1
|
Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Campamà Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. J Cell Biol 2023; 222:e202302095. [PMID: 37102999 PMCID: PMC10140546 DOI: 10.1083/jcb.202302095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.
Collapse
Affiliation(s)
- Jessica L. Moore
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dhananjay Bhaskar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shuangshuang Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachael Norris
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Andy Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bastian Rieck
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
- Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Szöllősi AG, Oláh A, Lisztes E, Griger Z, Tóth BI. Pruritus: A Sensory Symptom Generated in Cutaneous Immuno-Neuronal Crosstalk. Front Pharmacol 2022; 13:745658. [PMID: 35321329 PMCID: PMC8937025 DOI: 10.3389/fphar.2022.745658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pruritus or itch generated in the skin is one of the most widespread symptoms associated with various dermatological and systemic (immunological) conditions. Although many details about the molecular mechanisms of the development of both acute and chronic itch were uncovered in the last 2 decades, our understanding is still incomplete and the clinical management of pruritic conditions is one of the biggest challenges in daily dermatological practice. Recent research revealed molecular interactions between pruriceptive sensory neurons and surrounding cutaneous cell types including keratinocytes, as well as resident and transient cells of innate and adaptive immunity. Especially in inflammatory conditions, these cutaneous cells can produce various mediators, which can contribute to the excitation of pruriceptive sensory fibers resulting in itch sensation. There also exists significant communication in the opposite direction: sensory neurons can release mediators that maintain an inflamed, pruritic tissue-environment. In this review, we summarize the current knowledge about the sensory transduction of pruritus detailing the local intercellular interactions that generate itch. We especially emphasize the role of various pruritic mediators in the bidirectional crosstalk between cutaneous non-neuronal cells and sensory fibers. We also list various dermatoses and immunological conditions associated with itch, and discuss the potential immune-neuronal interactions promoting the development of pruritus in the particular diseases. These data may unveil putative new targets for antipruritic pharmacological interventions.
Collapse
Affiliation(s)
- Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Lisztes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Griger
- Division of Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Balázs István Tóth,
| |
Collapse
|
3
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
4
|
O’Shaughnessy EM, Duffy W, Garcia-Vega L, Hussey K, Burden AD, Zamiri M, Martin PE. Dysregulation of Connexin Expression Plays a Pivotal Role in Psoriasis. Int J Mol Sci 2021; 22:ijms22116060. [PMID: 34199748 PMCID: PMC8200029 DOI: 10.3390/ijms22116060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Psoriasis, a chronic inflammatory disease affecting 2–3% of the population, is characterised by epidermal hyperplasia, a sustained pro-inflammatory immune response and is primarily a T-cell driven disease. Previous work determined that Connexin26 is upregulated in psoriatic tissue. This study extends these findings. Methods: Biopsies spanning psoriatic plaque (PP) and non-involved tissue (PN) were compared to normal controls (NN). RNA was isolated and subject to real-time PCR to determine gene expression profiles, including GJB2/CX26, GJB6/CX30 and GJA1/CX43. Protein expression was assessed by immunohistochemistry. Keratinocytes and fibroblasts were isolated and used in 3D organotypic models. The pro-inflammatory status of fibroblasts and 3D cultures was assessed via ELISA and RnD cytokine arrays in the presence or absence of the connexin channel blocker Gap27. Results: Connexin26 expression is dramatically enhanced at both transcriptional and translational level in PP and PN tissue compared to NN (>100x). In contrast, CX43 gene expression is not affected, but the protein is post-translationally modified and accumulates in psoriatic tissue. Fibroblasts isolated from psoriatic patients had a higher inflammatory index than normal fibroblasts and drove normal keratinocytes to adopt a “psoriatic phenotype” in a 3D-organotypic model. Exposure of normal fibroblasts to the pro-inflammatory mediator peptidoglycan, isolated from Staphylococcus aureus enhanced cytokine release, an event protected by Gap27. Conclusion: dysregulation of the connexin26:43 expression profile in psoriatic tissue contributes to an imbalance of cellular events. Inhibition of connexin signalling reduces pro-inflammatory events and may hold therapeutic benefit.
Collapse
Affiliation(s)
- Erin M. O’Shaughnessy
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
| | - William Duffy
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK; (W.D.); (M.Z.)
| | - Laura Garcia-Vega
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
| | - Keith Hussey
- Department of Vascular Surgery, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - A. David Burden
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Mozheh Zamiri
- Department of Dermatology, University Hospital Crosshouse, Kilmarnock KA2 0BE, UK; (W.D.); (M.Z.)
- Department of Dermatology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Patricia E. Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (E.M.O.); (L.G.-V.)
- Correspondence: ; Tel.: +44-141-331-3726
| |
Collapse
|
5
|
Kuze M, Horisaka M, Suematsu NJ, Amemiya T, Steinbock O, Nakata S. Switching between Two Oscillatory States Depending on the Electrical Potential. J Phys Chem B 2021; 125:3638-3643. [PMID: 33797905 DOI: 10.1021/acs.jpcb.0c11019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various spatiotemporal patterns were created on the surface or in the body of cation-exchange resin beads which were loaded with the catalyst of the Belousov-Zhabotinsky (BZ) reaction. Either global oscillations (GO) or traveling waves (TW) and the switching between them were observed in the previous papers, but it was not clear how chemicals contribute to the reaction inside/around the BZ bead. In this paper, we scanned the electrical potential, E, from +1 to -1 V (negative scan) and then turned from -1 to +1 V (positive scan) to control the switching between GO and TW. We found that the electrical switching potential from TW to GO, ETG, and from GO to TW, EGT, depended on the scanning direction of E and the diameter of the bead, d. The present study suggests that the electrode-induced increase of the inhibitor, Br-, and the activator, HBrO2, around the BZ bead plays an important role in determining ETG and EGT.
Collapse
Affiliation(s)
- Masakazu Kuze
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Mari Horisaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | | | - Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
6
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
7
|
Chanson M, Watanabe M, O'Shaughnessy EM, Zoso A, Martin PE. Connexin Communication Compartments and Wound Repair in Epithelial Tissue. Int J Mol Sci 2018; 19:ijms19051354. [PMID: 29751558 PMCID: PMC5983803 DOI: 10.3390/ijms19051354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.
Collapse
Affiliation(s)
- Marc Chanson
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | - Erin M O'Shaughnessy
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Alice Zoso
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
8
|
Klicks J, von Molitor E, Ertongur-Fauth T, Rudolf R, Hafner M. In vitro skin three-dimensional models and their applications. ACTA ACUST UNITED AC 2017. [DOI: 10.3233/jcb-179004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Julia Klicks
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
| | - Elena von Molitor
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
| | | | - Rüdiger Rudolf
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
- Institute of Medical Technology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Mannheim University of Applied Sciences, Institute of Molecular and Cell Biology, Mannheim, Germany
- Institute of Medical Technology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Cell culture: complications due to mechanical release of ATP and activation of purinoceptors. Cell Tissue Res 2017; 370:1-11. [PMID: 28434079 PMCID: PMC5610203 DOI: 10.1007/s00441-017-2618-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
There is abundant evidence that ATP (adenosine 5′-triphosphate) is released from a variety of cultured cells in response to mechanical stimulation. The release mechanism involved appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels. Purinergic receptors on cultured cells mediate both short-term purinergic signalling of secretion and long-term (trophic) signalling such as proliferation, migration, differentiation and apoptosis. We aim in this review to bring to the attention of non-purinergic researchers using tissue culture that the release of ATP in response to mechanical stress evoked by the unavoidable movement of the cells acting on functional purinergic receptors on the culture cells is likely to complicate the interpretation of their data.
Collapse
|
10
|
Kumamoto J, Goto M, Nagayama M, Denda M. Real-time imaging of human epidermal calcium dynamics in response to point laser stimulation. J Dermatol Sci 2017; 86:13-20. [PMID: 28119009 DOI: 10.1016/j.jdermsci.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/24/2016] [Accepted: 01/05/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Changes of epidermal calcium ion concentration are involved in regulation of barrier homeostasis and keratinocyte differentiation. Moreover, intracellular calcium dynamics might play a role in skin sensation. But, although calcium dynamics of cultured keratinocytes in response to mechanical stresses has been well studied, calcium propagation in stimulated human epidermis is still poorly understood. OBJECTIVE The aim of this study was to demonstrate a novel method for real-time measurement of calcium dynamics in response to point stimulation of human epidermis at the single-cell level. METHODS We examined calcium propagation in cross-sectional samples of living human epidermis ex vivo, as well as in cultured human keratinocytes, by means of two-photon microscopy after stimulating cells in stratum granulosum with the emission laser of a two-photon microscope. RESULTS Cells in different epidermal layers showed different responses, and those in stratum basale showed the greatest elevation of intracellular calcium. Calcium propagation in epidermis was inhibited in the presence of apyrase (which degrades adenosine triphosphate; ATP) or gap-junction blockers. In cultured keratinocytes, on the other hand, calcium propagated in a simple concentric wave-like manner from the stimulation site, and propagation was strongly suppressed by apyrase. CONCLUSION Our results suggested that ATP and gap junctions play important roles in calcium propagation induced by point laser stimulation of the uppermost layer of epidermis. Our method should be broadly useful to study calcium dynamics, epidermal physiological mechanisms, and mechanisms of skin sensation at the single-cell level.
Collapse
Affiliation(s)
- Junichi Kumamoto
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Makiko Goto
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Shiseido Global Innovation Center, Yokohama, Japan.
| | - Masaharu Nagayama
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Kawaguchi, Japan; Shiseido Global Innovation Center, Yokohama, Japan
| |
Collapse
|
11
|
Denda M. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:11. [PMID: 27761235 PMCID: PMC5054589 DOI: 10.1186/s13728-016-0052-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022]
Abstract
It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5–20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Shiseido Global Innovation Center, 2-2-1, Hayabuchi, Tsuzuki-ku, Yokohama, 224-8558 Japan ; Japan Science Technology Agency CREST, Kawaguchi, Japan
| |
Collapse
|
12
|
Mathematical model for calcium-assisted epidermal homeostasis. J Theor Biol 2016; 397:52-60. [PMID: 26953648 DOI: 10.1016/j.jtbi.2016.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/13/2023]
Abstract
Using a mathematical model of the epidermis, we propose a mechanism of epidermal homeostasis mediated by calcium dynamics. We show that calcium dynamics beneath the stratum corneum can reduce spatio-temporal fluctuations of the layered structure of the epidermis. We also demonstrate that our model can reproduce experimental results that the recovery from a barrier disruption is faster when the disrupted site is exposed to air. In particular, simulation results indicate that the recovery speed depends on the size of barrier disruption.
Collapse
|
13
|
Cursons J, Gao J, Hurley DG, Print CG, Dunbar PR, Jacobs MD, Crampin EJ. Regulation of ERK-MAPK signaling in human epidermis. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209520 PMCID: PMC4514964 DOI: 10.1186/s12918-015-0187-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background The skin is largely comprised of keratinocytes within the interfollicular epidermis. Over approximately two weeks these cells differentiate and traverse the thickness of the skin. The stage of differentiation is therefore reflected in the positions of cells within the tissue, providing a convenient axis along which to study the signaling events that occur in situ during keratinocyte terminal differentiation, over this extended two-week timescale. The canonical ERK-MAPK signaling cascade (Raf-1, MEK-1/2 and ERK-1/2) has been implicated in controlling diverse cellular behaviors, including proliferation and differentiation. While the molecular interactions involved in signal transduction through this cascade have been well characterized in cell culture experiments, our understanding of how this sequence of events unfolds to determine cell fate within a homeostatic tissue environment has not been fully characterized. Methods We measured the abundance of total and phosphorylated ERK-MAPK signaling proteins within interfollicular keratinocytes in transverse cross-sections of human epidermis using immunofluorescence microscopy. To investigate these data we developed a mathematical model of the signaling cascade using a normalized-Hill differential equation formalism. Results These data show coordinated variation in the abundance of phosphorylated ERK-MAPK components across the epidermis. Statistical analysis of these data shows that associations between phosphorylated ERK-MAPK components which correspond to canonical molecular interactions are dependent upon spatial position within the epidermis. The model demonstrates that the spatial profile of activation for ERK-MAPK signaling components across the epidermis may be maintained in a cell-autonomous fashion by an underlying spatial gradient in calcium signaling. Conclusions Our data demonstrate an extended phospho-protein profile of ERK-MAPK signaling cascade components across the epidermis in situ, and statistical associations in these data indicate canonical ERK-MAPK interactions underlie this spatial profile of ERK-MAPK activation. Using mathematical modelling we have demonstrated that spatially varying calcium signaling components across the epidermis may be sufficient to maintain the spatial profile of ERK-MAPK signaling cascade components in a cell-autonomous manner. These findings may have significant implications for the wide range of cancer drugs which therapeutically target ERK-MAPK signaling components. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0187-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Cursons
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,NICTA Victoria Research Lab, Melbourne, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.
| | - Jerry Gao
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.
| | - Daniel G Hurley
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,NICTA Victoria Research Lab, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,Bioinformatics Institute, University of Auckland, Auckland, New Zealand. .,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Cristin G Print
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,Bioinformatics Institute, University of Auckland, Auckland, New Zealand. .,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - P Rod Dunbar
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Marc D Jacobs
- Department of Biology, New Zealand International College, ACG New Zealand, Auckland, New Zealand.
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia. .,School of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
14
|
|
15
|
Denda M, Denda S, Tsutsumi M, Goto M, Kumamoto J, Nakatani M, Takei K, Kitahata H, Nakata S, Sawabu Y, Kobayashi Y, Nagayama M. Frontiers in epidermal barrier homeostasis--an approach to mathematical modelling of epidermal calcium dynamics. Exp Dermatol 2014; 23:79-82. [PMID: 24330223 DOI: 10.1111/exd.12302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 01/04/2023]
Abstract
Intact epidermal barrier function is crucial for survival and is associated with the presence of gradients of both calcium ion concentration and electric potential. Although many molecules, including ion channels and pumps, are known to contribute to maintenance of these gradients, the mechanisms involved in epidermal calcium ion dynamics have not been clarified. We have established that a variety of neurotransmitters and their receptors, originally found in the brain, are expressed in keratinocytes and are also associated with barrier homeostasis. Moreover, keratinocytes and neurons show some similarities of electrochemical behaviour. As mathematical modelling and computer simulation have been employed to understand electrochemical phenomena in brain science, we considered that a similar approach might be applicable to describe the dynamics of epidermal electrochemical phenomena associated with barrier homeostasis. Such methodology would also be potentially useful to address a number of difficult problems in clinical dermatology, such as ageing and itching. Although this work is at a very early stage, in this essay, we discuss the background to our approach and we present some preliminary results of simulation of barrier recovery.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Tokyo, Japan; Shiseido Research Center, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sondersorg AC, Busse D, Kyereme J, Rothermel M, Neufang G, Gisselmann G, Hatt H, Conrad H. Chemosensory information processing between keratinocytes and trigeminal neurons. J Biol Chem 2014; 289:17529-40. [PMID: 24790106 DOI: 10.1074/jbc.m113.499699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trigeminal fibers terminate within the facial mucosa and skin and transmit tactile, proprioceptive, chemical, and nociceptive sensations. Trigeminal sensations can arise from the direct stimulation of intraepithelial free nerve endings or indirectly through information transmission from adjacent cells at the peripheral innervation area. For mechanical and thermal cues, communication processes between skin cells and somatosensory neurons have already been suggested. High concentrations of most odors typically provoke trigeminal sensations in vivo but surprisingly fail to activate trigeminal neuron monocultures. This fact favors the hypothesis that epithelial cells may participate in chemodetection and subsequently transmit signals to neighboring trigeminal fibers. Keratinocytes, the major cell type of the epidermis, express various receptors that enable reactions to multiple environmental stimuli. Here, using a co-culture approach, we show for the first time that exposure to the odorant chemicals induces a chemical communication between human HaCaT keratinocytes and mouse trigeminal neurons. Moreover, a supernatant analysis of stimulated keratinocytes and subsequent blocking experiments with pyrodoxalphosphate-6-azophenyl-2',4'-disulfonate revealed that ATP serves as the mediating transmitter molecule released from skin cells after odor stimulation. We show that the ATP release resulting from Javanol® stimulation of keratinocytes was mediated by pannexins. Consequently, keratinocytes act as chemosensors linking the environment and the trigeminal system via ATP signaling.
Collapse
Affiliation(s)
- Anna Christina Sondersorg
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| | - Daniela Busse
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| | - Jessica Kyereme
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| | - Markus Rothermel
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| | - Gitta Neufang
- Dermatological Skin Care, Beiersdorf AG, D-20245 Hamburg, Germany
| | - Günter Gisselmann
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| | - Hanns Hatt
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| | - Heike Conrad
- From the Department of Cell Physiology, Ruhr-University Bochum, Universitätsstrasse 150, Gebäude ND4, D-44780 Bochum, Germany and
| |
Collapse
|
17
|
Kobayashi Y, Sanno Y, Sakai A, Sawabu Y, Tsutsumi M, Goto M, Kitahata H, Nakata S, Kumamoto J, Denda M, Nagayama M. Mathematical modeling of calcium waves induced by mechanical stimulation in keratinocytes. PLoS One 2014; 9:e92650. [PMID: 24663805 PMCID: PMC3963930 DOI: 10.1371/journal.pone.0092650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases.
Collapse
Affiliation(s)
- Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Yumi Sanno
- Graduate School of Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Akihiko Sakai
- Graduate School of Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Yusuke Sawabu
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Moe Tsutsumi
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Makiko Goto
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoshi Nakata
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junichi Kumamoto
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Mitsuhiro Denda
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Martin PE, Easton JA, Hodgins MB, Wright CS. Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 2014; 588:1304-14. [PMID: 24607543 DOI: 10.1016/j.febslet.2014.02.048] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
Gap junction proteins (connexins) are differentially expressed throughout the multiple layers of the epidermis. A variety of skin conditions arise with aberrant connexin expression or function and suggest that maintaining the epidermal gap junction network has many important roles in preserving epidermal integrity and homeostasis. Mutations in a number of connexins lead to epidermal dysplasias giving rise to a range of dermatological disorders of differing severity. 'Gain of function' mutations reveal connexin-mediated roles in calcium signalling within the epidermis. Connexins are involved in epidermal innate immunity, inflammation control and in wound repair. The therapeutic potential of targeting connexins to improve wound healing responses is now clear. This review discusses the role of connexins in epidermal integrity, and examines the emerging evidence that connexins act as epidermal sensors to a variety of mechanical, temperature, pathogen-induced and chemical stimuli. Connexins thus act as an integral component of the skin's protective barrier.
Collapse
Affiliation(s)
- Patricia E Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Jennifer A Easton
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Malcolm B Hodgins
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Catherine S Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
19
|
Ikeyama K, Nakatani M, Kumamoto J, Denda M. Distinct intracellular calcium responses of individual cultured human keratinocytes to air pressure changes. Skin Res Technol 2013; 19:346-51. [DOI: 10.1111/srt.12045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mitsuhiro Denda
- Shiseido Research Center; Yokohama Japan
- CREST; Japan Science and Technology Agency; Tokyo Japan
| |
Collapse
|
20
|
Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS One 2013; 8:e56744. [PMID: 23457608 PMCID: PMC3574084 DOI: 10.1371/journal.pone.0056744] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/14/2013] [Indexed: 01/17/2023] Open
Abstract
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.
Collapse
Affiliation(s)
- Travis P. Barr
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | - Phillip J. Albrecht
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Quanzhi Hou
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Alexander A. Mongin
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Gary R. Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank L. Rice
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| |
Collapse
|
21
|
Donnelly S, English G, de Zwart-Storm EA, Lang S, van Steensel MAM, Martin PE. Differential susceptibility of Cx26 mutations associated with epidermal dysplasias to peptidoglycan derived from Staphylococcus aureus and Staphylococcus epidermidis. Exp Dermatol 2012; 21:592-8. [PMID: 22643125 DOI: 10.1111/j.1600-0625.2012.01521.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2012] [Indexed: 12/28/2022]
Abstract
Mutations in Connexin26 (Cx26) give rise to a spectrum of dominantly inherited hyperproliferating skin disorders, the severest being keratitis-ichthyosis-deafness (KID) syndrome, an inflammatory skin disorder, with patients prone to opportunistic infections. We compared the effects of peptidoglycan (PGN) extracted from the skin commensal Staphylococcus epidermidis and the opportunistic pathogen Staphylococcus aureus on interleukin-6 and connexin expression in HaCaT cells (a keratinocyte cell line) and connexin channel activity in HaCaT and HeLa (connexin deficient) cells transfected to express KID and non-KID Cx26 mutations. In both cell types, PGN from S. aureus induced hemichannel activity in cells expressing KID mutants as monitored by ATP release assays following 15-min challenge, while that from S. epidermidis evoked a response in HeLa cells. In KID mutant expressing cells, ATP release was significantly higher than in cells transfected with wild-type Cx26. No ATP release was observed in non-KID mutant transfected cells or in the presence of carbenoxolone, a connexin channel blocker. PGN isolated from S. aureus but not S. epidermidis induced interleukin-6 and Cx26 expression in HaCaT cells following 6-h challenge. Challenge by PGN from S. aureus evoked a greater interleukin-6 response in cells expressing KID mutants than in cells expressing wtCx26 or non-KID mutants. This response returned to basal levels if acute KID hemichannel signalling was blocked prior to PGN challenge. Thus, KID mutants form channels that can be triggered by the pro-inflammatory mediator PGN from opportunistic pathogens but not skin commensals, providing further insight into the genotype-phenotype relationship of Cx26 disorders.
Collapse
Affiliation(s)
- Steven Donnelly
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, UK
| | | | | | | | | | | |
Collapse
|
22
|
Denda S, Takei K, Kumamoto J, Goto M, Tsutsumi M, Denda M. Oxytocin is expressed in epidermal keratinocytes and released upon stimulation with adenosine 5'-[γ-thio]triphosphate in vitro. Exp Dermatol 2012; 21:535-7. [PMID: 22583056 DOI: 10.1111/j.1600-0625.2012.01507.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 01/15/2023]
Abstract
Oxytocin is a neuropeptide produced primarily in the hypothalamus and is best known for its roles in parturition and lactation. It also influences behaviour, memory and mental state. Recent studies have suggested a variety of roles for oxytocin in peripheral tissues, including skin. Here we show that oxytocin is expressed in human skin. Immunohistochemical studies showed that oxytocin and its carrier protein, neurophysin I, are predominantly localized in epidermis. RT-PCR confirmed the expression of oxytocin in both skin and cultured epidermal keratinocytes. We also show that oxytocin is released from keratinocytes after application of adenosine 5'-[γ-thio]triphosphate (ATPγS, a stable analogue of ATP) in a dose-dependent manner. The ATPγS-induced oxytocin release was inhibited by removal of extracellular calcium, or by the P2X receptor antagonist 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP). These results suggest that oxytocin is produced in human epidermal keratinocytes and is released in response to calcium influx via P2X receptors.
Collapse
|
23
|
Ryanodine Receptors Are Expressed in Epidermal Keratinocytes and Associated with Keratinocyte Differentiation and Epidermal Permeability Barrier Homeostasis. J Invest Dermatol 2012; 132:69-75. [DOI: 10.1038/jid.2011.256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Azorin N, Raoux M, Rodat-Despoix L, Merrot T, Delmas P, Crest M. ATP signalling is crucial for the response of human keratinocytes to mechanical stimulation by hypo-osmotic shock. Exp Dermatol 2011; 20:401-7. [PMID: 21355886 DOI: 10.1111/j.1600-0625.2010.01219.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Touch is detected through receptors located in the skin and the activation of channels in sensory nerve fibres. Epidermal keratinocytes themselves, however, may sense mechanical stimulus and contribute to skin sensation. Here, we showed that the mechanical stimulation of human keratinocytes by hypo-osmotic shock releases adenosine triphosphate (ATP) and increases intracellular calcium. We demonstrated that the release of ATP was found to be calcium independent because emptying the intracellular calcium stores did not cause ATP release; ATP release was still observed in the absence of external calcium and it persisted on chelating cytosolic calcium. On the other hand, the released ATP activated purinergic receptors and mobilized intracellular calcium stores. The resulting depletion of stored calcium led to the activation of capacitative calcium entry. Increase in cytosolic calcium concentration was blocked by the purinergic receptor blocker suramin, phospholipase C inhibitor and apyrase, which hydrolyses ATP. Collectively, our data demonstrate that human keratinocytes are mechanically activated by hypo-osmotic shock, leading first to the release of ATP, which in turn stimulates purinergic receptors, resulting in the mobilization of intracellular calcium and capacitative calcium entry. These results emphasize the crucial role of ATP signalling in the transduction of mechanical stimuli in human keratinocytes.
Collapse
Affiliation(s)
- Nathalie Azorin
- Université de la Méditerranée, Centre National de la Recherche Scientifique (CNRS) UMR6231, Marseille, France
| | | | | | | | | | | |
Collapse
|
25
|
Tsutsumi M, Kitahata H, Nakata S, Sanno Y, Nagayama M, Denda M. Mathematical analysis of intercellular calcium propagation induced by adenosine triphosphate. Skin Res Technol 2010; 16:146-50. [PMID: 20456094 DOI: 10.1111/j.1600-0846.2009.00420.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously demonstrated that intracellular calcium propagation was induced by stimulation of epidermal keratinocytes in skin slices or in culture with adenosine triphosphate (ATP). The feature of the calcium wave propagation appeared to be different between differentiated cells and proliferating cells, and so the mechanisms involved might be different. PURPOSE Establish a new methodology to abstract cellular information from aggregative dynamics. METHODS We present a mathematical analysis of the calcium wave to evaluate the mechanism of calcium ion propagation. RESULTS A well-defined calcium wave was observed in differentiated cells in comparison with undifferentiated cells. Application of either 2APB [an inositol 1,4,5-trisphosphate (IP3) receptor blocker] or U73122 (an IP3 synthesis blocker) reduced the amplitude of the wave in differentiated cells. Mathematical analysis indicated that U73122 decreased the velocity of the wave, while 2APB altered the wave form. Thus, IP3 synthesis might be important for signal transmission and IP3 movement might be important for pattern formation. CONCLUSION The method we present here should be useful to analyze the effects of various reagents in in vitro studies.
Collapse
|
26
|
Nakata S, Kashima K, Kitahata H, Mori Y. Phase Wave between Two Oscillators in the Photosensitive Belousov−Zhabotinsky Reaction Depending on the Difference in the Illumination Time. J Phys Chem A 2010; 114:9124-9. [DOI: 10.1021/jp105204n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satoshi Nakata
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan, Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Humanities and Sciences, Ochanomizu University, 2-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kenji Kashima
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan, Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Humanities and Sciences, Ochanomizu University, 2-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroyuki Kitahata
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan, Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Humanities and Sciences, Ochanomizu University, 2-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yoshihito Mori
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan, Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Graduate School of Humanities and Sciences, Ochanomizu University, 2-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
27
|
Denda S, Denda M, Inoue K, Hibino T. Glycolic acid induces keratinocyte proliferation in a skin equivalent model via TRPV1 activation. J Dermatol Sci 2010; 57:108-13. [PMID: 20060270 DOI: 10.1016/j.jdermsci.2009.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/13/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Glycolic acid (GA) is the most commonly used alpha-hydroxy acid (AHA) for dermatologic applications, and is considered as a versatile superficial peeling agent for facial rejuvenation. Its therapeutic effect includes acceleration of epidermal turnover without apparent inflammation, and its action is pH-dependent. However, little is known about the molecular mechanism of GA-induced peeling. OBJECTIVE To investigate the effects of topical application of GA on cell proliferation using a skin equivalent model and to examine the molecular mechanisms of GA-induced peeling. METHODS GA solution was applied on the surface of a skin equivalent model, and cell proliferation was measured by means of BrdU-incorporation and immunohistochemical methods. Release of chemical mediators such as ATP into the medium was examined. The effects of antagonists of ion channels were also analyzed. RESULTS At 24h after GA application, BrdU-incorporation into basal keratinocytes was significantly increased. Induction of keratinocyte proliferation was pH-dependent, and was inhibited by antagonists of TRPV1, an acid-sensitive ion channel. Furthermore, transient ATP release was detected in the culture medium after GA stimulation, and this was also suppressed by TRPV1 antagonists. CONCLUSION These results suggest that one of the mechanisms of GA-induced epidermal proliferation is a growth response of basal keratinocytes to the local elevation of H(+)-ion concentration by infiltrated GA. This response is mediated by TRPV1 activation and ATP release. Activation of P2 receptors by the released ATP may also be involved.
Collapse
Affiliation(s)
- Sumiko Denda
- Shiseido Research Center, 2-12-1 Fukuura, Kanazawa-ku, Yokohama 236-8643, Japan
| | | | | | | |
Collapse
|
28
|
Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets. Biogerontology 2009; 11:151-66. [DOI: 10.1007/s10522-009-9237-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
29
|
Tsutsumi M, Denda S, Inoue K, Ikeyama K, Denda M. Calcium ion gradients and dynamics in cultured skin slices of rat hindpaw in response to stimulation with ATP. J Invest Dermatol 2008; 129:584-9. [PMID: 18830266 DOI: 10.1038/jid.2008.299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ionotropic receptors, originally found in the brain, were recently also identified in epidermal keratinocytes. Moreover, concentration gradients and movement of calcium are crucial in epidermal homeostasis. Thus, imaging of calcium in the living epidermis is expected to provide insight into epidermal physiology and pathology. Here we describe the imaging of calcium dynamics in the living epidermis of cultured skin slices. The basal calcium concentration was highest in the upper layer of the epidermis. The increase of intracellular calcium in response to adenosine triphosphate (ATP) varied in each layer of epidermis, and was greater at the bottom than in the uppermost layer. Further, the extent of elevation of intracellular calcium in response to ATP in cultured keratinocytes varied depending on the level of differentiation. These results suggest that the response to stimulation of keratinocytes in cultured skin slices varies depending upon the location (depth) within the epidermis.
Collapse
Affiliation(s)
- Moe Tsutsumi
- Shiseido Research Center, Shiseido Co., Ltd., Yokohama, Japan
| | | | | | | | | |
Collapse
|
30
|
Kawai E, Nakanishi J, Kumazawa N, Ozawa K, Denda M. Skin surface electric potential as an indicator of skin condition: a new, non-invasive method to evaluate epidermal condition. Exp Dermatol 2008; 17:688-92. [DOI: 10.1111/j.1600-0625.2007.00692.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|