1
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
2
|
Plattner H. Membrane Traffic and Ca 2+ -Signals in Ciliates. J Eukaryot Microbiol 2022; 69:e12895. [PMID: 35156735 DOI: 10.1111/jeu.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A Paramecium cell has as many types of membrane interactions as mammalian cells, as established with monoclonal antibodies by R. Allen and A. Fok. Since then, we have identified key-players, such as SNARE-proteins, Ca2+ -regulating proteins, including Ca2+ -channels, Ca2+ -pumps, Ca2+ -binding proteins of different affinity etc. at the molecular level, probed their function and localized them at the light and electron microscopy level. SNARE-proteins, in conjunction with a synaptotagmin-like Ca2+ -sensor protein, mediate membrane fusion. This interaction is additionally regulated by monomeric GTPases whose spectrum in Tetrahymena and Paramecium has been established by A. Turkewitz. As known from mammalian cells, GTPases are activated on membranes in conjunction with lumenal acidification by an H+ -ATPase. For these complex molecules we found in Paramecium an unsurpassed number of 17 a-subunit paralogs which connect the polymeric head and basis part, V1 and V0. (This multitude may reflect different local functional requirements.) Together with plasmalemmal Ca2+ -influx-channels, locally enriched intracellular InsP3 -type (InsP3 R, mainly in osmoregulatory system) and ryanodine receptor-like Ca2+ -release channels (ryanodine receptor-like proteins, RyR-LP), this complexity mediates Ca2+ signals for most flexible local membrane-to-membrane interactions. As we found, the latter channel types miss a substantial portion of the N-terminal part. Caffeine and 4-chloro-meta-cresol (the agent used to probe mutations of RyRs in man during surgery in malignant insomnia patients) initiate trichocyst exocytosis by activating Ca2+ -release channels type CRC-IV in the peripheral part of alveolar sacs. This is superimposed by Ca2+ -influx, i.e. a mechanism called "store-operated Ca2+ -entry" (SOCE). For the majority of key players, we have mapped paralogs throughout the Paramecium cell, with features in common or at variance in the different organelles participating in vesicle trafficking. Local values of free Ca2+ -concentration, [Ca2+ ]i , and their change, e.g. upon exocytosis stimulation, have been registered by flurochromes and chelator effects. In parallel we have registered release of Ca2+ from alveolar sacs by quenched-flow analysis combined with cryofixation and x-ray microanalysis.
Collapse
|
3
|
Abstract
Imagine that in 1678 you are Christiaan Huygens or Antonie van Leeuwenhoek seeing paramecia swim gracefully across the field of view of your new microscope. These unicellular, free-living, and swimming cells might have remained a curiosity if not for the ability of H.S. Jennings (Behavior of the lower organisms. Indiana University Press, Bloomington, 1906) and T.M. Sonneborn (Proc Natl Acad Sci USA 23:378-385, 1937) to recognize them for their behavior and genetics, both Mendelian and non-Mendelian. Following many years of painstaking work by Sonneborn and other researchers, Paramecium now serves as a modern model organism that has made specific contributions to cell and molecular biology and development. We will review the continuing usefulness and contributions of Paramecium species in this chapter.Even without a microscope, Paramecium species is visible to the naked eye because of their size (50-300 μ long). Paramecia are holotrichous ciliates, that is, unicellular organisms in the phylum Ciliophora that are covered with cilia. It was the beating of these cilia that propelled them across the slides of the first microscopes and continue to fascinate us today. Over time, Paramecium became a favorite model organism for a large variety of studies. Denis Lyn has called Paramecium the "white rat" of the Ciliophora for their manipulability and amenity to research. We will touch upon the use of Paramecium species to examine swimming behavior, ciliary structure and function, ion channel function, basal body duplication and patterning, non-Mendelian cortical inheritance, programmed DNA rearrangements, regulated secretion and exocytosis, and cell trafficking. In particular, we will focus on the use of P. tetraurelia and P. caudatum.
Collapse
|
4
|
The remembrance of the things past: Conserved signalling pathways link protozoa to mammalian nervous system. Cell Calcium 2018; 73:25-39. [DOI: 10.1016/j.ceca.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/01/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
|
5
|
Sparvoli D, Richardson E, Osakada H, Lan X, Iwamoto M, Bowman GR, Kontur C, Bourland WA, Lynn DH, Pritchard JK, Haraguchi T, Dacks JB, Turkewitz AP. Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Curr Biol 2018; 28:697-710.e13. [PMID: 29478853 DOI: 10.1016/j.cub.2018.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
In the endocytic pathway of animals, two related complexes, called CORVET (class C core vacuole/endosome transport) and HOPS (homotypic fusion and protein sorting), act as both tethers and fusion factors for early and late endosomes, respectively. Mutations in CORVET or HOPS lead to trafficking defects and contribute to human disease, including immune dysfunction. HOPS and CORVET are conserved throughout eukaryotes, but remarkably, in the ciliate Tetrahymena thermophila, the HOPS-specific subunits are absent, while CORVET-specific subunits have proliferated. VPS8 (vacuolar protein sorting), a CORVET subunit, expanded to 6 paralogs in Tetrahymena. This expansion correlated with loss of HOPS within a ciliate subgroup, including the Oligohymenophorea, which contains Tetrahymena. As uncovered via forward genetics, a single VPS8 paralog in Tetrahymena (VPS8A) is required to synthesize prominent secretory granules called mucocysts. More specifically, Δvps8a cells fail to deliver a subset of cargo proteins to developing mucocysts, instead accumulating that cargo in vesicles also bearing the mucocyst-sorting receptor Sor4p. Surprisingly, although this transport step relies on CORVET, it does not appear to involve early endosomes. Instead, Vps8a associates with the late endosomal/lysosomal marker Rab7, indicating that target specificity switching occurred in CORVET subunits during the evolution of ciliates. Mucocysts belong to a markedly diverse and understudied class of protist secretory organelles called extrusomes. Our results underscore that biogenesis of mucocysts depends on endolysosomal trafficking, revealing parallels with invasive organelles in apicomplexan parasites and suggesting that a wide array of secretory adaptations in protists, like in animals, depend on mechanisms related to lysosome biogenesis.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Xun Lan
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Grant R Bowman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Cassandra Kontur
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Denis H Lynn
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Plattner H. Evolutionary Cell Biology of Proteins from Protists to Humans and Plants. J Eukaryot Microbiol 2017; 65:255-289. [PMID: 28719054 DOI: 10.1111/jeu.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/10/2023]
Abstract
During evolution, the cell as a fine-tuned machine had to undergo permanent adjustments to match changes in its environment, while "closed for repair work" was not possible. Evolution from protists (protozoa and unicellular algae) to multicellular organisms may have occurred in basically two lineages, Unikonta and Bikonta, culminating in mammals and angiosperms (flowering plants), respectively. Unicellular models for unikont evolution are myxamoebae (Dictyostelium) and increasingly also choanoflagellates, whereas for bikonts, ciliates are preferred models. Information accumulating from combined molecular database search and experimental verification allows new insights into evolutionary diversification and maintenance of genes/proteins from protozoa on, eventually with orthologs in bacteria. However, proteins have rarely been followed up systematically for maintenance or change of function or intracellular localization, acquirement of new domains, partial deletion (e.g. of subunits), and refunctionalization, etc. These aspects are discussed in this review, envisaging "evolutionary cell biology." Protozoan heritage is found for most important cellular structures and functions up to humans and flowering plants. Examples discussed include refunctionalization of voltage-dependent Ca2+ channels in cilia and replacement by other types during evolution. Altogether components serving Ca2+ signaling are very flexible throughout evolution, calmodulin being a most conservative example, in contrast to calcineurin whose catalytic subunit is lost in plants, whereas both subunits are maintained up to mammals for complex functions (immune defense and learning). Domain structure of R-type SNAREs differs in mono- and bikonta, as do Ca2+ -dependent protein kinases. Unprecedented selective expansion of the subunit a which connects multimeric base piece and head parts (V0, V1) of H+ -ATPase/pump may well reflect the intriguing vesicle trafficking system in ciliates, specifically in Paramecium. One of the most flexible proteins is centrin when its intracellular localization and function throughout evolution is traced. There are many more examples documenting evolutionary flexibility of translation products depending on requirements and potential for implantation within the actual cellular context at different levels of evolution. From estimates of gene and protein numbers per organism, it appears that much of the basic inventory of protozoan precursors could be transmitted to highest eukaryotic levels, with some losses and also with important additional "inventions."
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, P. O. Box M625, Konstanz, 78457, Germany
| |
Collapse
|
7
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
8
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Plattner H. The contractile vacuole complex of protists--new cues to function and biogenesis. Crit Rev Microbiol 2013; 41:218-27. [PMID: 23919298 DOI: 10.3109/1040841x.2013.821650] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contractile vacuole complex (CVC) of freshwater protists sequesters the excess of water and ions (Ca(2+)) for exocytosis cycles at the pore. Sequestration is based on a chemiosmotic proton gradient produced by a V-type H(+)-ATPase. So far, many pieces of information available have not been combined to a comprehensive view on CVC biogenesis and function. One main function now appears as follows. Ca(2+)-release channels, type inositol 1,4,5-trisphosphate receptors (InsP3R), may serve for fine-tuning of local cytosolic Ca(2+) concentration and mediate numerous membrane-to-membrane interactions within the tubular spongiome meshwork. Such activity is suggested by the occurrence of organelle-specific soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) and Ras-related in brain (Rab) proteins, which may regulate functional requirements. For tubulation, F-Bin-amphiphysin-Rvs (F-BAR) proteins are available. In addition, there is indirect evidence for the occurrence of H(+)/Ca(2+) exchangers (to sequester Ca(2+)) and mechanosensitive Ca(2+)-channels (for signaling the filling sate). The periodic activity of the CVC may be regulated by the mechanosensitive Ca(2+)-channels. Such channels are known to colocalize with and to be functionally supported by stomatins, which were recently detected in the CVC. A Kif18-related kinesin motor protein might control the length of radial arms. Two additional InsP3-related channels and several SNAREs are associated with the pore. De novo organelle biogenesis occurs under epigenetic control during mitotic activity and may involve the assembly of γ-tubulin, centrin, calmodulin and a never in mitosis A-type (NIMA) kinase - components also engaged in mitotic processes.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
10
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Schönemann B, Bledowski A, Sehring IM, Plattner H. A set of SNARE proteins in the contractile vacuole complex of Paramecium regulates cellular calcium tolerance and also contributes to organelle biogenesis. Cell Calcium 2012; 53:204-16. [PMID: 23280185 DOI: 10.1016/j.ceca.2012.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/15/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023]
Abstract
The contractile vacuole complex (CVC) of freshwater protists serves the extrusion of water and ions, including Ca(2+). No vesicle trafficking based on SNAREs has been detected so far in any CVC. SNAREs (soluble NSF [N-ethylmaleimide sensitive factor] attachment protein receptors) are required for membrane-to-membrane interaction, i.e. docking and fusion also in Paramecium. We have identified three v-/R- and three t/Q-SNAREs selectively in the CVC. Posttranscriptional silencing of Syb2, Syb6 or Syx2 slows down the pumping cycle; silencing of the latter two also causes vacuole swelling. Increase in extracellular Ca(2+) after Syb2, Syb6 or Syx2 silencing causes further swelling of the contractile vacuole and deceleration of its pulsation. Silencing of Syx14 or Syx15 entails lethality in the Ca(2+) stress test. Thus, the effects of silencing strictly depend on the type of the silenced SNARE and on the concentration of Ca(2+) in the medium. This shows the importance of organelle-resident SNARE functions (which may encompass the vesicular delivery of other organelle-resident proteins) for Ca(2+) tolerance. A similar principle may be applicable also to the CVC in widely different unicellular organisms. In addition, in Paramecium, silencing particularly of Syx6 causes aberrant positioning of the CVC during de novo biogenesis before cytokinesis.
Collapse
|
12
|
Komsic-Buchmann K, Stephan LM, Becker B. The SEC6 protein is required for contractile vacuole function in Chlamydomonas reinhardtii. J Cell Sci 2012; 125:2885-95. [PMID: 22427688 DOI: 10.1242/jcs.099184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Contractile vacuoles (CVs) are essential for osmoregulation in many protists. To investigate the mechanism of CV function in Chlamydomonas, we isolated novel osmoregulatory mutants. Four of the isolated mutant cell lines carried the same 33,641 base deletion, rendering the cell lines unable to grow under strong hypotonic conditions. One mutant cell line (Osmo75) was analyzed in detail. The CV morphology was variable in mutant cells, and most cells had multiple small CVs. In addition, one or two enlarged CVs or no visible CVs at all, were observed by light microscopy. These findings suggest that the mutant is impaired in homotypic vacuolar and exocytotic membrane fusion. Furthermore the mutants had long flagella. One of the affected genes is the only SEC6 homologue in Chlamydomonas (CreSEC6). The SEC6 protein is a component of the exocyst complex that is required for efficient exocytosis. Transformation of the Osmo75 mutant with a CreSEC6-GFP construct rescued the mutant completely (osmoregulation and flagellar length). Rescued strains overexpressed CreSEC6 (as a GFP-tagged protein) and displayed a modified CV activity. CVs were larger, whereas the CV contraction interval remained unchanged, leading to increased water efflux rates. Electron microscopy analysis of Osmo75 cells showed that the mutant is able to form the close contact zones between the plasma membrane and the CV membrane observed during late diastole and systole. These results indicate that CreSEC6 is essential for CV function and required for homotypic vesicle fusion during diastole and water expulsion during systole. In addition, CreSEC6 is not only necessary for CV function, but possibly influences the CV cycle in an indirect manner and flagellar length in Chlamydomonas.
Collapse
|
13
|
Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus. Biol Cell 2012; 100:179-88. [DOI: 10.1042/bc20070091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Wloga D, Frankel J. From Molecules to Morphology: Cellular Organization of Tetrahymena thermophila. Methods Cell Biol 2012; 109:83-140. [DOI: 10.1016/b978-0-12-385967-9.00005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination. PLoS One 2011; 6:e27111. [PMID: 22102876 PMCID: PMC3213138 DOI: 10.1371/journal.pone.0027111] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/10/2011] [Indexed: 11/20/2022] Open
Abstract
The release of Ca2+ from internal stores is a major source of signal Ca2+ in almost all cell types. The internal Ca2+ pools are activated via two main families of intracellular Ca2+-release channels, the ryanodine and the inositol 1,4,5-trisphosphate (InsP3) receptors. Among multicellular organisms these channel types are ubiquitous, whereas in most unicellular eukaryotes the identification of orthologs is impaired probably due to evolutionary sequence divergence. However, the ciliated protozoan Paramecium allowed us to prognosticate six groups, with a total of 34 genes, encoding proteins with characteristics typical of InsP3 and ryanodine receptors by BLAST search of the Paramecium database. We here report that these Ca2+-release channels may display all or only some of the characteristics of canonical InsP3 and ryanodine receptors. In all cases, prediction methods indicate the presence of six trans-membrane regions in the C-terminal domains, thus corresponding to canonical InsP3 receptors, while a sequence homologous to the InsP3-binding domain is present only in some types. Only two types have been analyzed in detail previously. We now show, by using antibodies and eventually by green fluorescent protein labeling, that the members of all six groups localize to distinct organelles known to participate in vesicle trafficking and, thus, may provide Ca2+ for local membrane-membrane interactions. Whole genome duplication can explain radiation within the six groups. Comparative and evolutionary evaluation suggests derivation from a common ancestor of canonical InsP3 and ryanodine receptors. With one group we could ascertain, to our knowledge for the first time, aberrant splicing in one thoroughly analyzed Paramecium gene. This yields truncated forms and, thus, may indicate a way to pseudogene formation. No comparable analysis is available for any other, free-living or parasitic/pathogenic protozoan.
Collapse
|
16
|
Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J, Moles K, Collins D, Rohloff P, Tarleton R, Moreno SNJ, Orlando R, Docampo R. Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 2011; 6:e18013. [PMID: 21437209 PMCID: PMC3060929 DOI: 10.1371/journal.pone.0018013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Contractile vacuole complexes are critical components of cell volume regulation
and have been shown to have other functional roles in several free-living
protists. However, very little is known about the functions of the contractile
vacuole complex of the parasite Trypanosoma cruzi, the
etiologic agent of Chagas disease, other than a role in osmoregulation.
Identification of the protein composition of these organelles is important for
understanding their physiological roles. We applied a combined proteomic and
bioinfomatic approach to identify proteins localized to the contractile vacuole.
Proteomic analysis of a T. cruzi fraction enriched for
contractile vacuoles and analyzed by one-dimensional gel electrophoresis and
LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of
expressed proteins of epimastigotes. We also identified different peptides that
map to at least 39 members of the dispersed gene family 1 (DGF-1) providing
evidence that many members of this family are simultaneously expressed in
epimastigotes. Of the proteins present in the fraction we selected several
homologues with known localizations in contractile vacuoles of other organisms
and others that we expected to be present in these vacuoles on the basis of
their potential roles. We determined the localization of each by expression as
GFP-fusion proteins or with specific antibodies. Six of these putative proteins
(Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter)
predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and
calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our
results demonstrate the utility of combining subcellular fractionation,
proteomic analysis, and bioinformatic approaches for localization of organellar
proteins that are difficult to detect with whole cell methodologies. The CV
localization of the proteins investigated revealed potential novel roles of
these organelles in phosphate metabolism and provided information on the
potential participation of adaptor protein complexes in their biogenesis.
Collapse
Affiliation(s)
- Paul N. Ulrich
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Veronica Jimenez
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Miyoung Park
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Vicente P. Martins
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - James Atwood
- Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of America
| | - Kristen Moles
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Dalis Collins
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Peter Rohloff
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Rick Tarleton
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Plattner H. How to Design a Highly Organized Cell: An Unexpectedly High Number of Widely Diversified SNARE Proteins Positioned at Strategic Sites in the Ciliate, Paramecium tetraurelia. Protist 2010; 161:497-516. [DOI: 10.1016/j.protis.2010.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Ramoino P, Milanese M, Candiani S, Diaspro A, Fato M, Usai C, Bonanno G. γ-Amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis. J Exp Biol 2010; 213:1251-8. [DOI: 10.1242/jeb.039594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARY
Paramecium primaurelia expresses a significant amount of γ-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca2+ but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.
Collapse
Affiliation(s)
- P. Ramoino
- Department for the Study of Territory and its Resources (DIP.TE.RIS.), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - M. Milanese
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - S. Candiani
- Department of Biology, University of Genoa, Viale Benedetto XV, 16132 Genova, Italy
| | - A. Diaspro
- The Italian Institute of Technology (IIT), Nanophysics Unit, Via Morego 30, 16163 Genova, Italy
| | - M. Fato
- Department of Communication, Computer and System Sciences (DIST), University of Genoa, Viale Causa 13, 16145 Genova, Italy
| | - C. Usai
- Institute of Biophysics, CNR Genoa, Via De Marini 6, 16149 Genova, Italy
| | - G. Bonanno
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 Genova, Italy
- National Institute of Neuroscience, Corso Raffaello 30, 10125 Torino, Italy
| |
Collapse
|
19
|
Schilde C, Schönemann B, Sehring IM, Plattner H. Distinct subcellular localization of a group of synaptobrevin-like SNAREs in Paramecium tetraurelia and effects of silencing SNARE-specific chaperone NSF. EUKARYOTIC CELL 2010; 9:288-305. [PMID: 20023070 PMCID: PMC2823002 DOI: 10.1128/ec.00220-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/04/2009] [Indexed: 01/29/2023]
Abstract
We have identified new synaptobrevin-like SNAREs and localized the corresponding gene products with green fluorescent protein (GFP)-fusion constructs and specific antibodies at the light and electron microscope (EM) levels. These SNAREs, named Paramecium tetraurelia synaptobrevins 8 to 12 (PtSyb8 to PtSyb12), showed mostly very restricted, specific localization, as they were found predominantly on structures involved in endo- or phagocytosis. In summary, we found PtSyb8 and PtSyb9 associated with the nascent food vacuole, PtSyb10 near the cell surface, at the cytostome, and in close association with ciliary basal bodies, and PtSyb11 on early endosomes and on one side of the cytostome, while PtSyb12 was found in the cytosol. PtSyb4 and PtSyb5 (identified previously) were localized on small vesicles, PtSyb5 probably being engaged in trichocyst (dense core secretory vesicle) processing. PtSyb4 and PtSyb5 are related to each other and are the furthest deviating of all SNAREs identified so far. Because they show no similarity with any other R-SNAREs outside ciliates, they may represent a ciliate-specific adaptation. PtSyb10 forms small domains near ciliary bases, and silencing slows down cell rotation during depolarization-induced ciliary reversal. NSF silencing supports a function of cell surface SNAREs by revealing vesicles along the cell membrane at sites normally devoid of vesicles. The distinct distributions of these SNAREs emphasize the considerable differentiation of membrane trafficking, particularly along the endo-/phagocytic pathway, in this protozoan.
Collapse
Affiliation(s)
- Christina Schilde
- Department of Biology, University of Konstanz, P.O. Box 5560, D-78457 Konstanz, Germany
| | - Barbara Schönemann
- Department of Biology, University of Konstanz, P.O. Box 5560, D-78457 Konstanz, Germany
| | - Ivonne M. Sehring
- Department of Biology, University of Konstanz, P.O. Box 5560, D-78457 Konstanz, Germany
| | - Helmut Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, D-78457 Konstanz, Germany
| |
Collapse
|
20
|
Plattner H. Membrane Trafficking in Protozoa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 280:79-184. [DOI: 10.1016/s1937-6448(10)80003-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Damaj R, Pomel S, Bricheux G, Coffe G, Viguès B, Ravet V, Bouchard P. Cross-study analysis of genomic data defines the ciliate multigenic epiplasmin family: strategies for functional analysis in Paramecium tetraurelia. BMC Evol Biol 2009; 9:125. [PMID: 19493334 PMCID: PMC2709106 DOI: 10.1186/1471-2148-9-125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 06/03/2009] [Indexed: 05/25/2023] Open
Abstract
Background The sub-membranous skeleton of the ciliate Paramecium, the epiplasm, is composed of hundreds of epiplasmic scales centered on basal bodies, and presents a complex set of proteins, epiplasmins, which belong to a multigenic family. The repeated duplications observed in the P. tetraurelia genome present an interesting model of the organization and evolution of a multigenic family within a single cell. Results To study this multigenic family, we used phylogenetic, structural, and analytical transcriptional approaches. The phylogenetic method defines 5 groups of epiplasmins in the multigenic family. A refined analysis by Hydrophobic Cluster Analysis (HCA) identifies structural characteristics of 51 epiplasmins, defining five separate groups, and three classes. Depending on the sequential arrangement of their structural domains, the epiplasmins are defined as symmetric, asymmetric or atypical. The EST data aid in this classification, in the identification of putative regulating sequences such as TATA or CAAT boxes. When specific RNAi experiments were conducted using sequences from either symmetric or asymmetric classes, phenotypes were drastic. Local effects show either disrupted or ill-shaped epiplasmic scales. In either case, this results in aborted cell division. Using structural features, we show that 4 epiplasmins are also present in another ciliate, Tetrahymena thermophila. Their affiliation with the distinctive structural groups of Paramecium epiplasmins demonstrates an interspecific multigenic family. Conclusion The epiplasmin multigenic family illustrates the history of genomic duplication in Paramecium. This study provides a framework which can guide functional analysis of epiplasmins, the major components of the membrane skeleton in ciliates. We show that this set of proteins handles an important developmental information in Paramecium since maintenance of epiplasm organization is crucial for cell morphogenesis.
Collapse
Affiliation(s)
- Raghida Damaj
- Laboratoire Microorganismes: Génome et Environnement (ex, LBP) UMR CNRS 6023, Université Blaise Pascal, 63177, Aubière cedex, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Plattner H, Sehring IM, Schilde C, Ladenburger E. Chapter 5 Pharmacology of Ciliated Protozoa—Drug (In)Sensitivity and Experimental Drug (Ab)Use. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:163-218. [DOI: 10.1016/s1937-6448(08)01805-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Dacks JB, Peden AA, Field MC. Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 2008; 41:330-40. [PMID: 18835459 DOI: 10.1016/j.biocel.2008.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/26/2008] [Accepted: 08/31/2008] [Indexed: 11/25/2022]
Abstract
Two hundred years after Darwin's birth, our understanding of genetic mechanisms and cell biology has advanced to a level unimaginable in the 19th century. We now know that eukaryotic cells contain a huge variety of internal compartments, each with their own function, identity and history. For the compartments that together form the membrane-trafficking system, one of the central questions is how that identity is encoded and how it evolved. Here we review the key components involved in membrane-trafficking events, including SNAREs, Rabs, vesicle coats, and tethers and what is known about their evolutionary history. Our current understanding suggests a possible common mechanism by which the membrane-trafficking organelles might have evolved. This model of increased organellar complexity by gene duplication and co-evolution of multiple, interacting, specificity-encoding proteins could well be applicable to other non-endosymbiotic organelles as well. The application of basic evolutionary principles well beyond their original scope has been exceedingly powerful not only in reconstructing the history of cellular compartments, but for medical and applied research as well, and underlines the contributions of Darwin's ideas in modern biology.
Collapse
Affiliation(s)
- Joel B Dacks
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | |
Collapse
|
24
|
Schilde C, Lutter K, Kissmehl R, Plattner H. Molecular identification of a SNAP-25-like SNARE protein in Paramecium. EUKARYOTIC CELL 2008; 7:1387-402. [PMID: 18552286 PMCID: PMC2519768 DOI: 10.1128/ec.00012-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 05/25/2008] [Indexed: 01/16/2023]
Abstract
Using database searches of the completed Paramecium tetraurelia macronuclear genome with the metazoan SNAP-25 homologues, we identified a single 21-kDa Qb/c-SNARE in this ciliated protozoan, named P. tetraurelia SNAP (PtSNAP), containing the characteristic dual heptad repeat SNARE motifs of SNAP-25. The presence of only a single Qb/c class SNARE in P. tetraurelia is surprising in view of the multiple genome duplications and the high number of SNAREs found in other classes of this organism. As inferred from the subcellular localization of a green fluorescent protein (GFP) fusion construct, the protein is localized on a variety of intracellular membranes, and there is a large soluble pool of PtSNAP. Similarly, the PtSNAP that is detected with a specific antibody in fixed cells is associated with a number of intracellular membrane structures, including food vacuoles, the contractile vacuole system, and the sites of constitutive endo- and exocytosis. Surprisingly, using gene silencing, we could not assign a role to PtSNAP in the stimulated exocytosis of dense core vesicles (trichocysts), but we found an increased number of food vacuoles in PtSNAP-silenced cells. In conclusion, we identify PtSNAP as a Paramecium homologue of metazoan SNAP-25 that shows several divergent features, like resistance to cleavage by botulinum neurotoxins.
Collapse
Affiliation(s)
- Christina Schilde
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
25
|
Kloepper TH, Kienle CN, Fasshauer D. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 2007; 18:3463-71. [PMID: 17596510 PMCID: PMC1951749 DOI: 10.1091/mbc.e07-03-0193] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/15/2007] [Accepted: 06/18/2007] [Indexed: 11/11/2022] Open
Abstract
Proteins of the SNARE (soluble N-ethylmalemide-sensitive factor attachment protein receptor) family are essential for the fusion of transport vesicles with an acceptor membrane. Despite considerable sequence divergence, their mechanism of action is conserved: heterologous sets assemble into membrane-bridging SNARE complexes, in effect driving membrane fusion. Within the cell, distinct functional SNARE units are involved in different trafficking steps. These functional units are conserved across species and probably reflect the conservation of the particular transport step. Here, we have systematically analyzed SNARE sequences from 145 different species and have established a highly accurate classification for all SNARE proteins. Principally, all SNAREs split into four basic types, reflecting their position in the four-helix bundle complex. Among these four basic types, we established 20 SNARE subclasses that probably represent the original repertoire of a eukaryotic cenancestor. This repertoire has been modulated independently in different lines of organisms. Our data are in line with the notion that the ur-eukaryotic cell was already equipped with the various compartments found in contemporary cells. Possibly, the development of these compartments is closely intertwined with episodes of duplication and divergence of a prototypic SNARE unit.
Collapse
Affiliation(s)
- Tobias H. Kloepper
- *Research Group Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany; and
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - C. Nickias Kienle
- *Research Group Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany; and
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dirk Fasshauer
- Research Group Structural Biochemistry, Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Dacks JB, Field MC. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 2007; 120:2977-85. [PMID: 17715154 DOI: 10.1242/jcs.013250] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The emergence of an endomembrane system was a crucial stage in the prokaryote-to-eukaryote evolutionary transition. Recent genomic and molecular evolutionary analyses have provided insight into how this critical system arrived at its modern configuration. The apparent relative absence of prokaryotic antecedents for the endomembrane machinery contrasts with the situation for mitochondria, plastids and the nucleus. Overall, the evidence suggests an autogenous origin for the eukaryotic membrane-trafficking machinery. The emerging picture is that early eukaryotic ancestors had a complex endomembrane system, which implies that this cellular system evolved relatively rapidly after the proto-eukaryote diverged away from the other prokaryotic lines. Many of the components of the trafficking system are the result of gene duplications that have produced proteins that have similar functions but differ in their subcellular location. A proto-eukaryote possessing a very simple trafficking system could thus have evolved to near modern complexity in the last common eukaryotic ancestor (LCEA) via paralogous gene family expansion of the proteins encoding organelle identity. The descendents of this common ancestor have undergone further modification of the trafficking machinery; unicellular simplicity and multicellular complexity are the prevailing trend, but there are some remarkable counter-examples.
Collapse
Affiliation(s)
- Joel B Dacks
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | |
Collapse
|
27
|
Elde NC, Long M, Turkewitz AP. A role for convergent evolution in the secretory life of cells. Trends Cell Biol 2007; 17:157-64. [PMID: 17329106 DOI: 10.1016/j.tcb.2007.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/19/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
The role of convergent evolution in biological adaptation is increasingly appreciated. Many clear examples have been described at the level of individual proteins and for organismal morphology, and convergent mechanisms have even been invoked to account for similar community structures that are shared between ecosystems. At the cellular level, an important area that has received scant attention is the potential influence of convergent evolution on complex subcellular features, such as organelles. Here, we show that existing data strongly argue that convergent evolution underlies the similar properties of specialized secretory vesicles, called dense core granules, in the animal and ciliate lineages. We discuss both the criteria for judging convergent evolution and the contribution that such evolutionary analysis can make to improve our understanding of processes in cell biology. The elucidation of these underlying evolutionary relationships is vital because cellular structures that are assumed to be analogous, owing to shared features, might in fact be governed by different molecular mechanisms.
Collapse
Affiliation(s)
- Nels C Elde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
28
|
Kissmehl R, Schilde C, Wassmer T, Danzer C, Nuehse K, Lutter K, Plattner H. Molecular Identification of 26 Syntaxin Genes and their Assignment to the Different Trafficking Pathways in Paramecium. Traffic 2007; 8:523-42. [PMID: 17451555 DOI: 10.1111/j.1600-0854.2007.00544.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SNARE proteins have been classified as vesicular (v)- and target (t)-SNAREs and play a central role in the various membrane interactions in eukaryotic cells. Based on the Paramecium genome project, we have identified a multigene family of at least 26 members encoding the t-SNARE syntaxin (PtSyx) that can be grouped into 15 subfamilies. Paramecium syntaxins match the classical build-up of syntaxins, being 'tail-anchored' membrane proteins with an N-terminal cytoplasmic domain and a membrane-bound single C-terminal hydrophobic domain. The membrane anchor is preceded by a conserved SNARE domain of approximately 60 amino acids that is supposed to participate in SNARE complex assembly. In a phylogenetic analysis, most of the Paramecium syntaxin genes were found to cluster in groups together with those from other organisms in a pathway-specific manner, allowing an assignment to different compartments in a homology-dependent way. However, some of them seem to have no counterparts in metazoans. In another approach, we fused one representative member of each of the syntaxin isoforms to green fluorescent protein and assessed the in vivo localization, which was further supported by immunolocalization of some syntaxins. This allowed us to assign syntaxins to all important trafficking pathways in Paramecium.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, PO Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Plattner H, Hentschel J. Sub-second cellular dynamics: time-resolved electron microscopy and functional correlation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:133-76. [PMID: 17178466 DOI: 10.1016/s0074-7696(06)55003-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Subcellular processes, from molecular events to organellar responses and cell movement, cover a broad scale in time and space. Clearly the extremes, such as ion channel activation are accessible only by electrophysiology, whereas numerous routine methods exist for relatively slow processes. However, many other processes, from a millisecond time scale on, can be "caught" only by methods providing appropriate time resolution. Fast freezing (cryofixation) is the method of choice in that case. In combination with follow-up methodologies appropriate for electron microscopic (EM) analysis, with all its variations, such technologies can also provide high spatial resolution. Such analyses may include, for example, freeze-fracturing for analyzing restructuring of membrane components, scanning EM and other standard EM techniques, as well as analytical EM analyses. The latter encompass energy-dispersive x-ray microanalysis and electron spectroscopic imaging, all applicable, for instance, to the second messenger, calcium. Most importantly, when conducted in parallel, such analyses can provide a structural background to the functional analyses, such as cyclic nucleotide formation or protein de- or rephosphorylation during cell stimulation. In sum, we discuss many examples of how it is practically possible to achieve strict function-structure correlations in the sub-second time range. We complement this review by discussing alternative methods currently available to analyze fast cellular phenomena occurring in the sub-second time range.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|