stellate cells. J Physiol Biochem 2019; 75:185-197. [PMID: 30868511 DOI: 10.1007/s13105-019-00671-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type-specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2-loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red-derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Noelia Moreno
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gines M Salido
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain.
| |
Collapse
|
7
|
Martínez-Morcillo S, Pérez-López M, Soler-Rodríguez F, González A. The organophosphorus pesticide dimethoate decreases cell viability and induces changes in different biochemical parameters of rat pancreatic stellate cells. Toxicol In Vitro 2019; 54:89-97. [PMID: 30243730 DOI: 10.1016/j.tiv.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
In the present study we employed cultured pancreatic stellate cells to study the effect of the organophosphorus insecticide dimethoate on pancreatic cell physiology. Esterase activity, cell viability, reactive oxygen species generation and Ca2+ mobilization were examined. Our results show that dimethoate (0.1, 1 and 10 μM) induced a concentration-dependent inhibition of cholinesterase enzymatic activity at all concentrations tested. A drop in carboxylesterase activity was noted in the presence of 10 μM dimethoate. In the presence of the pesticide a decrease in cell viability was detected. The clearer effect could be observed when the cells had been incubated during 96 h in the presence of dimethoate. The pesticide induced a slight but statistically significant increase in the production of reactive oxygen species in the mitochondria. Incubation of cells with dimethoate, in the presence of Ca2+ in the extracellular medium, led to a slow and progressive increase in [Ca2+]c towards an elevated value over the prestimulation level. A similar behavior was observed in the absence of extracellular Ca2+, indicating that dimethoate releases Ca2+ from the intracellular stores. Our results suggest that dimethoate might alter intracellular pathways that are critical for pancreatic physiology, creating a situation potentially leading to dysfunction in the exocrine pancreas.
Collapse
Affiliation(s)
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain.
| | | | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
8
|
Ameur FZ, Mehedi N, Kheroua O, Saïdi D, Salido GM, Gonzalez A. Sulfanilic acid increases intracellular free-calcium concentration, induces reactive oxygen species production and impairs trypsin secretion in pancreatic AR42J cells. Food Chem Toxicol 2018; 120:71-80. [PMID: 29986830 DOI: 10.1016/j.fct.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/09/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
We studied the effects of the tartrazine-metabolite sulfanilic acid on the physiology of pancreatic AR42J cells. Sulfanilic acid (1 μM-1 mM) induced a slow and progressive increase in intracellular free-calcium concentration that reached a plateau. The effect of sulfanilic acid was not concentration-dependent. Stimulation of cells with thapsigargin (1 μM) after treatment with sulfanilic acid (1 mM) induced a smaller Ca2+ response compared with that obtained with thapsigargin alone. Sulfanilic acid induced a concentration-dependent production of reactive oxygen species; however, this effect was not Ca2+-dependent. Depolarization of mitochondrial membrane potential was observed at the concentration of 1 mM sulfanilic acid. In the presence of the compound a decrease in the GSH/GSSG ratio was observed. A decrease in the expression of superoxide dismutase 2 was noted. Finally, stimulation of cells with CCK-8 led to a concentration-dependent increase of trypsin secretion that was impaired by pretreatment of cells with sulfanilic acid. Preincubation of cells with the antioxidant melatonin (100 μM) reduced the effect of sulfanilic acid on trypsin secretion. We conclude that sulfanilic acid might induce oxidative stress, which could alter Ca2+ signaling and enzyme secretion in pancreatic AR42J cells. This creates a situation potentially leading to damage of the exocrine pancreas.
Collapse
Affiliation(s)
- Fatma Zohra Ameur
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain; Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Nabila Mehedi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Omar Kheroua
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Djamel Saïdi
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire - Université d'Oran1, Ahmed BenBella, Algeria
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| |
Collapse
|
9
|
Luo S, Li P, Li S, Du Z, Hu X, Fu Y, Zhang Z. N,N-Dimethyl Tertiary Amino Group Mediated Dual Pancreas- and Lung-Targeting Therapy against Acute Pancreatitis. Mol Pharm 2017; 14:1771-1781. [PMID: 28247763 DOI: 10.1021/acs.molpharmaceut.7b00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute pancreatitis (AP) is a sudden inflammation of the pancreas with high mortality rate worldwide. As a severe complication to AP, acute lung injury has been the major cause of death among patients with AP. Poor penetration across the blood pancreas barrier (BPB) and insufficient drug accumulation at the target site often result in poor therapeutic outcome. Our previous work successfully demonstrated a dual-specific targeting strategy to pancreas and lung using a phenolic propanediamine moiety. Inspired by this, a simplified ligand structure, N,N-dimethyl tertiary amino group, was covalently conjugated to celastrol (CLT) to afford tertiary amino conjugates via either an ester (CP) or an amide linkage (CTA). With sufficient plasma stability, CTA was subjected to the following studies. Compared to CLT, CTA exhibited excellent cellular uptake efficiency in both rat pancreatic acinar cell line (AR42J) and human pulmonary alveolar epithelial cell line (A549). Organic cation transporters were proven to be responsible for this active transport process. Given systemically, CTA specifically distributed to pancreases and lungs in rats thus resulting in a 2.59-fold and 3.31-fold increase in tissue-specific accumulation as compared to CLT. After CTA treatment, tissue lesions were greatly alleviated and the levels of proinflammatory cytokines were downregulated in rats with sodium taurocholate induced AP. Furthermore, CTA demonstrated marginal adverse effect against major organs with reduced cardiac toxicity compared to CLT. Together, tertiary amine mediated dual pancreas- and lung-targeting therapy represents an efficient and safe strategy for AP management.
Collapse
Affiliation(s)
- Shi Luo
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Peiwen Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Sha Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhengwu Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Xun Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
10
|
Hu W, Ma Z, Di S, Jiang S, Li Y, Fan C, Yang Y, Wang D. Snapshot: implications for melatonin in endoplasmic reticulum homeostasis. Br J Pharmacol 2016; 173:3431-3442. [PMID: 27759160 PMCID: PMC5120159 DOI: 10.1111/bph.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important intracellular membranous organelle. Previous studies have demonstrated that the ER is responsible for protein folding and trafficking, lipid synthesis and the maintenance of calcium homeostasis. Interestingly, the morphology and structure of the ER were recently found to be important. Melatonin is a hormone that anticipates the daily onset of darkness in mammals, and it is well known that melatonin acts as an antioxidant by scavenging free radicals and increasing the activity of antioxidant enzymes in the body. Notably, the existing evidence demonstrates that melatonin is involved in ER homeostasis, particularly in the morphology of the ER, indicating a potential protective role of melatonin. This review discusses the existing knowledge regarding the implications for the involvement of melatonin in ER homeostasis.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shuai Jiang
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Yue Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chongxi Fan
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
11
|
Santofimia-Castaño P, Salido GM, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca(2+) concentration determinations. Cytotechnology 2016; 68:1369-1380. [PMID: 26091617 PMCID: PMC4960185 DOI: 10.1007/s10616-015-9898-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is an antioxidant widely employed in cell physiology studies. It has been reported that it interferes with fura-2-derived fluorescence, making the employment of this dye nonviable. In this work, the interference of resveratrol with fura-2 determinations of intracellular free-Ca(2+) concentration ([Ca(2+)]c) was examined. Solutions containing different concentrations of resveratrol, with or without fura-2, in the presence or in the absence of Ca(2+), were analyzed by spectrofluorimetry. AR42J tumor cells were employed to study the influence of resveratrol on fura-2 fluorescence in living cells, by single cell fluorimetry. Resveratrol impaired the detection of fura-2-fluorescence emission (510 nm) at the 340, 360 and 380 nm excitation wavelengths. Resveratrol emitted fluorescence at 510 nm when lighted at all three excitation wavelengths. In addition, resveratrol emitted fluorescence at 380 nm when excited at 340 nm. Our observations suggest that the employment of the ratiometric properties of fura-2 to follow changes in [Ca(2+)]c in the presence of resveratrol is not viable. However, we think that the 380 nm excitation light could be employed. Results could be expressed as F0/F380, where F0 is the resting fluorescence and F380 is the value of fluoresce at a certain time point. We could follow changes in [Ca(2+)]c evoked by CCK-8, and we also detected Ca(2+) mobilization by 100 µM resveratrol in AR42J cells. This investigation presents evidence demonstrating that resveratrol interferes with fura-2 fluorescence spectra. Nevertheless, a chance still exists if the 380 nm excitation wavelength is employed in the middle or low micromolar concentrations of resveratrol.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, 10003, Cáceres, Spain.
| |
Collapse
|
12
|
Santofimia-Castaño P, Clea Ruy D, Garcia-Sanchez L, Jimenez-Blasco D, Fernandez-Bermejo M, Bolaños JP, Salido GM, Gonzalez A. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med 2015; 87:226-236. [PMID: 26163001 DOI: 10.1016/j.freeradbiomed.2015.06.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/24/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022]
Abstract
The goal of this study was to evaluate the potential activation of the nuclear factor erythroid 2-related factor and the antioxidant-responsive element (Nrf2-ARE) signaling pathway in response to melatonin in isolated mouse pancreatic acinar cells. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The activations of PKC and JNK were measured by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Immunocytochemistry was employed to determine nuclear location of phosphorylated Nrf2, and the cellular redox state was monitored following MitoSOX Red-derived fluorescence. Our results show that stimulation of fura-2-loaded cells with melatonin (1 µM to 1 mM), in the presence of Ca(2+) in the extracellular medium, induced a slow and progressive increase of [Ca(2+)](c) toward a stable level. Melatonin did not inhibit the typical Ca(2+) response induced by CCK-8 (1 nM). When the cells were challenged with indoleamine in the absence of Ca(2+) in the extracellular solution (medium containing 0.5 mM EGTA) or in the presence of 1 mM LaCl(3), to inhibit Ca(2+) entry, we could not detect any change in [Ca(2+)](c). Nevertheless, CCK-8 (1 nM) was able to induce the typical mobilization of Ca(2+). When the cells were incubated with the PKC activator PMA (1 µM) in the presence of Ca(2+) in the extracellular medium, we observed a response similar to that noted when the cells were challenged with melatonin 100 µM. However, in the presence of Ro31-8220 (3 µM), a PKC inhibitor, stimulation of cells with melatonin failed to evoke changes in [Ca(2+)]c. Immunoblots, using an antibody specific for phospho-PKC, revealed that melatonin induces PKCα activation, either in the presence or in the absence of external Ca(2+). Melatonin induced the phosphorylation and nuclear translocation of the transcription factor Nrf2, and evoked a concentration-dependent increase in the expression of the antioxidant enzymes NAD(P)H-quinone oxidoreductase 1, catalytic subunit of glutamate-cysteine ligase, and heme oxygenase-1. Incubation of MitoSOX Red-loaded pancreatic acinar cells in the presence of 1 nM CCK-8 induced a statistically significant increase in dye-derived fluorescence, reflecting an increase in oxidation, that was abolished by pretreatment of cells with melatonin (100 µM) or PMA (1 µM). On the contrary, pretreatment with Ro31-8220 (3 µM) blocked the effect of melatonin on CCK-8-induced increase in oxidation. Finally, phosphorylation of JNK in the presence of CCK-8 or melatonin was also observed. We conclude that melatonin, via modulation of PKC and Ca(2+) signaling, could potentially stimulate the Nrf2-mediated antioxidant response in mouse pancreatic acinar cells.
Collapse
Affiliation(s)
| | - Deborah Clea Ruy
- Facultade de Agronomia & Medicina Veterinaria, Universidade de Brasilia, 70900-100, Brasilia DF, Brazil
| | - Lourdes Garcia-Sanchez
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Salamanca, Spain
| | - Miguel Fernandez-Bermejo
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain; Department of Gastroenterology, San Pedro de Alcantara Hospital, E-10003 Caceres, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Salamanca, Spain
| | - Gines M Salido
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group (FICEL), Department of Physiology, University of Extremadura, Caceres, Spain.
| |
Collapse
|
13
|
Li J, Zhang J, Fu Y, Sun X, Gong T, Jiang J, Zhang Z. Dual pancreas- and lung-targeting therapy for local and systemic complications of acute pancreatitis mediated by a phenolic propanediamine moiety. J Control Release 2015; 212:19-29. [PMID: 26071629 DOI: 10.1016/j.jconrel.2015.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022]
Abstract
To inhibit both the local and systemic complications with acute pancreatitis, an effective therapy requires a drug delivery system that can efficiently overcome the blood-pancreas barrier while achieving lung-specific accumulation. Here, we report the first dual pancreas- and lung-targeting therapeutic strategy mediated by a phenolic propanediamine moiety for the treatment of acute pancreatitis. Using the proposed dual-targeting ligand, an anti-inflammatory compound Rhein has been tailored to preferentially accumulate in the pancreas and lungs with rapid distribution kinetics, excellent tissue-penetrating properties and minimum toxicity. Accordingly, the drug-ligand conjugate remarkably downregulated the proinflammatory cytokines in the target organs thus effectively inhibiting local pancreatic and systemic inflammation in rats. The dual-specific targeting therapeutic strategy may help pave the way for targeted drug delivery to treat complicated inflammatory diseases.
Collapse
Affiliation(s)
- Jianbo Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Jinjie Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Jinghui Jiang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No. 17, Section 3, Southern Renmin Road, Chengdu 610041, People's Republic of China.
| |
Collapse
|
14
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [PMID: 25764371 DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Melatonin, the product of the pineal gland, possesses antioxidant, anti-inflammatory, and antitumor properties in different tissues, in addition to its role as regulator of biological rhythms. In this study, the effects of pharmacological concentrations of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSCs) have been examined. Cell viability was studied using AlamarBlue® test. Cell-type specific markers and total amylase content were analyzed by immunocytochemistry and colorimetric methods, respectively. Changes in intracellular free Ca(2+) concentration were followed by fluorimetric analysis of fura-2-loaded cells. The cellular red-ox state was monitored following CM-H2DCFDA-derived fluorescence. Determination of the activation of p44/42 mitogen-activated protein kinase (MAPK), SAPK/JNK and p38 was measured by Western blot analysis. Our results show that PSCs viability decreased in the presence of 100 μM or 1 mM melatonin. However, in the presence of 1 or 10 μM melatonin, no changes in cell viability were observed. Melatonin MT1 and MT2 receptors could not be detected. Melatonin induced Ca(2+) mobilization from intracellular pools. In the presence of melatonin, activation of crucial components of MAPKs pathway was noticed. Finally, the indole did not change the oxidative state of PSCs, but exerted a protective effect against H2O2-induced oxidation. We conclude that melatonin, at pharmacological concentrations, might regulate cellular proliferation of PSCs independently of specific plasma membrane receptors.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, E-10003, Caceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Santofimia-Castaño P, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A. Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol Cell Biochem 2014; 397:75-86. [PMID: 25084987 DOI: 10.1007/s11010-014-2174-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
Intracellular Ca(2+) overload has been considered a common pathological precursor of pancreatic injury. In this study, the effects of melatonin on Ca(2+) mobilization induced by cholecystokinin octapeptide (CCK-8) in freshly isolated mouse pancreatic acinar cells have been examined. Changes in intracellular free Ca(2+) concentration were followed by single cell fluorimetry. For this purpose, cells were loaded with the Ca(2+)-sensitive fluorescent dye fura-2-acetoxymethyl ester. In order to evaluate the contribution of Ca(2+) transport at the plasma membrane, at the endoplasmic reticulum (ER) or at the mitochondria, cells were incubated with CCK-8 alone or in combination with LaCl3, thapsigargin (Tps), or FCCP to, respectively, uncouple Ca(2+) transport at these localizations. The experiments were performed in the absence or in the presence of melatonin in combination with the stimuli mentioned. Our results show that the total Ca(2+) mobilization evoked by CCK-8 was attenuated by a 30% in the presence of 100 µM melatonin compared with the responses induced by CCK-8 alone. Upon inhibition of Ca(2+) transport into the ER by Tps, Ca(2+) mobilization was also reduced in the presence of melatonin. In the presence of LaCl3 plus melatonin, the total Ca(2+) mobilization induced by CCK-8 was significantly decreased, compared with the response obtained without melatonin but in the presence of LaCl3. No major differences were found when the cells were incubated with CCK-8 or Tps alone or in combination with LaCl3 plus melatonin and FCCP, compared with the responses obtained in the absence of FCCP. The initial Ca(2+) release from intracellular stores evoked by CCK-8 or Tps was not significantly reduced in the presence of melatonin. The effect of melatonin could be explained on the basis of a stimulated Ca(2+) transport out of the cell through the plasma membrane and by a stimulation of Ca(2+) reuptake into the ER. Accumulation of Ca(2+) into mitochondria might not be a major mechanism stimulated by melatonin. We conclude that melatonin alleviates intracellular Ca(2+) accumulation, a situation potentially leading to cell damage in the exocrine pancreas.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Avenida Universidad s/n, 10003, Caceres, Spain
| | | | | | | | | |
Collapse
|
16
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Fernandez-Bermejo M, Salido GM, Gonzalez A. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells. Toxicol Lett 2014; 229:465-473. [PMID: 25068500 DOI: 10.1016/j.toxlet.2014.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
Abstract
Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Lourdes Garcia-Sanchez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Deborah Clea Ruy
- Facultade de Agronomia & Medicina Veterinaria, Universidade de Brasilia, 70900-100, Brasilia DF, Brazil
| | | | - Gines M Salido
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain
| | - Antonio Gonzalez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, Avenida Universidad s/n, Caceres E-10003, Spain.
| |
Collapse
|
17
|
Santofimia-Castaño P, Ruy DC, Salido GM, González A. Melatonin modulates Ca2+ mobilization and amylase release in response to cholecystokinin octapeptide in mouse pancreatic acinar cells. J Physiol Biochem 2013; 69:897-908. [PMID: 23904230 DOI: 10.1007/s13105-013-0267-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023]
Abstract
In the present work, we have evaluated the effect of an acute addition of melatonin on cholecystokinin octapeptide (CCK-8)-evoked Ca(2+) signals and amylase secretion in mouse pancreatic acinar cells. For this purpose, freshly isolated mouse pancreatic acinar cells were loaded with fura-2 to study intracellular free Ca(2+) concentration ([Ca(2+)](c)). Amylase release and cell viability were studied employing colorimetric methods. Our results show that CCK-8 evoked a biphasic effect on amylase secretion, finding a maximum at a concentration of 0.1 nM and a reduction of secretion at higher concentrations. Pre-incubation of cells with melatonin (1 μM-1 mM) significantly attenuated enzyme secretion in response to high concentrations of CCK-8. Stimulation of cells with 1 nM CCK-8 led to a transient increase in [Ca(2+)](c), followed by a decrease towards a constant level. In the presence of 1 mM melatonin, stimulation of cells with CCK-8 resulted in a smaller [Ca(2+)](c) peak response, a faster rate of decay of [Ca(2+)](c) and lower values for the steady state of [Ca(2+)](c), compared with the effect of CCK-8 alone. Melatonin also reduced the oscillatory pattern of Ca(2+) mobilization evoked by a physiological concentration of CCK-8 (20 pM), and completely inhibited Ca(2+) mobilization induced by 10 pM CCK-8. On the other hand, Ca(2+) entry from the extracellular space was not affected in the presence of melatonin. Finally, melatonin alone did not change cell viability. We conclude that melatonin, at concentrations higher than those found in blood, might regulate exocrine pancreatic function via modulation of Ca(2+) signals.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Avenida Universidad s/n, 10003, Caceres, Spain
| | | | | | | |
Collapse
|
18
|
Garcia-Sanchez L, Santofimia-Castaño P, Miro-Moran A, Tapia JA, Salido GM, Gonzalez A. Resveratrol mobilizes Ca2+ from intracellular stores and induces c-Jun N-terminal kinase activation in tumoral AR42J cells. Mol Cell Biochem 2012; 362:15-23. [PMID: 22012614 DOI: 10.1007/s11010-011-1123-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.
Collapse
|
19
|
Kumari S, Dash D. Melatonin elevates intracellular free calcium in human platelets by inositol 1,4,5-trisphosphate independent mechanism. FEBS Lett 2011; 585:2345-51. [DOI: 10.1016/j.febslet.2011.05.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
20
|
Gonzalez A, del Castillo-Vaquero A, Miro-Moran A, Tapia JA, Salido GM. Melatonin reduces pancreatic tumor cell viability by altering mitochondrial physiology. J Pineal Res 2011; 50:250-260. [PMID: 21118301 DOI: 10.1111/j.1600-079x.2010.00834.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin reduces proliferation in many different cancer cell lines. Thus, melatonin is considered a promising antitumor agent, promoting apoptosis in tumor cells while preserving viability of normal cells. Herein, we examined the effects of melatonin on the pancreatic AR42J tumor cell line. We have analyzed cytosolic-free Ca(2+) concentration ([Ca(2+) ](c) ), mitochondrial-free Ca(2+) concentration ([Ca(2+) ](m) ), mitochondrial membrane potential (Ψm), mitochondrial flavin adenine dinucleotide (FAD) oxidative state, cellular viability and caspase-3 activity. Our results show that melatonin induced transient changes in [Ca(2+) ](c) and [Ca(2+) ](m) . Melatonin also induced depolarization of Ψm and led to a reduction in the level of oxidized FAD. In addition, melatonin reduced AR42J cell viability. Finally, we found a Ca(2+) -dependent caspase-3 activation in response to melatonin. Collectively, these data support the likelihood that melatonin reduces viability of tumor AR42J cells via its action on mitochondrial activity and caspase-3 activation.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, Caceres, Spain.
| | | | | | | | | |
Collapse
|