1
|
Venier AC, Savy S, Carro G, Guelbert G, Grondona E, Guelbert N, Nicola JP, Pesaola F, De Paul AL. UNRAVELING CLN7 disease: the distinct roles of two close MFSD8/CLN7 splice variants in phenotypic expression. Hum Mol Genet 2025:ddaf067. [PMID: 40327886 DOI: 10.1093/hmg/ddaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/28/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
CLN7 is a lysosomal storage disease caused by pathogenic variants in the MFSD8/CLN7 gene. Typically neurodegenerative, patients present seizures and developmental delay since 2-6 years of age and a rapid psychomotor, verbal, and visual deterioration that leads to premature death. However, 'atypical' cases have also been reported. Although more than 80 DNA variants in the MFSD8/CLN7 gene have been reported, no data about a genotype/phenotype correlation is available. Here, we analyze five 'classical' and 'atypical' CLN7 patients by molecular and computational methods. Four variants have been found: c.103C > T (p.Arg35*, pathogenic), c.1394G > A (p.Arg465Gln, pathogenic), c.863 + 1G > A (likely pathogenic), and c.863 + 4A > G (of uncertain significance). Both splice variants showed altering of the splicing process on a minigene reporter assay. Furthermore, exon 8 was deleted in the MFSD8/CLN7 cDNA of blood samples from two patients carrying the splicing variants, demonstrating their effect. The c.863 + 4A > G variant also showed a residual wildtype MFSD8/CLN7 expression and, thus, explaining the milder phenotype. Finally, a clustered geographical distribution of the c.103C > T and c.863 + 4A > G variants was observed in the northeast and center of Argentina, respectively. Our data confirm the pathogenicity of the c.863 + 1G > A variant and reclassify the c.863 + 4A > G variant as pathogenic by adding experimental data, offering new information for a precise prognosis, and expanding the genetic and epidemiological spectrum of CLN7 in the South American region. Ultimately, we seek to raise awareness about the existence of this pathology in the region to reduce the so-called 'diagnostic odyssey' in pediatric patients.
Collapse
Affiliation(s)
- Ana Clara Venier
- Instituto de Investigaciones en Ciencias de la Salud - Consejo Nacional de Investigaciones Científicas y Técnicas (INICSA - CONICET), Boulevard de la Reforma y Enfermera Gordillo, X5016, Córdoba, Argentina
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo, X5016, Córdoba, Argentina
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de la Santísima Trinidad, Ferroviarios 1250, X5014, Córdoba, Argentina
| | - Sofía Savy
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende s/n, X5000, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI - CONICET), Medina Allende s/n, X5000, Córdoba, Argentina
| | - Gerardo Carro
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende s/n, X5000, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI - CONICET), Medina Allende s/n, X5000, Córdoba, Argentina
| | - Guillermo Guelbert
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de la Santísima Trinidad, Ferroviarios 1250, X5014, Córdoba, Argentina
- Servicio de Enfermedades Metabólicas Hereditarias, Hospital de Niños de la Santísima Trinidad, Ferroviarios 1250, X5014, Córdoba, Argentina
| | - Ezequiel Grondona
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo, X5016, Córdoba, Argentina
| | - Norberto Guelbert
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de la Santísima Trinidad, Ferroviarios 1250, X5014, Córdoba, Argentina
- Servicio de Enfermedades Metabólicas Hereditarias, Clínica Universitaria "Reina Fabiola", Universidad Católica de Córdoba, Oncativo 1248, X5004, Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende s/n, X5000, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI - CONICET), Medina Allende s/n, X5000, Córdoba, Argentina
| | - Favio Pesaola
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de la Santísima Trinidad, Ferroviarios 1250, X5014, Córdoba, Argentina
- Department of Pediatrics, Washington University in Saint Louis School of Medicine, 660 S Euclid Ave, Saint Louis, 63110, MO, United States
| | - Ana Lucía De Paul
- Instituto de Investigaciones en Ciencias de la Salud - Consejo Nacional de Investigaciones Científicas y Técnicas (INICSA - CONICET), Boulevard de la Reforma y Enfermera Gordillo, X5016, Córdoba, Argentina
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Boulevard de la Reforma y Enfermera Gordillo, X5016, Córdoba, Argentina
| |
Collapse
|
2
|
Varanese L, Xu L, Peters CE, Pintilie G, Roberts DS, Raj S, Liu M, Ooi YS, Diep J, Qiao W, Richards CM, Callaway J, Bertozzi CR, Jabs S, de Vries E, van Kuppeveld FJM, Nagamine CM, Chiu W, Carette JE. MFSD6 is an entry receptor for enterovirus D68. Nature 2025:10.1038/s41586-025-08908-0. [PMID: 40132641 DOI: 10.1038/s41586-025-08908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
With the near eradication of poliovirus due to global vaccination campaigns, attention has shifted to other enteroviruses that can cause polio-like paralysis syndrome (now termed acute flaccid myelitis)1-3. In particular, enterovirus D68 (EV-D68) is believed to be the main driver of epidemic outbreaks of acute flaccid myelitis in recent years4, yet not much is known about EV-D68 host interactions. EV-D68 is a respiratory virus5 but, in rare cases, can spread to the central nervous system to cause severe neuropathogenesis. Here we use genome-scale CRISPR screens to identify the poorly characterized multipass membrane transporter MFSD6 as a host entry factor for EV-D68. Knockout of MFSD6 expression abrogated EV-D68 infection in cell lines and primary cells corresponding to respiratory and neural cells. MFSD6 localized to the plasma membrane and was required for viral entry into host cells. MFSD6 bound directly to EV-D68 particles through its extracellular, third loop (L3). We determined the cryo-electron microscopy structure of EV-D68 in a complex with MFSD6 L3, revealing the interaction interface. A decoy receptor, engineered by fusing MFSD6 L3 to Fc, blocked EV-D68 infection of human primary lung epithelial cells and provided near-complete protection in a lethal mouse model of EV-D68 infection. Collectively, our results reveal MFSD6 as an entry receptor for EV-D68, and support the targeting of MFSD6 as a potential mechanism to combat infections by this emerging pathogen with pandemic potential.
Collapse
Affiliation(s)
- Lauren Varanese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lily Xu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine E Peters
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - David S Roberts
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Suyash Raj
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengying Liu
- Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jonathan Diep
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Callaway
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Erik de Vries
- Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Wah Chiu
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Xiang Q, Chen Y, Cheng X, Fang X, Liu Y, Huang Y, He B, Tang L, Li J. Non-targeted Metabolomics Reveals the Potential Role of MFSD8 in Metabolism in Human Endothelial Cells. Mol Biotechnol 2025:10.1007/s12033-025-01396-7. [PMID: 39992484 DOI: 10.1007/s12033-025-01396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
The major facilitator superfamily domain containing 8 (MFSD8) belongs to an orphan transporter protein expressed in a wide range of tissues. Nevertheless, the specific role of MFSD8 in human health and disease remains unknown. This study aimed to evaluate the role of MFSD8 protein on metabolic function using untargeted metabolomics analysis in human umbilical vein endothelial cells (HUVECs). HUVECs overexpressing MFSD8 were subjected to metabolomics analysis to evaluate changes in endogenous small molecules using LC-MS/MS analysis. In the positive scan mode, 634 metabolites from 1583 compounds were identified. In the negative scan mode, 169 metabolites from 405 compounds were identified. According to the established criteria for identifying differential metabolites, 96 metabolites exhibited significant differences between the MFSD8 and Vector groups. Among them, 62 metabolites were found to be up-regulated, whereas 34 metabolites were classified as down-regulated. Bioinformatics pipeline analysis revealed three common metabolic pathways, including arginine biosynthesis, beta-alanine metabolism, and pyrimidine metabolism, were found under the positive and negative scan modes. The semi-quantitative analysis was conducted on the differential metabolites, revealing that overexpression of MFSD8 resulted in increased levels of L-citrulline, L-aspartic acid, ornithine, N-acetyl-l-aspartic acid, L-histidine, beta-alanine metabolites and exhibited decreased levels of cytidine. The findings of our study indicated that MFSD8 had the most significant role in arginine biosynthesis, beta-alanine metabolism, and pyrimidine metabolism pathways within endothelial cells. The metabolomics data provide new insights into studying potential features of MFSD8 protein in the future.
Collapse
Affiliation(s)
- Qin Xiang
- College of Basic Medicine, Changsha Medical University, Leifeng Avenue 1501, Changsha, Hunan, 410219, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Yongjun Chen
- Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421002, China
| | - Xu Cheng
- The First Clinical College, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Xinxiang Fang
- The First Clinical College, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Yuxiang Liu
- The First Clinical College, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Yujie Huang
- Affiliated Qiyang People's Hospital, Changsha Medical University, Yongzhou, Hunan, 426199, China
| | - Binsheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China
| | - Liang Tang
- College of Basic Medicine, Changsha Medical University, Leifeng Avenue 1501, Changsha, Hunan, 410219, China.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China.
| | - Jianming Li
- College of Basic Medicine, Changsha Medical University, Leifeng Avenue 1501, Changsha, Hunan, 410219, China.
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research On Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
4
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
5
|
Dobloug S, Kjellström U, Anderson G, Gardner E, Mole SE, Sheth J, Puschmann A. Maculopathy and adult-onset ataxia in patients with biallelic MFSD8 variants. Mol Genet Genomic Med 2024; 12:e2505. [PMID: 39108195 PMCID: PMC11303817 DOI: 10.1002/mgg3.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biallelic variants in the major facilitator superfamily domain containing 8 gene (MFSD8) are associated with distinct clinical presentations that range from typical late-infantile neuronal ceroid lipofuscinosis type 7 (CLN7 disease) to isolated adult-onset retinal dystrophy. Classic late-infantile CLN7 disease is a severe, rare neurological disorder with an age of onset typically between 2 and 6 years, presenting with seizures and/or cognitive regression. Its clinical course is progressive, leading to premature death, and often includes visual loss due to severe retinal dystrophy. In rare cases, pathogenic variants in MFSD8 can be associated with isolated non-syndromic macular dystrophy with variable age at onset, in which the disease process predominantly or exclusively affects the cones of the macula and where there are no neurological or neuropsychiatric manifestations. METHODS Here we present longitudinal studies on four adult-onset patients who were biallelic for four MFSD8 variants. RESULTS Two unrelated patients who presented with adult-onset ataxia and had macular dystrophy on examination were homozygous for a novel variant in MFSD8 NM_152778.4: c.935T>C p.(Ile312Thr). Two other patients presented in adulthood with visual symptoms, and one of these developed mild to moderate cerebellar ataxia years after the onset of visual symptoms. CONCLUSIONS Our observations expand the knowledge on biallelic pathogenic MFSD8 variants and confirm that these are associated with a spectrum of more heterogeneous clinical phenotypes. In MFSD8-related disease, adult-onset recessive ataxia can be the presenting manifestation or may occur in combination with retinal dystrophy.
Collapse
Affiliation(s)
- Sigurd Dobloug
- Department of NeurologyHelsingborg General HospitalHelsingborgSweden
- Department for Clinical Sciences, Lund, NeurologyLund UniversityLundSweden
| | | | - Glenn Anderson
- Department of HistopathologyGreat Ormond Street HospitalLondonUK
| | - Emily Gardner
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Sara E. Mole
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Jayesh Sheth
- Foundation for Research in Genetics and EndocrinologyInstitute of Human GeneticsAhmedabadIndia
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, NeurologyLundSweden
- SciLifeLabLund UniversityLundSweden
| |
Collapse
|
6
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Huber RJ, Gray J, Kim WD. Loss of mfsd8 alters the secretome during Dictyostelium aggregation. Eur J Cell Biol 2023; 102:151361. [PMID: 37742391 DOI: 10.1016/j.ejcb.2023.151361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023] Open
Abstract
Major facilitator superfamily domain-containing protein 8 (MFSD8) is a transmembrane protein that has been reported to function as a lysosomal chloride channel. In humans, homozygous mutations in MFSD8 cause a late-infantile form of neuronal ceroid lipofuscinosis (NCL) called CLN7 disease. In the social amoeba Dictyostelium discoideum, Mfsd8 localizes to cytoplasmic puncta and vesicles, and regulates conserved processes during the organism's life cycle. Here, we used D. discoideum to examine the effect of mfsd8-deficiency on the secretome during the early stages of multicellular development. Mass spectrometry revealed 61 proteins that were differentially released by cells after 4 and 8 h of starvation. Most proteins were present in increased amounts in mfsd8- conditioned buffer compared to WT indicating that loss of mfsd8 deregulates protein secretion and/or causes the release of proteins not normally secreted by WT cells. GO term enrichment analyses showed that many of the proteins aberrantly released by mfsd8- cells localize to compartments and regions of the cell associated with the endo-lysosomal and secretory pathways. Mass spectrometry also revealed proteins previously known to be impacted by the loss of mfsd8 (e.g., cathepsin D), as well as proteins that may underlie mfsd8-deficiency phenotypes during aggregation. Finally, we show that mfsd8-deficiency reduces intracellular proteasome 20S activity due to the abnormal release of at least one proteasomal subunit. Together, this study reveals the impact of mfsd8 loss on the secretome during D. discoideum aggregation and lays the foundation for follow up work that investigates the role of altered protein release in CLN7 disease.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada.
| | - Joshua Gray
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
8
|
Klein M, Hermey G. Converging links between adult-onset neurodegenerative Alzheimer's disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen Res 2023; 18:1463-1471. [PMID: 36571343 PMCID: PMC10075119 DOI: 10.4103/1673-5374.361544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Priluck AZ, Breazzano MP. Novel MFSD8 mutation causing non-syndromic asymmetric adult-onset macular dystrophy. Ophthalmic Genet 2023; 44:186-190. [PMID: 35801630 DOI: 10.1080/13816810.2022.2092758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND MFSD8 mutations can cause type 7 neuronal ceroid lipofuscinosis, a systemic disorder that includes vision loss; however, such mutations can also cause isolated retinal dystrophy with vision loss without systemic signs or symptoms as first identified in 2015. This report details a previously unreported combination of compound heterozygous variants in the MFSD8 gene causing a non-syndromic, bilateral central macular dystrophy presenting in adulthood. MATERIALS AND METHODS We present a case of MFSD8-associated retinal dystrophy with multimodal imaging and a review of relevant literature. RESULTS A 57-year-old female presented for subacute, unilateral blurriness in her right eye. Best corrected visual acuity was 20/250 and 20/50 in the right and left eyes, respectively. Fundus examination and multimodal imaging revealed blunted foveal reflexes and optical gap with subfoveal ellipsoid zone loss in both eyes, right greater than left. Full field electroretinography results were within normal limits while the Arden ratio on electro-oculography was abnormal in both eyes, right more so than left. Genetic testing revealed apparently causative compound heterozygous mutations in the MFSD8 gene: c.154G>A, p.(Gly52Arg) and c.1006G>C, p.(Gluc336Gln). Visual acuity over one year of follow-up has remained stable. CONCLUSIONS To authors' knowledge, this report is first description of this combination of mutations in the MFSD8 gene leading to non-syndromic adult-onset macular dystrophy.
Collapse
Affiliation(s)
- Aaron Z Priluck
- Wilmer Eye Institute, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark P Breazzano
- Wilmer Eye Institute, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Retina-Vitreous Surgeons of Central New York, Liverpool, NY, USA
- Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
10
|
Riederer E, Cang C, Ren D. Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets? Annu Rev Pharmacol Toxicol 2023; 63:19-41. [PMID: 36151054 DOI: 10.1146/annurev-pharmtox-051921-013755] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomes play fundamental roles in material digestion, cellular clearance, recycling, exocytosis, wound repair, Ca2+ signaling, nutrient signaling, and gene expression regulation. The organelle also serves as a hub for important signaling networks involving the mTOR and AKT kinases. Electrophysiological recording and molecular and structural studies in the past decade have uncovered several unique lysosomal ion channels and transporters, including TPCs, TMEM175, TRPMLs, CLN7, and CLC-7. They underlie the organelle's permeability to major ions, including K+, Na+, H+, Ca2+, and Cl-. The channels are regulated by numerous cellular factors, ranging from H+ in the lumen and voltage across the lysosomal membrane to ATP in the cytosol to growth factors outside the cell. Genetic variations in the channel/transporter genes are associated with diseases that include lysosomal storage diseases and neurodegenerative diseases. Recent studies with human genetics and channel activators suggest that lysosomal channels may be attractive targets for the development of therapeutics for the prevention of and intervention in human diseases.
Collapse
Affiliation(s)
- Erika Riederer
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China;
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
| |
Collapse
|
11
|
Heinl ES, Lorenz S, Schmidt B, Nasser M Laqtom N, Mazzulli JR, Francelle L, Yu TW, Greenberg B, Storch S, Tegtmeier I, Othmen H, Maurer K, Steinfurth M, Witzgall R, Milenkovic V, Wetzel CH, Reichold M. CLN7/MFSD8 may be an important factor for SARS-CoV-2 cell entry. iScience 2022; 25:105082. [PMID: 36093380 PMCID: PMC9444308 DOI: 10.1016/j.isci.2022.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/12/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
The SARS-CoV-2 virus has triggered a worldwide pandemic. According to the BioGrid database, CLN7 (MFSD8) is thought to interact with several viral proteins. The aim of this work was to investigate a possible involvement of CLN7 in the infection process. Experiments on a CLN7-deficient HEK293T cell line exhibited a 90% reduced viral load compared to wild-type cells. This observation may be linked to the finding that CLN7 ko cells have a significantly reduced GM1 content in their cell membrane. GM1 is found highly enriched in lipid rafts, which are thought to play an important role in SARS-CoV-2 infection. In contrast, overexpression of CLN7 led to an increase in viral load. This study provides evidence that CLN7 is involved in SARS-CoV-2 infection. This makes it a potential pharmacological target for drug development against COVID-19. Furthermore, it provides insights into the physiological function of CLN7 where still only little is known about.
Collapse
Affiliation(s)
- Elena-Sofia Heinl
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Lorenz
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Nouf Nasser M Laqtom
- Departments of Chemical Engineering and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laetitia Francelle
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Timothy W. Yu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benjamin Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Storch
- Children’s Hospital Biochemistry, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Helga Othmen
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
- Institute for Molecular and Cellular Anatomy, University Regensburg, 93053 Regensburg, Germany
| | - Katja Maurer
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Malin Steinfurth
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University Regensburg, 93053 Regensburg, Germany
| | - Vladimir Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Yap SQ, Kim WD, Huber RJ. Mfsd8 Modulates Growth and the Early Stages of Multicellular Development in Dictyostelium discoideum. Front Cell Dev Biol 2022; 10:930235. [PMID: 35756993 PMCID: PMC9218796 DOI: 10.3389/fcell.2022.930235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
MFSD8 is a transmembrane protein that has been reported to transport chloride ions across the lysosomal membrane. Mutations in MFSD8 are associated with a subtype of Batten disease called CLN7 disease. Batten disease encompasses a family of 13 inherited neurodegenerative lysosomal storage diseases collectively referred to as the neuronal ceroid lipofuscinoses (NCLs). Previous work identified an ortholog of human MFSD8 in the social amoeba D. discoideum (gene: mfsd8, protein: Mfsd8), reported its localization to endocytic compartments, and demonstrated its involvement in protein secretion. In this study, we further characterized the effects of mfsd8 loss during D. discoideum growth and early stages of multicellular development. During growth, mfsd8− cells displayed increased rates of proliferation, pinocytosis, and expansion on bacterial lawns. Loss of mfsd8 also increased cell size, inhibited cytokinesis, affected the intracellular and extracellular levels of the quorum-sensing protein autocrine proliferation repressor A, and altered lysosomal enzyme activity. During the early stages of development, loss of mfsd8 delayed aggregation, which we determined was at least partly due to impaired cell-substrate adhesion, defects in protein secretion, and alterations in lysosomal enzyme activity. Overall, these results show that Mfsd8 plays an important role in modulating a variety of processes during the growth and early development of D. discoideum.
Collapse
Affiliation(s)
- Shyong Quan Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
13
|
Poncet AF, Grunewald O, Vaclavik V, Meunier I, Drumare I, Pelletier V, Bocquet B, Todorova MG, Le Moing AG, Devos A, Schorderet DF, Jobic F, Defoort-Dhellemmes S, Dollfus H, Smirnov VM, Dhaenens CM. Contribution of Whole-Genome Sequencing and Transcript Analysis to Decipher Retinal Diseases Associated with MFSD8 Variants. Int J Mol Sci 2022; 23:ijms23084294. [PMID: 35457110 PMCID: PMC9032189 DOI: 10.3390/ijms23084294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biallelic gene defects in MFSD8 are not only a cause of the late-infantile form of neuronal ceroid lipofuscinosis, but also of rare isolated retinal degeneration. We report clinical and genetic data of seven patients compound heterozygous or homozygous for variants in MFSD8, issued from a French cohort with inherited retinal degeneration, and two additional patients retrieved from a Swiss cohort. Next-generation sequencing of large panels combined with whole-genome sequencing allowed for the identification of twelve variants from which seven were novel. Among them were one deep intronic variant c.998+1669A>G, one large deletion encompassing exon 9 and 10, and a silent change c.750A>G. Transcript analysis performed on patients’ lymphoblastoid cell lines revealed the creation of a donor splice site by c.998+1669A>G, resulting in a 140 bp pseudoexon insertion in intron 10. Variant c.750A>G produced exon 8 skipping. In silico and in cellulo studies of these variants allowed us to assign the pathogenic effect, and showed that the combination of at least one severe variant with a moderate one leads to isolated retinal dystrophy, whereas the combination in trans of two severe variants is responsible for early onset severe retinal dystrophy in the context of late-infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Anaïs F. Poncet
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Olivier Grunewald
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, 1004 Lausanne, Switzerland;
- Cantonal Hospital, Department of Ophthalmology, 1700 Fribourg, Switzerland
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, F-34000 Montpellier, France; (I.M.); (B.B.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, F-34000 Montpellier, France
| | - Isabelle Drumare
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
| | - Valérie Pelletier
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologiques, Hopitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; (V.P.); (H.D.)
| | - Béatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, F-34000 Montpellier, France; (I.M.); (B.B.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, F-34000 Montpellier, France
| | - Margarita G. Todorova
- Department of Ophthalmology, Cantonal Hospital, 9007 St. Gallen, Switzerland;
- Department of Ophthalmology, University of Zürich, 8091 Zürich, Switzerland
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland
| | - Anne-Gaëlle Le Moing
- Department of Child Neurology, Amiens-Picardy University Hospital, F-80000 Amiens, France;
| | - Aurore Devos
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Daniel F. Schorderet
- Faculty of Biology and Medicine, University of Lausanne and Faculty of Life Sciences, Ecole Polytechnique Fédérale of Lausanne, 1004 Lausanne, Switzerland;
| | - Florence Jobic
- Unité de Génétique Médicale et Oncogénétique, Centre Hospitalier Universitaire Amiens Picardie, F-80000 Amiens, France;
| | - Sabine Defoort-Dhellemmes
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologiques, Hopitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; (V.P.); (H.D.)
| | - Vasily M. Smirnov
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
- Université de Lille, Faculté de Médecine, F-59000 Lille, France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
- Correspondence: ; Tel.: +33-320444953
| |
Collapse
|
14
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
15
|
Wang Y, Zeng W, Lin B, Yao Y, Li C, Hu W, Wu H, Huang J, Zhang M, Xue T, Ren D, Qu L, Cang C. CLN7 is an organellar chloride channel regulating lysosomal function. SCIENCE ADVANCES 2021; 7:eabj9608. [PMID: 34910516 PMCID: PMC8673761 DOI: 10.1126/sciadv.abj9608] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of autosomal recessive lysosomal storage diseases. One variant form of late-infantile NCL (vLINCL) is caused by mutations of a lysosomal membrane protein CLN7, the function of which has remained unknown. Here, we identified CLN7 as a novel endolysosomal chloride channel. Overexpression of CLN7 increases endolysosomal chloride currents and enlarges endolysosomes through a Ca2+/calmodulin-dependent way. Human CLN7 and its yeast homolog exhibit characteristics of chloride channels and are sensitive to chloride channel blockers. Moreover, CLN7 regulates lysosomal chloride conductance, luminal pH, and lysosomal membrane potential and promotes the release of lysosomal Ca2+ through transient receptor potential mucolipin 1 (TRPML1). Knocking out CLN7 causes pathological features that are similar to those of patients with vLINCL, including retinal degeneration and autofluorescent lipofuscin. The pathogenic mutations in CLN7 lead to a decrease in chloride permeability, suggesting that reconstitution of lysosomal Cl− homeostasis may be an effective strategy for the treatment of vLINCL.
Collapse
Affiliation(s)
- Yayu Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenping Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bingqian Lin
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yichuan Yao
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Canjun Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenqi Hu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haotian Wu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiamin Huang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mei Zhang
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Qu
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Corresponding author. (L.Q.); (C.C.)
| | - Chunlei Cang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Neurodegenerative Disorder Research Center, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Corresponding author. (L.Q.); (C.C.)
| |
Collapse
|
16
|
Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021; 288:4168-4182. [PMID: 33067905 DOI: 10.1111/febs.15602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023]
Abstract
Lysosomes are degradative organelles in eukaryotic cells mediating the hydrolytic catabolism of various macromolecules to small basic building blocks. These low-molecular-weight metabolites are transported across the lysosomal membrane and reused in the cytoplasm and other organelles for biosynthetic pathways. Even though in the past 20 years our understanding of the lysosomal membrane regarding various transporters, other integral and peripheral membrane proteins, the lipid composition, but also its turnover has dramatically improved, there are still many unresolved questions concerning key aspects of the function of the lysosomal membrane. These include a possible function of lysosomes as a cellular storage compartment, yet unidentified transporters mediating the export such as various amino acids, mechanisms mediating the transport of lysosomal membrane proteins from the Golgi apparatus to lysosomes, and the turnover of lysosomal membrane proteins. Here, we review the current knowledge about the lysosomal membrane and identify some of the open questions that need to be solved in the future for a comprehensive and complete understanding of how lysosomes communicate with other organelles, cellular processes, and pathways.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
17
|
Huang L, Liu Z, Yuan Y, Shen L, Jiang H, Tang B, Wang J, Lei L. Mutation analysis of MFSD8 in an amyotrophic lateral sclerosis cohort from mainland China. Eur J Neurosci 2020; 53:1197-1206. [PMID: 33226711 DOI: 10.1111/ejn.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Recent studies have suggested that rare variants in MFSD8 contribute to risk for frontotemporal dementia (FTD). Considering the common underlying pathogenesis and the shared genetic risk between amyotrophic lateral sclerosis (ALS) and FTD, we screened the coding region of MFSD8 in 551 unrelated patients with ALS (510 unrelated sporadic ALS and 41 familial ALS probands) from mainland China by whole-exome sequencing to assess its mutation frequency in patients with ALS and evaluate its association. Two rare deleterious variants, c.343G>A (p. V115M) and c.695T>C (p.L232P), were identified in this study. The variant c.695T>C (p.L232P) has not been previously reported and the carrier of this variant exhibits a relatively younger age of disease onset. Our studies provide some independent evidence showing that the rare variant p.L232P in MFSD8 might be a candidate risk factor for ALS. However, the relatively small sample size and the lack of patient-derived cells limit the power of the genetic exploration of this study, further robust multicenter studies with larger sizes and biological experiments with patient-derived cells are needed to elucidate the pathogenesis of the rare variant in MFSD8 in ALS.
Collapse
Affiliation(s)
- Ling Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Huber RJ, Mathavarajah S, Yap SQ. Mfsd8 localizes to endocytic compartments and influences the secretion of Cln5 and cathepsin D in Dictyostelium. Cell Signal 2020; 70:109572. [PMID: 32087303 DOI: 10.1016/j.cellsig.2020.109572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a family of neurodegenerative diseases that affect people of all ages and ethnicities, yet many of the associated genes/proteins are not well characterized. Mutations in MFSD8 (major facilitator superfamily domain-containing 8) cause an infantile form of NCL referred to as CLN7 disease. In this study, we revealed the localization and binding partners of an ortholog of human MFSD8 (Mfsd8) in the social amoeba Dictyostelium discoideum. Putative lysosomal targeting motifs are conserved in Dictyostelium Mfsd8, as are several residues mutated in CLN7 disease patients. Mfsd8 tagged with GFP localizes to endocytic compartments, which includes acidic intracellular vesicles and late endosomes. We pulled-down GFP-Mfsd8 and used mass spectrometry to reveal the Mfsd8 interactome during Dictyostelium growth and starvation. Among the identified hits were the Dictyostelium ortholog of human cathepsin D (CtsD), as well as proteins linked to the functions of the CLN3 (Cln3) and CLN5 (Cln5) orthologs in Dictyostelium. To study the function of Mfsd8, we validated a publically available mfsd8- cell line (GWDI Project) and then used this knockout cell line to show that Mfsd8 influences the secretion of Cln5 and CtsD. This information is then integrated into an emerging model describing the molecular networking of NCL proteins in Dictyostelium. In total, this study identifies Dictyostelium as a new model system for studying CLN7 disease.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | | - Shyong Quan Yap
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
19
|
Huber RJ. Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. J Biomed Sci 2020; 27:64. [PMID: 32430003 PMCID: PMC7238602 DOI: 10.1186/s12929-020-00653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, belong to a family of neurological disorders that cause blindness, seizures, loss of motor function and cognitive ability, and premature death. There are 13 different subtypes of NCL that are associated with mutations in 13 genetically distinct genes (CLN1-CLN8, CLN10-CLN14). Similar clinical and pathological profiles of the different NCL subtypes suggest that common disease mechanisms may be involved. As a result, there have been many efforts to determine how NCL proteins are connected at the cellular level. A main driving force for NCL research has been the utilization of mammalian and non-mammalian cellular models to study the mechanisms underlying the disease. One non-mammalian model that has provided significant insight into NCL protein function is the social amoeba Dictyostelium discoideum. Accumulated data from Dictyostelium and mammalian cells show that NCL proteins display similar localizations, have common binding partners, and regulate the expression and activities of one another. In addition, genetic models of NCL display similar phenotypes. This review integrates findings from Dictyostelium and mammalian models of NCL to highlight our understanding of the molecular networking of NCL proteins. The goal here is to help set the stage for future work to reveal the cellular mechanisms underlying the NCLs.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9L 0G2, Canada.
| |
Collapse
|
20
|
Connolly KJ, O'Hare MB, Mohammed A, Aitchison KM, Anthoney NC, Taylor MJ, Stewart BA, Tuxworth RI, Tear G. The neuronal ceroid lipofuscinosis protein Cln7 functions in the postsynaptic cell to regulate synapse development. Sci Rep 2019; 9:15592. [PMID: 31666534 PMCID: PMC6821864 DOI: 10.1038/s41598-019-51588-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of fatal, monogenic neurodegenerative disorders with an early onset in infancy or childhood. Despite identification of the genes disrupted in each form of the disease, their normal cellular role and how their deficits lead to disease pathology is not fully understood. Cln7, a major facilitator superfamily domain-containing protein, is affected in a late infantile-onset form of NCL. Cln7 is conserved across species suggesting a common function. Here we demonstrate that Cln7 is required for the normal growth of synapses at the Drosophila larval neuromuscular junction. In a Cln7 mutant, synapses fail to develop fully leading to reduced function and behavioral changes with dysregulation of TOR activity. Cln7 expression is restricted to the post-synaptic cell and the protein localizes to vesicles immediately adjacent to the post-synaptic membrane. Our data suggest an involvement for Cln7 in regulating trans-synaptic communication necessary for normal synapse development.
Collapse
Affiliation(s)
- Kyle J Connolly
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Megan B O'Hare
- Department of Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Alamin Mohammed
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katelyn M Aitchison
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Niki C Anthoney
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthew J Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bryan A Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Guy Tear
- Department of Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK.
| |
Collapse
|
21
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|
22
|
Geier EG, Bourdenx M, Storm NJ, Cochran JN, Sirkis DW, Hwang JH, Bonham LW, Ramos EM, Diaz A, Van Berlo V, Dokuru D, Nana AL, Karydas A, Balestra ME, Huang Y, Russo SP, Spina S, Grinberg LT, Seeley WW, Myers RM, Miller BL, Coppola G, Lee SE, Cuervo AM, Yokoyama JS. Rare variants in the neuronal ceroid lipofuscinosis gene MFSD8 are candidate risk factors for frontotemporal dementia. Acta Neuropathol 2019; 137:71-88. [PMID: 30382371 PMCID: PMC6371791 DOI: 10.1007/s00401-018-1925-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022]
Abstract
Pathogenic variation in MAPT, GRN, and C9ORF72 accounts for at most only half of frontotemporal lobar degeneration (FTLD) cases with a family history of neurological disease. This suggests additional variants and genes that remain to be identified as risk factors for FTLD. We conducted a case-control genetic association study comparing pathologically diagnosed FTLD patients (n = 94) to cognitively normal older adults (n = 3541), and found suggestive evidence that gene-wide aggregate rare variant burden in MFSD8 is associated with FTLD risk. Because homozygous mutations in MFSD8 cause neuronal ceroid lipofuscinosis (NCL), similar to homozygous mutations in GRN, we assessed rare variants in MFSD8 for relevance to FTLD through experimental follow-up studies. Using post-mortem tissue from middle frontal gyrus of patients with FTLD and controls, we identified increased MFSD8 protein levels in MFSD8 rare variant carriers relative to non-variant carrier patients with sporadic FTLD and healthy controls. We also observed an increase in lysosomal and autophagy-related proteins in MFSD8 rare variant carrier and sporadic FTLD patients relative to controls. Immunohistochemical analysis revealed that MFSD8 was expressed in neurons and astrocytes across subjects, without clear evidence of abnormal localization in patients. Finally, in vitro studies identified marked disruption of lysosomal function in cells from MFSD8 rare variant carriers, and identified one rare variant that significantly increased the cell surface levels of MFSD8. Considering the growing evidence for altered autophagy in the pathogenesis of neurodegenerative disorders, our findings support a role of NCL genes in FTLD risk and suggest that MFSD8-associated lysosomal dysfunction may contribute to FTLD pathology.
Collapse
Affiliation(s)
- Ethan G Geier
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Mathieu Bourdenx
- Department of Development and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Nadia J Storm
- Department of Development and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | | | - Daniel W Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ji-Hye Hwang
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Eliana Marisa Ramos
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Antonio Diaz
- Department of Development and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Victoria Van Berlo
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Deepika Dokuru
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alissa L Nana
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Anna Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | | | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Silvia P Russo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Suzee E Lee
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| |
Collapse
|
23
|
Perland E, Bagchi S, Klaesson A, Fredriksson R. Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type: evolutionary conservation, predicted structure and neuronal co-expression. Open Biol 2018; 7:rsob.170142. [PMID: 28878041 PMCID: PMC5627054 DOI: 10.1098/rsob.170142] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
Solute carriers (SLCs) are vital as they are responsible for a major part of the molecular transport over lipid bilayers. At present, there are 430 identified SLCs, of which 28 are called atypical SLCs of major facilitator superfamily (MFS) type. These are MFSD1, 2A, 2B, 3, 4A, 4B, 5, 6, 6 L, 7, 8, 9, 10, 11, 12, 13A, 14A and 14B; SV2A, SV2B and SV2C; SVOP and SVOPL; SPNS1, SPNS2 and SPNS3; and UNC93A and UNC93B1. We studied their fundamental properties, and we also included CLN3, an atypical SLC not yet belonging to any protein family (Pfam) clan, because its involvement in the same neuronal degenerative disorders as MFSD8. With phylogenetic analyses and bioinformatic sequence comparisons, the proteins were divided into 15 families, denoted atypical MFS transporter families (AMTF1-15). Hidden Markov models were used to identify orthologues from human to Drosophila melanogaster and Caenorhabditis elegans Topology predictions revealed 12 transmembrane segments (for all except CLN3), corresponding to the common MFS structure. With single-cell RNA sequencing and in situ proximity ligation assay on brain cells, co-expressions of several atypical SLCs were identified. Finally, the transcription levels of all genes were analysed in the hypothalamic N25/2 cell line after complete amino acid starvation, showing altered expression levels for several atypical SLCs.
Collapse
Affiliation(s)
- Emelie Perland
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sonchita Bagchi
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Axel Klaesson
- Pharmaceutical Cell Biology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Recombinant tandem of pore-domains in a Weakly Inward rectifying K + channel 2 (TWIK2) forms active lysosomal channels. Sci Rep 2017; 7:649. [PMID: 28381826 PMCID: PMC5428834 DOI: 10.1038/s41598-017-00640-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/07/2017] [Indexed: 12/27/2022] Open
Abstract
Recombinant TWIK2 channels produce weak basal background K+ currents. Current amplitudes depend on the animal species the channels have been isolated from and on the heterologous system used for their re-expression. Here we show that this variability is due to a unique cellular trafficking. We identified three different sequence signals responsible for the preferential expression of TWIK2 in the Lamp1-positive lysosomal compartment. Sequential inactivation of tyrosine-based (Y308ASIP) and di-leucine-like (E266LILL and D282EDDQVDIL) trafficking motifs progressively abolishes the targeting of TWIK2 to lysosomes, and promotes its functional relocation at the plasma membrane. In addition, TWIK2 contains two N-glycosylation sites (N79AS and N85AS) on its luminal side, and glycosylation is necessary for expression in lysosomes. As shown by electrophysiology and electron microscopy, TWIK2 produces functional background K+ currents in the endolysosomes, and its expression affects the number and mean size of the lysosomes. These results show that TWIK2 is expressed in lysosomes, further expanding the registry of ion channels expressed in these organelles.
Collapse
|
25
|
Mohammed A, O'Hare MB, Warley A, Tear G, Tuxworth RI. in vivo localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7, at endogenous expression levels. Neurobiol Dis 2017; 103:123-132. [PMID: 28365214 PMCID: PMC5441185 DOI: 10.1016/j.nbd.2017.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a group of recessively inherited, childhood-onset neurodegenerative conditions. Several forms are caused by mutations in genes encoding putative lysosomal membrane proteins. Studies of the cell biology underpinning these disorders are hampered by the poor antigenicity of the membrane proteins, which makes visualization of the endogenous proteins difficult. We have used Drosophila to generate knock-in YFP-fusions for two of the NCL membrane proteins: CLN7 and CLN3. The YFP-fusions are expressed at endogenous levels and the proteins can be visualized live without the need for overexpression. Unexpectedly, both CLN7 and CLN3 have restricted expression in the CNS of Drosophila larva and are predominantly expressed in the glia that form the insect blood-brain-barrier. CLN7 is also expressed in neurons in the developing visual system. Analogous with murine CLN3, Drosophila CLN3 is strongly expressed in the excretory and osmoregulatory Malpighian tubules, but the knock-in also reveals unexpected localization of the protein to the apical domain adjacent to the lumen. In addition, some CLN3 protein in the tubules is localized within mitochondria. Our in vivo imaging of CLN7 and CLN3 suggests new possibilities for function and promotes new ideas about the cell biology of the NCLs.
Collapse
Affiliation(s)
- Alamin Mohammed
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Megan B O'Hare
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London, SE1 1UL, UK
| | - Guy Tear
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
26
|
Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2242-55. [PMID: 25962910 DOI: 10.1016/j.bbadis.2015.04.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The fatal, primarily childhood neurodegenerative disorders, neuronal ceroid lipofuscinoses (NCLs), are currently associated with mutations in 13 genes. The protein products of these genes (CLN1 to CLN14) differ in their function and their intracellular localization. NCL-associated proteins have been localized mostly in lysosomes (CLN1, CLN2, CLN3, CLN5, CLN7, CLN10, CLN12 and CLN13) but also in the Endoplasmic Reticulum (CLN6 and CLN8), or in the cytosol associated to vesicular membranes (CLN4 and CLN14). Some of them such as CLN1 (palmitoyl protein thioesterase 1), CLN2 (tripeptidyl-peptidase 1), CLN5, CLN10 (cathepsin D), and CLN13 (cathepsin F), are lysosomal soluble proteins; others like CLN3, CLN7, and CLN12, have been proposed to be lysosomal transmembrane proteins. In this review, we give our views and attempt to summarize the proposed and confirmed functions of each NCL protein and describe and discuss research results published since the last review on NCL proteins. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
27
|
Hsu H, Baldwin CL, Telfer JC. The Endocytosis and Signaling of the γδ T Cell Coreceptor WC1 Are Regulated by a Dileucine Motif. THE JOURNAL OF IMMUNOLOGY 2015; 194:2399-406. [DOI: 10.4049/jimmunol.1402020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Guo J, O'Brien DP, Mhlanga-Mutangadura T, Olby NJ, Taylor JF, Schnabel RD, Katz ML, Johnson GS. A rare homozygous MFSD8 single-base-pair deletion and frameshift in the whole genome sequence of a Chinese Crested dog with neuronal ceroid lipofuscinosis. BMC Vet Res 2015; 10:960. [PMID: 25551667 PMCID: PMC4298050 DOI: 10.1186/s12917-014-0181-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/06/2014] [Indexed: 02/02/2023] Open
Abstract
Background The neuronal ceroid lipofuscinoses are heritable lysosomal storage diseases characterized by progressive neurological impairment and the accumulation of autofluorescent storage granules in neurons and other cell types. Various forms of human neuronal ceroid lipofuscinosis have been attributed to mutations in at least 13 different genes. So far, mutations in the canine orthologs of 7 of these genes have been identified in DNA from dogs with neuronal ceroid lipofuscinosis. The identification of new causal mutations could lead to the establishment of canine models to investigate the pathogenesis of the corresponding human neuronal ceroid lipofuscinoses and to evaluate and optimize therapeutic interventions for these fatal human diseases. Case presentation We obtained blood and formalin-fixed paraffin-embedded brain sections from a rescue dog that was reported to be a young adult Chinese Crested. The dog was euthanized at approximately 19 months of age as a consequence of progressive neurological decline that included blindness, anxiety, and cognitive impairment. A diagnosis of neuronal ceroid lipofuscinosis was made based on neurological signs, magnetic resonance imaging of the brain, and fluorescence microscopic and electron microscopic examination of brain sections. We isolated DNA from the blood and used it to generate a whole genome sequence with 33-fold average coverage. Among the 7.2 million potential sequence variants revealed by aligning the sequence reads to the canine genome reference sequence was a homozygous single base pair deletion in the canine ortholog of one of 13 known human NCL genes: MFSD8:c.843delT. MFSD8:c.843delT is predicted to cause a frame shift and premature stop codon resulting in a truncated protein, MFSD8:p.F282Lfs13*, missing its 239 C-terminal amino acids. The MFSD8:c.843delT allele is absent from the whole genome sequences of 101 healthy canids or dogs with other diseases. The genotyping of archived DNA from 1478 Chinese Cresteds did not identify any additional MFSD8:c.843delT homozygotes and found only one heterozygote. Conclusion We conclude that the neurodegenerative disease of the Chinese Crested rescue dog was neuronal ceroid lipofuscinosis and that homozygosity for the MFSD8:c.843delT sequence variant was very likely to be the molecular-genetic cause of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12917-014-0181-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juyuan Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | - Jeremy F Taylor
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Robert D Schnabel
- Division of Animal Science, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Martin L Katz
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
29
|
Roosing S, van den Born LI, Sangermano R, Banfi S, Koenekoop RK, Zonneveld-Vrieling MN, Klaver CCW, van Lith-Verhoeven JJC, Cremers FPM, den Hollander AI, Hoyng CB. Mutations in MFSD8, encoding a lysosomal membrane protein, are associated with nonsyndromic autosomal recessive macular dystrophy. Ophthalmology 2015; 122:170-9. [PMID: 25227500 DOI: 10.1016/j.ophtha.2014.07.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/21/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023] Open
Abstract
PURPOSE This study aimed to identify the genetic defects in 2 families with autosomal recessive macular dystrophy with central cone involvement. DESIGN Case series. PARTICIPANTS Two families and a cohort of 244 individuals with various inherited maculopathies and cone disorders. METHODS Genome-wide linkage analysis and exome sequencing were performed in 1 large family with 5 affected individuals. In addition, exome sequencing was performed in the proband of a second family. Subsequent analysis of the identified mutations in 244 patients was performed by Sanger sequencing or restriction enzyme digestion. The medical history of individuals carrying the MFSD8 variants was reviewed and additional ophthalmic examinations were performed, including electroretinography (ERG), multifocal ERG (mfERG), perimetry, optical coherence tomography (OCT), fundus autofluorescence, and fundus photography. MAIN OUTCOME MEASURES MFSD8 variants, age at diagnosis, visual acuity, fundus appearance, color vision defects, visual field, ERG, mfERG, fundus autofluorescence, and OCT findings. RESULTS Compound heterozygous variants in MFSD8, a gene encoding a lysosomal transmembrane protein, were identified in 2 families with macular dystrophy with a normal or subnormal ERG, but reduced mfERG. In both families, a heterozygous missense variant p.Glu336Gln was identified, which was predicted to have a mild effect on the protein. In the first family, a protein-truncating variant (p.Glu381*) was identified on the other allele, and in the second family, a variant (c.1102G>C) was identified that results in a splicing defect leading to skipping of exon 11 (p.Lys333Lysfs*3). The p.Glu336Gln allele was found to be significantly enriched in patients with maculopathies and cone disorders (6/488) compared with ethnically matched controls (35/18 682; P < 0.0001), suggesting that it may act as a genetic modifier. CONCLUSIONS In this study, we identified variants in MFSD8 as a novel cause of nonsyndromic autosomal recessive macular dystrophy with central cone involvement. Affected individuals showed no neurologic features typical for variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), a severe and devastating multisystem lysosomal storage disease previously associated with mutations in MFSD8. We propose a genotype-phenotype model in which a combination of a severe and a mild variant cause nonsyndromic macular dystrophy with central cone involvement, and 2 severe mutations cause vLINCL.
Collapse
Affiliation(s)
- Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands; Current affiliation: Howard Hughes Medical Institute, The Rockefeller University, Department for Pediatric Brain Diseases, New York, New York
| | | | - Riccardo Sangermano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy; Medical Genetics, Department of Biochemistry, Biophysics, and General Pathology, Second University of Naples, Naples, Italy
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Clinico-pathological manifestations of variant late infantile neuronal ceroid lipofuscinosis (vLINCL) caused by a novel mutation in MFSD8 gene. Eur J Med Genet 2014; 57:607-12. [PMID: 25270050 DOI: 10.1016/j.ejmg.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 11/21/2022]
Abstract
Neuronal ceroid lipofuscinosis (NCL) refers to a growing heterogeneous group of neurodegenerative disorders characterized by lysosomal accumulation of abnormal autofluorescent material. NCLs are traditionally classified clinically according to their age of onset. Variable late infantile NCL (vLINCL) is the most genetically heterogeneous subtype as it has been shown to be caused by mutations in at least six genes. We report on 5 patients of a consanguineous family who presented in early childhood with intractable seizures, severe cognitive and motor decline, behavioral impairment and progressive retinal degeneration. Disease course was severe; all patients were in a vegetative state by the second decade of life, and eventually die prematurely (except in one case). Ultrastructural studies of brain and rectal mucosa disclosed accumulation of storage material in various patterns including fingerprint, curvilinear, and granular osmiophilic deposits consistent with the diagnosis of NCL. Brain pathologic features from a living patient are first reported here and shed light on disease progression and pathogenesis. Using a combination of whole genome autozygosity mapping and candidate gene direct sequencing, we identified a mutation in MFSD8, c.472G>A (p.Gly158Ser), which was found to segregate with the disease phenotype in the family. This study underscores the importance of a combined clinic-molecular workup in NCLs and other neurodegenerative conditions.
Collapse
|
31
|
Damme M, Brandenstein L, Fehr S, Jankowiak W, Bartsch U, Schweizer M, Hermans-Borgmeyer I, Storch S. Gene disruption of Mfsd8 in mice provides the first animal model for CLN7 disease. Neurobiol Dis 2014; 65:12-24. [PMID: 24423645 DOI: 10.1016/j.nbd.2014.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 01/04/2014] [Indexed: 12/28/2022] Open
Abstract
Mutations in the major facilitator superfamily domain containing 8 (MFSD8) gene coding for the lysosomal CLN7 membrane protein result in CLN7 disease, a lysosomal storage disease of childhood. CLN7 disease belongs to a group of inherited disorders, called neuronal ceroid lipofuscinoses (NCL), which are characterized by the accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. We have disrupted the Mfsd8 gene by insertion of a lacZ gene-trap cassette between exons 1 and 2 in mice and have analyzed the impact of Cln7 depletion on neuronal and visceral tissues. Analysis of lacZ reporter gene activity in heterozygous Mfsd8((wt/tm1a)) mice showed strong Mfsd8 mRNA expression in the cerebral cortex, in the hippocampus and in the kidney. Homozygous Mfsd8((tm1a/tm1a)) mice were viable and fertile and resembled biochemically the NCL-phenotype of human CLN7 patients including the accumulation of autofluorescent material in the brain and peripheral tissues and of subunit c of mitochondrial ATP synthase in the cerebellum and nuclei of distinct brain regions, and the degeneration of photoreceptor cells in the retina. Lysosomal storage was found in large neurons of the medulla, the hippocampus and in Purkinje cells of the cerebellum in mutant mice. The ultrastructure of the storage material revealed dense lamellar bodies with irregular forms within cerebellar and hippocampal neurons. In the brain loss of Cln7 was accompanied by mild reactive microgliosis and subtle astrogliosis by 10months of age, respectively. In summary we have generated a mouse model which is partly valuable as some but not all neuropathological features of human CLN7 disease are recapitulated thus representing an animal model to study CLN7-specific disease mechanisms.
Collapse
Affiliation(s)
- Markus Damme
- Biochemistry I, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany.
| | - Laura Brandenstein
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Susanne Fehr
- Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Wanda Jankowiak
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, ZMNH, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Stephan Storch
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
32
|
Abstract
The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation.
Collapse
|
33
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1831-41. [PMID: 23274885 DOI: 10.1016/j.bbadis.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
35
|
Steenhuis P, Froemming J, Reinheckel T, Storch S. Proteolytic cleavage of the disease-related lysosomal membrane glycoprotein CLN7. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:1617-28. [PMID: 22668694 DOI: 10.1016/j.bbadis.2012.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/08/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022]
Abstract
CLN7 is a polytopic lysosomal membrane glycoprotein of unknown function and is deficient in variant late infantile neuronal ceroid lipofuscinosis. Here we show that full-length CLN7 is proteolytically cleaved twice, once proximal to the used N-glycosylation sites in lumenal loop L9 and once distal to these sites. Cleavage occurs by cysteine proteases in acidic compartments and disruption of lysosomal targeting of CLN7 results in inhibition of proteolytic cleavage. The apparent molecular masses of the CLN7 fragments suggest that both cleavage sites are located within lumenal loop L9. The known disease-causing mutations, p.T294K and p.P412L, localized in lumenal loops L7 and L9, respectively, did not interfere with correct lysosomal targeting of CLN7 but enhanced its proteolytic cleavage in lysosomes. Incubation of cells with selective cysteine protease inhibitors and expression of CLN7 in gene-targeted mouse embryonic fibroblasts revealed that cathepsin L is required for one of the two proteolytic cleavage events. Our findings suggest that CLN7 is inactivated by proteolytic cleavage and that enhanced CLN7 proteolysis caused by missense mutations in selected luminal loops is associated with disease.
Collapse
Affiliation(s)
- Pieter Steenhuis
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
36
|
Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S. Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J Biol Chem 2012; 287:22701-8. [PMID: 22753890 DOI: 10.1074/jbc.m112.368876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential channels TRPML2 and TRPML3 (MCOLN2 and MCOLN3) are nonselective cation channels. They are widely expressed in mammals. However, little is known about their physiological function(s) and activation mechanism(s). TRPML3 can be activated or rather de-inhibited by exposing it first to sodium-free extracellular solution and subsequently to high extracellular sodium. TRPML3 can also be activated by a variety of small chemical compounds identified in a high throughput screen and is inhibited by low pH. Furthermore, it was found that TRPML3 is constitutively active in low or no sodium-containing extracellular solution. This constitutive activity is independent of the intracellular presence of sodium, and whole-cell current densities are similar with pipette solutions containing cesium, potassium, or sodium. Here, we present mutagenesis data generated based on the hypothesis that negatively charged amino acids in the extracellular loops of TRPML3 may interfere with the observed sodium inhibition. We systematically mutated negatively charged amino acids in the first and second extracellular loops and found that mutating Glu-361 in the second loop has a significant impact on the sodium-mediated block of TRPML3. We further demonstrate that the TRPML3-related cation channel TRPML2 is also activated by lowering the extracellular sodium concentration as well as by a subset of small chemical compounds that were previously identified as activators of TRPML3, thus confirming the functional activity of TRPML2 at the plasma membrane and suggesting similar gating mechanisms for both TRPML channels.
Collapse
Affiliation(s)
- Christian Grimm
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, D-80802 München, Germany.
| | | | | | | | | |
Collapse
|
37
|
Grimm C, Jörs S, Guo Z, Obukhov AG, Heller S. Constitutive Activity of TRPML2 and TRPML3 Channels versus Activation by Low Extracellular Sodium and Small Molecules. J Biol Chem 2012. [DOI: 10.1074/jbc.m112.369876] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Larisch N, Schulze C, Galione A, Dietrich P. An N-Terminal Dileucine Motif Directs Two-Pore Channels to the Tonoplast of Plant Cells. Traffic 2012; 13:1012-22. [DOI: 10.1111/j.1600-0854.2012.01366.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Nina Larisch
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Christina Schulze
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| | - Antony Galione
- Department of Pharmacology; Oxford University; Oxford; OX1 3QT; UK
| | - Petra Dietrich
- Department Biology; Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and Erlangen Center of Plant Science; Staudtstrasse 5; 91058; Erlangen; Germany
| |
Collapse
|
39
|
Cheng X, Wang H. Multiple targeting motifs direct NRAMP1 into lysosomes. Biochem Biophys Res Commun 2012; 419:578-83. [PMID: 22382021 DOI: 10.1016/j.bbrc.2012.02.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/12/2012] [Indexed: 11/16/2022]
Abstract
Natural resistance-associated macrophage protein 1 (NRAMP1) containing 548 amino acids (AA) and 12 transmembrane domains (TMDs) is localized in membranes of lysosomes. Our study aimed to investigate the targeting motifs of NRAMP1 by expressing GFP-tagged full-length and truncated NRAMP1 proteins and overlapping with the lysosomal marker Lamp1-RFP in Chinese hamster ovary (CHO) cells. The NH(2)-terminal amino acids 73-140 region including TMD2 was essential for NRAMP1 lysosomal targeting. The AA.263-334 region containing the tyrosine-based motif (327)YAPI(330) targeted NRAMP1 into lysosomes. Additionally, two internal signal peptides AA.451-483 and AA.489-522 were identified as lysosomal targeting motifs. Taken together, NRAMP1 consists of multiple targeting motifs for trafficking into lysosomes.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | |
Collapse
|
40
|
Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2011; 33:42-63. [DOI: 10.1002/humu.21624] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/29/2011] [Indexed: 12/17/2022]
|
41
|
A role for the ubiquitin ligase Nedd4 in membrane sorting of LAPTM4 proteins. PLoS One 2011; 6:e27478. [PMID: 22096579 PMCID: PMC3214061 DOI: 10.1371/journal.pone.0027478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 10/18/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The lysosome associated protein transmembrane (LAPTM) family is comprised of three members: LAPTM5, LAPTM4a and LAPTM4b, with the latter previously shown to be overexpressed in numerous cancers. While we had demonstrated earlier the requirement of the E3 ubiquitin ligase Nedd4 for LAPTM5 sorting to lysosomes, the regulation of sorting of LAPTM4 proteins is less clear. METHODOLOGY/PRINCIPAL FINDINGS Here we show that LAPTM4a and LAPTM4b are localized to the lysosome, but unique to LAPTM4b, a fraction of it is present at the plasma membrane and its overexpression induces the formation of actin-based membrane protrusions. We demonstrate that LAPTM4s, like LAPTM5, are able to co-immunoprecipitate with the E3 ubiquitin ligase Nedd4, an interaction that is dependent on LAPTM4 PY motifs and plays a role in membrane sorting. Accordingly, in Nedd4 knockout mouse embryonic fibroblasts (MEFs), LAPTM4a and LAPTM4b show reduced lysosomal localization. Moreover, lack of PY motifs leads to enhanced missorting of LAPTM4b to the plasma membrane instead of the lysosome. CONCLUSIONS/SIGNIFICANCE These results suggest that while some requisites of LAPTM5 lysosomal sorting are conserved among LAPTM4 proteins, LAPTM4a and LAPTM4b have also developed distinct sorting requirements.
Collapse
|
42
|
Aittaleb M, Nishimura A, Linder ME, Tesmer JJG. Plasma membrane association of p63 Rho guanine nucleotide exchange factor (p63RhoGEF) is mediated by palmitoylation and is required for basal activity in cells. J Biol Chem 2011; 286:34448-56. [PMID: 21832057 DOI: 10.1074/jbc.m111.273342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of G protein-coupled receptors at the cell surface leads to the activation or inhibition of intracellular effector enzymes, which include various Rho guanine nucleotide exchange factors (RhoGEFs). RhoGEFs activate small molecular weight GTPases at the plasma membrane (PM). Many of the known G protein-coupled receptor-regulated RhoGEFs are found in the cytoplasm of unstimulated cells, and PM recruitment is a critical aspect of their regulation. In contrast, p63RhoGEF, a Gα(q)-regulated RhoGEF, appears to be constitutively localized to the PM. The objective of this study was to determine the molecular basis for the localization of p63RhoGEF and the impact of its subcellular localization on its regulation by Gα(q). Herein, we show that the pleckstrin homology domain of p63RhoGEF is not involved in its PM targeting. Instead, a conserved string of cysteines (Cys-23/25/26) at the N terminus of the enzyme is palmitoylated and required for membrane localization and full basal activity in cells. Conversion of these residues to serine relocates p63RhoGEF from the PM to the cytoplasm, diminishes its basal activity, and eliminates palmitoylation. The activity of palmitoylation-deficient p63RhoGEF can be rescued by targeting to the PM by fusion with tandem phospholipase C-δ1 pleckstrin homology domains or by co-expression with wild-type Gα(q) but not with palmitoylation-deficient Gα(q). Our data suggest that p63RhoGEF is regulated chiefly through allosteric control by Gα(q), as opposed to other known Gα-regulated RhoGEFs, which are instead sequestered in the cytoplasm, perhaps because of their high basal activity.
Collapse
Affiliation(s)
- Mohamed Aittaleb
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | |
Collapse
|
43
|
Sharifi A, Kousi M, Sagné C, Bellenchi GC, Morel L, Darmon M, Hulková H, Ruivo R, Debacker C, El Mestikawy S, Elleder M, Lehesjoki AE, Jalanko A, Gasnier B, Kyttälä A. Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum Mol Genet 2010; 19:4497-514. [PMID: 20826447 DOI: 10.1093/hmg/ddq381] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) constitute a group of progressive neurodegenerative disorders resulting from mutations in at least eight different genes. Mutations in the most recently identified NCL gene, MFSD8/CLN7, underlie a variant of late-infantile NCL (vLINCL). The MFSD8/CLN7 gene encodes a polytopic protein with unknown function, which shares homology with ion-coupled membrane transporters. In this study, we confirmed the lysosomal localization of the native CLN7 protein. This localization of CLN7 is not impaired by the presence of pathogenic missense mutations or after genetic ablation of the N-glycans. Expression of chimeric and full-length constructs showed that lysosomal targeting of CLN7 is mainly determined by an N-terminal dileucine motif, which specifically binds to the heterotetrameric adaptor AP-1 in vitro. We also show that CLN7 mRNA is more abundant in neurons than astrocytes and microglia, and that it is expressed throughout rat brain, with increased levels in the granular layer of cerebellum and hippocampal pyramidal cells. Interestingly, this cellular and regional distribution is in good agreement with the autofluorescent lysosomal storage and cell loss patterns found in brains from CLN7-defective patients. Overall, these data highlight lysosomes as the primary site of action for CLN7, and suggest that the pathophysiology underpinning CLN7-associated vLINCL is a cell-autonomous process.
Collapse
Affiliation(s)
- A Sharifi
- Institut de Biologie Physico-Chimique, Université Paris Descartes, Centre National de la Recherche Scientifique, UMR 8192, Institut de Biologie Physico-Chimique, 13 Rue P. et M. Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2010; 68:453-74. [PMID: 20680390 DOI: 10.1007/s00018-010-0468-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.
Collapse
Affiliation(s)
- Amanda L Getty
- Sanford Children's Health Research Center, Sanford Research USD, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | |
Collapse
|