1
|
Yang K, Zeng L, Li Y, Wu L, Xiang W, Wu X, Wang G, Bao T, Huang S, Yu R, Zhang G, Liu H. Uncovering the pharmacological mechanism of Shou Tai Wan on recurrent spontaneous abortion: A integrated pharmacology strategy-based research. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117589. [PMID: 38104875 DOI: 10.1016/j.jep.2023.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shou Tai Wan (STW), a traditional Chinese medicine formula, has been historically used for the treatment of recurrent spontaneous abortion (RSA). Despite its long-standing usage, the exact mechanism underlying the therapeutic effects of STW remains unclear in the existing literature. AIMS OF THIS STUDY To explore the Pharmacological Mechanism of STW on RSA. METHODS A network pharmacological methodology was utilized to predict the active compounds and potential targets of STW, collect the RSA targets and other human proteins of STW, and analyze the STW related networks. The animal experiments were also performed to validate the effect of STW on RSA. RESULTS The results of network analysis showed that STW may regulate PI3K/AKT, MAPK, FoxO signaling pathways and so on. Animal experiment established the RSA model with CBA/J × DBA/2 mice. It was found that STW can reduce the embryo absorption rate of RSA group (p < 0.05) and balance the expression of Th 1/Th2 type cytokines compared with the model group. After 14 days of administration, the decidual and placental tissues were taken and the CD4+ T cells were isolated, and the phosphorylation level of signaling pathway was detected by Springbio720 antibody microarray. This experiment found that STW can significantly up-regulate the phosphorylation levels of STAT3 and STAT6 proteins in the STAT signaling pathway, and down-regulating the phosphorylation level of STAT1 protein. STW also significantly up-regulated the phosphorylation levels of Raf1, A-Raf, Ask1, Mek1, Mek2, JKK1, ERK1, ERK2, c-fos, c-Jun and CREB proteins in the MAPK signaling pathway, and down-regulate the phosphorylation levels of MEK6 and IKKb proteins. Compared with the RSA group, the STW group increased the expression levels of ERK1/2 mRNA and proteins and p-ERK1/2 proteins, and there was a statistical difference (p < 0.05). This is consistent with the chip results. CONCLUSION STW may achieve therapeutic effects by interfering with the signaling pathways, biological processes and targets discovered in this study. It provides a new perspective for revealing the immunological mechanism of STW in the treatment of RSA, and also provides a theoretical basis for the clinical use of STW in the treatment of RSA.
Collapse
Affiliation(s)
- Kailin Yang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Lingyu Wu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang Xiang
- The First People's Hospital Changde City, Changde City, China
| | - Xiaolan Wu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guiyun Wang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Shanshan Huang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong Yu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Guomin Zhang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Huiping Liu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Gholiof M, Adamson-De Luca E, Wessels JM. The female reproductive tract microbiotas, inflammation, and gynecological conditions. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:963752. [PMID: 36303679 PMCID: PMC9580710 DOI: 10.3389/frph.2022.963752] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
The intricate interactions between the host cells, bacteria, and immune components that reside in the female reproductive tract (FRT) are essential in maintaining reproductive tract homeostasis. Much of our current knowledge surrounding the FRT microbiota relates to the vaginal microbiota, where ‘health’ has long been associated with low bacterial diversity and Lactobacillus dominance. This concept has recently been challenged as women can have a diverse vaginal microbial composition in the absence of symptomatic disease. The structures of the upper FRT (the endocervix, uterus, Fallopian tubes, and ovaries) have distinct, lower biomass microbiotas than the vagina; however, the existence of permanent microbiotas at these sites is disputed. During homeostasis, a balance exists between the FRT bacteria and the immune system that maintains immune quiescence. Alterations in the bacteria, immune system, or local environment may result in perturbances to the FRT microbiota, defined as dysbiosis. The inflammatory signature of a perturbed or “dysbiotic” FRT microbiota is characterized by elevated concentrations of pro-inflammatory cytokines in cervical and vaginal fluid. It appears that vaginal homeostasis can be disrupted by two different mechanisms: first, a shift toward increased bacterial diversity can trigger vaginal inflammation, and second, local immunity is altered in some manner, which disrupts the microbiota in response to an environmental change. FRT dysbiosis can have negative effects on reproductive health. This review will examine the increasing evidence for the involvement of the FRT microbiotas and inflammation in gynecologic conditions such as endometriosis, infertility, and endometrial and ovarian cancer; however, the precise mechanisms by which bacteria are involved in these conditions remains speculative at present. While only in their infancy, the use of antibiotics and probiotics to therapeutically alter the FRT microbiota is being studied and is discussed herein. Our current understanding of the intimate relationship between immunity and the FRT microbiota is in its early days, and more research is needed to deepen our mechanistic understanding of this relationship and to assess how our present knowledge can be harnessed to assist in diagnosis and treatment of gynecologic conditions.
Collapse
Affiliation(s)
- Mahsa Gholiof
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Emma Adamson-De Luca
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- AIMA Laboratories Inc., Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- AIMA Laboratories Inc., Hamilton, ON, Canada
- *Correspondence: Jocelyn M. Wessels
| |
Collapse
|
3
|
Application of Ligilactobacillus salivarius CECT5713 to Achieve Term Pregnancies in Women with Repetitive Abortion or Infertility of Unknown Origin by Microbiological and Immunological Modulation of the Vaginal Ecosystem. Nutrients 2021; 13:nu13010162. [PMID: 33419054 PMCID: PMC7825435 DOI: 10.3390/nu13010162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, the cervicovaginal environment of women with reproductive failure (repetitive abortion, infertility of unknown origin) was assessed and compared to that of healthy fertile women. Subsequently, the ability of Ligilactobacillus salivarius CECT5713 to increase pregnancy rates in women with reproductive failure was evaluated. Vaginal pH and Nugent score were higher in women with reproductive failure than in fertile women. The opposite was observed regarding the immune factors TGF-β 1, TFG-β 2, and VEFG. Lactobacilli were detected at a higher frequency and concentration in fertile women than in women with repetitive abortion or infertility. The metataxonomic study revealed that vaginal samples from fertile women were characterized by the high abundance of Lactobacillus sequences, while DNA from this genus was practically absent in one third of samples from women with reproductive failure. Daily oral administration of L. salivarius CECT5713 (~9 log10 CFU/day) to women with reproductive failure for a maximum of 6 months resulted in an overall successful pregnancy rate of 56%. The probiotic intervention modified key microbiological, biochemical, and immunological parameters in women who got pregnant. In conclusion, L. salivarius CECT5713 has proved to be a good candidate to improve reproductive success in women with reproductive failure.
Collapse
|
4
|
Cheng H, Huang Y, Huang G, Chen Z, Tang J, Pan L, Lv J, Long A, Wang R, Chen Z, Zhao S. Effect of the IDO Gene on Pregnancy in Mice with Recurrent Pregnancy Loss. Reprod Sci 2021; 28:52-59. [PMID: 32725590 DOI: 10.1007/s43032-020-00264-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
The aim of this study is to investigate the effect of the IDO (indoleamine 2,3-dioxygenase) gene on pregnancy outcome in mice with recurrent pregnancy loss (RPL) and its mechanism of action in the maternal-fetal interface. An RPL model was established via natural mating of female CBA/J mice with male DBA/2 mice; thereafter, the female mice were randomly divided into groups treated with LV-EGFP (enhanced green fluorescent protein)-IDO (lentivirus vector carrying IDO-EGFP gene), LV-EGFP (negative control lentivirus vector), or phosphate-buffered saline (control). The mice were sacrificed at 13.5 days of pregnancy, and the embryo absorption rate was determined. Peripheral blood regulatory T cells (Tregs) from the pregnant mice were detected using flow cytometry. Placental and decidual tissue IDO expression was detected using immunofluorescence and Western blotting. Inflammatory cell infiltration of the placental and decidual tissue was observed using hematoxylin-eosin (HE) staining. The LV-EGFP-IDO group had a significantly lower embryo absorption rate than the LV-EGFP and control groups (P = 0.0006 and P = 0.0049, respectively) and significantly more Tregs than the LV-EGFP and control groups (P = 0.0151 and P = 0.0392, respectively). Placental and decidual IDO protein levels correlated positively with peripheral blood Treg expression levels. The LV-EGFP-IDO group had significantly higher placental and decidual IDO protein levels than the LV-EGFP and control groups (P < 0.005), and it had significantly less inflammatory cell infiltration than the LV-EGFP and control groups. The IDO gene may reduce the embryo absorption rate in an RPL mouse model, possibly improving pregnancy outcome by upregulating Tregs and reducing the inflammatory response.
Collapse
MESH Headings
- Abortion, Habitual/enzymology
- Abortion, Habitual/genetics
- Abortion, Habitual/immunology
- Animals
- Decidua/enzymology
- Decidua/immunology
- Disease Models, Animal
- Female
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred CBA
- Mice, Inbred DBA
- Placenta/enzymology
- Placenta/immunology
- Pregnancy
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Mice
Collapse
Affiliation(s)
- Hui Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yongli Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Guanyou Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhuo Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jia Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Lina Pan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jing Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Aizhuan Long
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Rui Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zengchunxiao Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
| |
Collapse
|
5
|
Guerrero B, Hassouneh F, Delgado E, Casado JG, Tarazona R. Natural killer cells in recurrent miscarriage: An overview. J Reprod Immunol 2020; 142:103209. [PMID: 32992208 DOI: 10.1016/j.jri.2020.103209] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Recurrent Miscarriage is an early pregnancy complication which affects about 1-3 % of child-bearing couples. The mechanisms involved in the occurrence of recurrent miscarriages are not clearly understood. In the last decade Natural Killer cells have been studied in peripheral blood and uterus in order to determine if there are specific characteristics of Natural Killer cells associated with miscarriage. Different authors have described an increased number of uterine and peripheral blood Natural Killer cells in women with recurrent miscarriages compared to control women. However, its relationship with miscarriage has not been confirmed. In patients with recurrent miscarriage a lack of inhibition of decidua Natural Killer cells can be observed, which leads to a more activated state characterized by higher levels of proinflammatory cytokines. In peripheral blood, it has been also reported a dysfunctional cytokine production by Natural Killer cells, with an increase of interferon-γ levels and a decrease of Interleukin-4. Significant progress has been made in the last decade in understanding the biology of Natural Killer cells, including the identification of new receptors that also contribute to the activation and regulation of Natural Killer cells. In this review, we summarize the current progress in the study of Natural Killer cells in recurrent miscarriage.
Collapse
Affiliation(s)
| | | | - Elena Delgado
- Clínica Norba, Ginecología y Reproducción, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | |
Collapse
|
6
|
Huang N, Chi H, Qiao J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front Immunol 2020; 11:1023. [PMID: 32676072 PMCID: PMC7333773 DOI: 10.3389/fimmu.2020.01023] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are a specialized subset of T lymphocytes that function as suppressive immune cells and inhibit various elements of immune response in vitro and in vivo. While there are constraints on the number or function of Tregs which can be exploited to evoke an effective anti-tumor response, sufficient expansion of Tregs is essential for successful organ transplantation and for promoting tolerance of self and foreign antigens. The immune-suppressive property of Tregs equips this T lymphocyte subpopulation with a pivotal role in the establishment and maintenance of maternal tolerance to fetal alloantigens, which is necessary for successful pregnancy. Elevation in the level of pregnancy-related hormones including estrogen, progesterone and human chorionic gonadotropin promotes the recruitment and expansion of Tregs, directly implicating these cells in the regulation of fetal-maternal immune tolerance. Current studies have provided evidence that a defect in the number or function of Tregs contributes to the etiology of several reproductive diseases, such as recurrent spontaneous abortion, endometriosis, and pre-eclampsia. In this review, we provide insight into the underlying mechanism through which Tregs contribute to pregnancy-related immune tolerance and demonstrate the association between deficiencies in Tregs and the development of reproductive diseases.
Collapse
Affiliation(s)
- Ning Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongbin Chi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Yi X, Zhang J, Liu H, Yi T, Ou Y, Liu M, Zhu L, Chen H, Zhang J. Suppressed Immune-Related Profile Rescues Abortion-Prone Fetuses: A Novel Insight Into the CBA/J × DBA/2J Mouse Model. Reprod Sci 2019; 26:1485-1492. [PMID: 30791861 DOI: 10.1177/1933719119828042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The adverse clinical result and poor treatment outcome in recurrent spontaneous abortion (RSA) make it necessary to understand the pathogenic mechanism. The mating combination CBA/J × DBA/2 has been widely used as an abortion-prone model compared to DBA/2-mated CBA/J mice. Here, we used RNA-seq to get a comprehensive catalogue of genes differentially expressed between survival placenta in abortion-prone model and control. Five hundred twenty-four differentially expressed genes were obtained followed by clustering analysis, Gene Ontology analysis, and pathway analysis. We paid more attention to immune-related genes namely "immune response" and "immune system process" including 33 downregulated genes and 28 upregulated genes. Twenty-one genes contribute to suppressing immune system and 7 are against it. Six genes were validated by reverse transcription-polymerase chain reaction, namely Ccr1l1, Tlr4, Tgf-β1, Tyro3, Gzmb, and Il-1β. Furthermore, Tlr4, Tgf-β1, and Il-1β were analyzed by Western blot. Such immune profile gives us a better understanding of the complicated immune processing in RSA and immunosuppression can rescue pregnancy loss.
Collapse
Affiliation(s)
- Xiaochun Yi
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jie Zhang
- Department of Rehabilitation Medicine, Guangdong Women and Children Hospital, Guangzhou, People's Republic of China
| | - Huixiang Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tianxia Yi
- Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Yuhua Ou
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meilan Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Nikolaeva M, Babayan A, Stepanova E, Arefieva A, Dontsova T, Smolnikova V, Kalinina E, Krechetova L, Pavlovich S, Sukhikh G. The Link Between Seminal Cytokine Interleukin 18, Female Circulating Regulatory T Cells, and IVF/ICSI Success. Reprod Sci 2018; 26:1034-1044. [DOI: 10.1177/1933719118804404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Seminal plasma (SP) is thought to be a crucial factor which affects the expansion of regulatory T cells (Tregs) in female reproductive tract during embryo implantation. We propose that seminal transforming growth factor (TGF) β1 is responsible for local accumulation of circulating Tregs, which manifests as changes in Treg frequency in peripheral blood, whereas seminal interleukin (IL) 18 interferes with TGF-β1-dependent cellular reactions. The purpose of the present study is to determine whether the frequency of circulating Tregs is associated with the levels of seminal cytokines and pregnancy establishment in women exposed to partner’s SP during in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Twenty-nine women were exposed to SP via timed intercourse before the day of ovum pickup (day-OPU) and also subjected to intravaginal SP application just after OPU. Measurements of seminal TGF-β1 and IL-18 were made by FlowCytomix technology. The percentage of CD4+CD25+CD127low+/ – Tregs among total circulating CD4+ T cells was determined by flow cytometry and the difference between Treg values on the day of embryo transfer and day-OPU was calculated. The percentage of Tregs on the day-OPU, identified as a predictive factor of clinical pregnancy after IVF/ICSI, showed a positive correlation with IL-18 concentration and content of this cytokine per ejaculate ( P < .001 and P < .004, respectively) and negative correlation with the TGF-β1/IL-18 ratio ( P < .014).These findings indicate that the adverse effect of seminal IL-18 excess on implantation may be realized by the prevention of postcoital TGF-β1-related migration of circulating Tregs, which clearly manifests as elevated level of Treg frequency in peripheral blood.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Stepanova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Tatiana Dontsova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronika Smolnikova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Stanislav Pavlovich
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
Nawroth F, von Wolff M. Seminal Plasma Activity to Improve Implantation in In Vitro Fertilization-How Can It Be Used in Daily Practice? Front Endocrinol (Lausanne) 2018; 9:208. [PMID: 29755413 PMCID: PMC5934414 DOI: 10.3389/fendo.2018.00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Frank Nawroth
- Centre for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes, Hamburg, Germany
- *Correspondence: Frank Nawroth,
| | - Michael von Wolff
- Division of Gynecological Endocrinology and Reproductive Medicine, University Women’s Hospital, Bern, Switzerland
| |
Collapse
|
11
|
Expression of E2A in mid-secretory endometrium of women suffering from recurrent miscarriage. Curr Med Sci 2017; 37:910-914. [PMID: 29270752 DOI: 10.1007/s11596-017-1826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 10/12/2017] [Indexed: 10/18/2022]
Abstract
E2A is involved in promoting forkhead box P3 (FOXP3) and retinoid-related orphan receptor gamma t (RORγt) gene transcription, which are pivotal transcription factors of T regulatory cells and Th17 cells, respectively. Little is known about the involvement of E2A in pregnancy process. This study aimed to investigate the expression of E2A, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and Foxp3 in luteal phase endometrium of women suffering recurrent miscarriage (RM) (n=21) and control group (n=11) by immunohistochemistry, with the Vectra® automated quantitative pathology imaging system for analysis. The percentage of E2A+ cells and CTLA-4+ cells was significantly higher in the endometrium of women with RM than in the controls. There was positive correlation between E2A and CTLA-4 (r=0.523, P=0.002), E2A and FOXP3 (r=0.380, P=0.032), and FOXP3 and CTLA-4 (r=0.625, P=0.000) in the mid-secretory phase of endometrium for all subjects. It was concluded that the abnormal expression of endometrial E2A existed in mid-secretory endometrium of women with RM, and there was a positive correlation between E2A and FOXP3, and E2A and CTLA-4, suggesting the possible regulation role of E2A involved in regulating endometrium receptivity.
Collapse
|
12
|
Sadighi-Moghaddam B, Salek Farrokhi A, Namdar Ahmadabad H, Barati M, Moazzeni SM. Mesenchymal Stem Cell Therapy Prevents Abortion in CBA/J × DBA/2 Mating. Reprod Sci 2017; 25:1261-1269. [PMID: 29187052 DOI: 10.1177/1933719117737848] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunological disorders are among the main causes of recurrent spontaneous abortions (RSAs). Mesenchymal stem cells (MSCs) have been shown to modulate various aspects of immune responses. It seems that MSCs may improve the immunological conditions in immune-mediated RSA. The aim of this study is the reduction of resorption in RSA mouse model through MSCs therapy. The adipose-derived MSCs were administered intraperitoneal to pregnant CBA/J mice on day 4.5 of gestation in abortion-prone matting. On day 13.5 of pregnancy, abortion rates were calculated and transforming growth factor-β (TGF-β), interleukin 10 (IL-10), interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α) gene expression in deciduas were evaluated by real-time polymerase chain reaction (PCR). The level of TGF-β in serum was also determined by enzyme linked immunosorbent assay (ELISA) method. The obtained results showed that MSCs therapy could reduce the abortion rate significantly in test group compared to controls. MSCs therapy also caused a significant upregulation of TGF-β and IL-10 and downregulation of IFN-γ and TNF-α genes expression in deciduas. However, the levels of TGF-β didn't change in mice sera. Due to the significant decrease in abortion rate, we concluded that MSCs therapy could modulate the immune responses in fetomaternal interface and protect fetus from undesirable immune responses. So, these cells might be considered as a new therapeutic for spontaneous pregnancy loss. The local upregulation of TGF-β and IL-10 and downregulation of IFN-γ and TNF-α gene expression in decidua could be considered as one possible mechanism of immune regulation, which could protect the fetus.
Collapse
Affiliation(s)
- Bizhan Sadighi-Moghaddam
- 1 Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,2 Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Salek Farrokhi
- 1 Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Namdar Ahmadabad
- 3 Department of Pathobiology and Medical Laboratory Science, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Barati
- 2 Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Mohammad Moazzeni
- 1 Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
14
|
Bromfield JJ. A role for seminal plasma in modulating pregnancy outcomes in domestic species. Reproduction 2016; 152:R223-R232. [PMID: 27601714 DOI: 10.1530/rep-16-0313] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Seminal plasma is a complex fluid produced by the accessory glands of the male reproductive tract. Seminal plasma acts primarily as a transport medium for sperm on its arduous journey through the male and then female reproductive tract following ejaculation. This spermatozoan expedition will hopefully result in the meeting of and resultant fertilization of an oocyte, perpetuating the genetic lineage of both sexes. Whereas seminal plasma has historically been perceived as only a transport medium providing a nutrient-rich fluid environment for sperm during this exchange of genetic material, new insights into a complex communication pathway between males and females has been unraveled in the past 30 years. This new research suggests seminal plasma as a method to promote early pregnancy success by modulating cellular and molecular adaptions of the maternal environment required to facilitate healthy, successful pregnancy outcomes. Whereas much work on this exciting new communication process has focused on mice and translation to human reproduction, here we review the current evidence in domestic species where artificial insemination in the absence of seminal plasma is routine. Improving artificial insemination in domestic species to optimize offspring health and productivity could have far-reaching impacts on agriculturally relevant species such as cattle, sheep, pigs and horses.
Collapse
Affiliation(s)
- John J Bromfield
- D H Barron Reproductive and Perinatal Biology Research ProgramDepartment of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Clark DA. The importance of being a regulatory T cell in pregnancy. J Reprod Immunol 2016; 116:60-9. [DOI: 10.1016/j.jri.2016.04.288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
16
|
Hyde KJ, Schust DJ. Immunologic challenges of human reproduction: an evolving story. Fertil Steril 2016; 106:499-510. [PMID: 27477190 DOI: 10.1016/j.fertnstert.2016.07.1073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Characterization of the implanting human fetus as an allograft prompted a field of research in reproductive immunology that continues to fascinate and perplex scientists. Paternal- or partner-derived alloantigens are present in the maternal host at multiple times during the reproductive process. They begin with exposure to semen, continue through implantation and placentation, and may persist for decades in the form of fetal microchimerism. Changes in maternal immune responses that allow allogenic fertilization and survival of semiallogenic concepti to delivery must be balanced with a continued need to respond appropriately to pathogenic invaders, commensals, cell or tissue damage, and any tendency toward malignant transformation. This complex and sophisticated balancing act is essential for survival of mother, fetus, and the species itself. We will discuss concepts of alloimmune recognition, tolerance, and ignorance as they pertain to mammalian reproduction with a focus on human reproduction, maternal immune modulation, and the very earliest events in the reproductive process, fertilization and implantation.
Collapse
Affiliation(s)
- Kassie J Hyde
- University of Missouri School of Medicine, Columbia, Missouri
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri.
| |
Collapse
|
17
|
Nikolaeva MA, Babayan AA, Stepanova EO, Smolnikova VY, Kalinina EA, Fernández N, Krechetova LV, Vanko LV, Sukhikh GT. The relationship of seminal transforming growth factor-β1 and interleukin-18 with reproductive success in women exposed to seminal plasma during IVF/ICSI treatment. J Reprod Immunol 2016; 117:45-51. [PMID: 27423966 DOI: 10.1016/j.jri.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
It has been proposed that the transforming growth factor (TGF)-β1 present in seminal plasma (SP) triggers a female immune response favorable for implantation. We hypothesize that seminal interleukin (IL)-18, a cytokine that can potentially cause implantation failure, interferes with the beneficial effect of TGF-β1. This study aims to determine whether the levels of seminal TGF-β1 and IL-18 are associated with reproductive outcomes in patients exposed to SP during in vitro fertilization (IVF) or IVF with intracytoplasmic sperm injection (ICSI). A prospective study, which included 71 couples undergoing IVF/ICSI was carried out. Female patients were exposed to their partners' SP via timed intercourse before the day of ovum pick-up (OPU) and also subjected to intravaginal SP application just after OPU. Quantitative measurements of total TGF-β1 (active plus latent) as well as IL-18 were determined by FlowCytomix™ technology in the SP to be used for intravaginal applications. Comparison of SP cytokine profiles between pregnant and non-pregnant groups revealed that pregnancy was correlated with a lower concentration of IL-18 (P=0.018) and lower content per ejaculate for both of IL-18 (P=0.0003) and TGF-β1 (P=0.047). The ratio of TGF-β1-to-IL-18 concentration was significantly higher in the pregnant than in the non-pregnant group (P=0.026). This study supports the notion that two key cytokines TGF-β1 and IL-18, both present in SP are associated with reproductive outcomes in female patients exposed to SP during IVF/ICSI treatment.
Collapse
Affiliation(s)
- Marina A Nikolaeva
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia.
| | - Alina A Babayan
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| | - Elena O Stepanova
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| | - Veronika Y Smolnikova
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| | - Elena A Kalinina
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, C04 3SQ England, UK
| | - Lubov V Krechetova
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| | - Ludmila V Vanko
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- Laboratory of Clinical Immunology, The Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" of the Ministry of Healthcare of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia
| |
Collapse
|
18
|
Pan T, Liu Y, Zhong LM, Shi MH, Duan XB, Wu K, Yang Q, Liu C, Wei JY, Ma XR, Shi K, Zhang H, Zhou J. Myeloid-derived suppressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice. J Leukoc Biol 2016; 100:499-511. [PMID: 27203698 DOI: 10.1189/jlb.1a1015-481rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
Maternal immune system tolerance to the semiallogeneic fetus is essential for a successful pregnancy; however, the mechanisms underlying this immunotolerance have not been fully elucidated. Here, we demonstrate that myeloid-derived suppressor cells play an important role in maintaining feto-maternal tolerance. A significant expansion of granulocytic myeloid-derived suppressor cells was observed in multiple immune organs and decidual tissues from pregnant mice. Pregnancy-derived granulocytic myeloid-derived suppressor cells suppressed T cell responses in a reactive oxygen species-dependent manner and required direct cell-cell contact. Mechanistic studies showed that progesterone facilitated differentiation and activation of granulocytic myeloid-derived suppressor cells, mediated through STAT3 signaling. The STAT3 inhibitor JSI-124 and a specific short hairpin RNA completely abrogated the effects of progesterone on granulocytic myeloid-derived suppressor cells. More importantly, granulocytic myeloid-derived suppressor cell depletion dramatically enhanced the abortion rate in normal pregnant mice, whereas adoptive transfer of granulocytic myeloid-derived suppressor cells clearly reduced the abortion rate in the CBA/J X DBA/2J mouse model of spontaneous abortion. These observations collectively demonstrate that granulocytic myeloid-derived suppressor cells play an essential role in the maintenance of fetal immunotolerance in mice. Furthermore, our study supports the notion that in addition to their well-recognized roles under pathologic conditions, myeloid-derived suppressor cells perform important functions under certain physiologic circumstances.
Collapse
Affiliation(s)
- Ting Pan
- Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Liu
- Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Li Mei Zhong
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Mao Hua Shi
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Bing Duan
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Kang Wu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Chao Liu
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Jian Yang Wei
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xing Ru Ma
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Kun Shi
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China; and
| | - Jie Zhou
- Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Institute of Human Virology, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China; and
| |
Collapse
|
19
|
Clark DA. Mouse is the new woman? Translational research in reproductive immunology. Semin Immunopathol 2016; 38:651-668. [DOI: 10.1007/s00281-015-0553-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
|
20
|
Schjenken JE, Glynn DJ, Sharkey DJ, Robertson SA. TLR4 Signaling Is a Major Mediator of the Female Tract Response to Seminal Fluid in Mice. Biol Reprod 2015; 93:68. [PMID: 26157066 DOI: 10.1095/biolreprod.114.125740] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 06/29/2015] [Indexed: 12/13/2022] Open
Abstract
Seminal fluid interacts with epithelial cells lining the female reproductive tract to induce expression of proinflammatory cytokines and chemokines, initiating immune tolerance mechanisms to facilitate pregnancy. TGFB cytokines are key signaling agents in seminal plasma but do not fully account for the female response to seminal fluid. We hypothesized that additional molecular pathways are utilized in seminal fluid signaling. Affymetrix microarray was employed to compare gene expression in the endometrium of mice 8 h after mating with either intact males or seminal fluid deficient (SVX/VAS) males. Bioinformatics analysis revealed TLR4 signaling as a strongly predicted upstream regulator activated by the differentially expressed genes and implicated TGFB signaling as a second key pathway. Quantitative PCR and microbead data confirmed that seminal fluid induces endometrial synthesis of several TLR4-regulated cytokines and chemokines, including CSF3, CXCL1, CXCL2, IL1A, IL6, LIF, and TNF. In primary uterine epithelial cells, CSF3, CXCL1, and CXCL2 were strongly induced by the TLR4 ligand LPS but suppressed by TGFB, while IL1A, TNF, and CSF2 were induced by both ligands. TLR4 was confirmed as essential for the full endometrial cytokine response using mice with a null mutation in Tlr4, where seminal fluid failed to induce endometrial Csf3, Cxcl2, Il6, and Tnf expression. This study provides evidence that TLR4 contributes to seminal fluid modulation of the periconception immune environment. Activation of TLR4 signaling by microbial or endogenous components of seminal fluid is thus implicated as a key element of the female tract response to seminal fluid at the outset of pregnancy in mice.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle J Glynn
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Yue CY, Zhang B, Ying CM. Elevated Serum Level of IL-35 Associated with the Maintenance of Maternal-Fetal Immune Tolerance in Normal Pregnancy. PLoS One 2015; 10:e0128219. [PMID: 26042836 PMCID: PMC4456370 DOI: 10.1371/journal.pone.0128219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives IL-35 is a novel inhibitory cytokine. In this study, we investigate the serum levels of inhibitory cytokines IL-35, IL-10 and TGF-β in both normal pregnancies and non-pregnant females, and whether IL-35 is associated with the pathogenesis of recurrent spontaneous abortion. We also try to elucidate the relationships of IL-35 with estrogen and alpha-fetoprotein (AFP). Methods The levels of IL-35, IL-10, TGF-β, estradiol (E2), unconjugated estriol (uE3) and AFP were analyzed in 120 normal pregnancies, 40 women suffering recurrent spontaneous abortion, 40 postpartum healthy women and 40 non-pregnant women by enzyme-linked immunosorbent assay (ELISA). The correlations between inhibitory cytokines, estrogen and AFP were assessed with the Spearman rank correlation coefficient. Results Data are expressed as median and percentiles (Q1, Q3).The level of serum IL-35 in normal pregnancies was significantly higher than that in non-pregnant women [333.6 (59.32, 1391) pg/mL vs. 123.9 (8.763, 471.7) pg/mL; P < 0.001]. A significantly higher level of TGF-β was observed in the first trimester only as compared to non-pregnant women [473.4 (398.0, 580.5) pg/mL vs. 379.7 (311.0, 441.3) pg/mL, P < 0.01]. The difference in serum IL-10 level between pregnant women and non-pregnant women was not significant [8.602 (5.854, 12.89) pg/mL vs. 9.339 (5.691, 12.07) pg/mL; P > 0.05]. The level of serum IL-35 in recurrent spontaneous abortion was significantly lower than that in normal early pregnancy [220.4 (4.951, 702.0) pg/mL vs. 386.5 (64.37, 1355) pg/mL; P < 0.05]. The higher IL-35 level in first trimester pregnant women correlated with E2 (r = 0.3062, P < 0.01) and AFP (r = 0.3179, P < 0.01). Conclusion Serum levels of IL-35 increased in normal pregnancy and decreased in recurrent spontaneous abortion. Increased IL-35 correlated with estrogen and AFP levels in early pregnancy. IL-35 is becoming recognized as an active player in the maintenance of a successful pregnancy, but this is not the case for IL-10 or TGF-β.
Collapse
Affiliation(s)
- Chao-yan Yue
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bin Zhang
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chun-mei Ying
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Schjenken JE, Robertson SA. Seminal fluid and immune adaptation for pregnancy--comparative biology in mammalian species. Reprod Domest Anim 2015; 49 Suppl 3:27-36. [PMID: 25220746 DOI: 10.1111/rda.12383] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 12/16/2022]
Abstract
Seminal fluid delivered to the female reproductive tract at coitus not only promotes the survival and fertilizing capacity of spermatozoa, but also contains potent signalling agents that influence female reproductive physiology to improve the chances of conception and reproductive success. Male to female seminal fluid signalling occurs in rodents, domestic and livestock animals, and all other mammals examined to date. Seminal plasma is instrumental in eliciting the female response, by provision of cytokines and prostaglandins synthesized in the male accessory glands. These agents bind to receptors on target cells in the cervix and uterus, activating changes in gene expression leading to functional adaptations in the female tissues. Sperm also interact with female tract cells, although the molecular basis of this interaction is not yet defined. The consequences are increased sperm survival and fertilization rates, conditioning of the female immune response to tolerate semen and the conceptus, and molecular and cellular changes in the endometrium that facilitate embryo development and implantation. Studies in porcine, equine, bovine, ovine and canine species all show evidence of male-female signalling function for seminal fluid. There are variations between species that relate to their different reproductive strategies and behaviours, particularly the site of seminal fluid deposition and female reproductive tract anatomy. Although the details of the molecular mechanisms require more study, the available data are consistent with both the sperm and plasma fractions of seminal fluid acting in a synergistic fashion to activate inflammation-like responses and downstream female tract changes in each of these species. Insight into the biological function and molecular basis of seminal fluid signalling in the female will inform new interventions and management practices to support optimal reproductive outcomes in domestic, livestock and endangered animal species.
Collapse
Affiliation(s)
- J E Schjenken
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
23
|
Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? Bioessays 2015; 37:364-71. [PMID: 25619853 PMCID: PMC4409083 DOI: 10.1002/bies.201400155] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian blastocyst exhibits a high capacity for aerobic glycolysis, a metabolic characteristic of tumours. It has been considered that aerobic glycolysis is a means to ensure a high carbon flux to fulfil biosynthetic demands. Here, alternative explanations for this pattern of metabolism are considered. Lactate creates a microenvironment of low pH around the embryo to assist the disaggregation of uterine tissues to facilitate trophoblast invasion. Further it is proposed that lactate acts as a signalling molecule (especially at the reduced oxygen tension present at implantation) to elicit bioactive VEGF recruitment from uterine cells, to promote angiogenesis. Finally it is suggested that the region of high lactate/low pH created by the blastocyst modulates the activity of the local immune response, helping to create immune tolerance. Consequently, the mammalian blastocyst offers a model to study the role of microenvironments, and how metabolites and pH are used in signalling.
Collapse
Affiliation(s)
- David K Gardner
- School of BioSciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Schumacher A, Zenclussen AC. The Paternal Contribution to Fetal Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:211-25. [PMID: 26178852 DOI: 10.1007/978-3-319-18881-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recognition of foreign paternal antigens expressed in the semi-allogeneic fetus by maternal immune cells is a requirement for successful pregnancy. However, despite intensive research activity during the last decades, the precise mechanisms contributing to the acceptance of the paternal alloantigens are still puzzling and pregnancy remains a fascinating phenomenon. Moreover, most studies focused on the maternal and fetal contribution to pregnancy success, and relatively little is known about the paternal involvement. In the current review, we address the contribution of paternal-derived factors to fetal-tolerance induction. First, we discuss data suggesting that in both humans and mice, the female body gets prepared for a pregnancy in every cycle, also in regard to male alloantigens delivered at coitus. Then, we provide an overview about factors present in seminal fluid and how these factors influence immune responses in the female reproductive tract. We further discuss ways of paternal alloantigen presentation and identify the immune modulatory properties of seminal fluid-derived factors with a special focus on Treg biology. Finally, we highlight the therapeutic potential of seminal fluid in different clinical applications.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Gerhart-Hauptmann Straße 35, 39108, Magdeburg, Germany
| | | |
Collapse
|
25
|
Seminal Fluid Signalling in the Female Reproductive Tract: Implications for Reproductive Success and Offspring Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 868:127-58. [PMID: 26178848 DOI: 10.1007/978-3-319-18881-2_6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carriage of sperm is not the only function of seminal fluid in mammals. Studies in mice show that at conception, seminal fluid interacts with the female reproductive tract to induce responses which influence whether or not pregnancy will occur, and to set in train effects that help shape subsequent fetal development. In particular, seminal fluid initiates female immune adaptation processes required to tolerate male transplantation antigens present in seminal fluid and inherited by the conceptus. A tolerogenic immune environment to facilitate pregnancy depends on regulatory T cells (Treg cells), which recognise male antigens and function to suppress inflammation and immune rejection responses. The female response to seminal fluid stimulates the generation of Treg cells that protect the conceptus from inflammatory damage, to support implantation and placental development. Seminal fluid also elicits molecular and cellular changes in the oviduct and endometrium that directly promote embryo development and implantation competence. The plasma fraction of seminal fluid plays a key role in this process with soluble factors, including TGFB, prostaglandin-E, and TLR4 ligands, demonstrated to contribute to the peri-conception immune environment. Recent studies show that conception in the absence of seminal plasma in mice impairs embryo development and alters fetal development to impact the phenotype of offspring, with adverse effects on adult metabolic function particularly in males. This review summarises our current understanding of the molecular responses to seminal fluid and how this contributes to the establishment of pregnancy, generation of an immune-regulatory environment and programming long-term offspring health.
Collapse
|
26
|
The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett 2014; 162:41-8. [DOI: 10.1016/j.imlet.2014.06.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023]
|
27
|
Immunomodulators to treat recurrent miscarriage. Eur J Obstet Gynecol Reprod Biol 2014; 181:334-7. [DOI: 10.1016/j.ejogrb.2014.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
|
28
|
Bonney EA, Brown SA. To drive or be driven: the path of a mouse model of recurrent pregnancy loss. Reproduction 2014; 147:R153-67. [PMID: 24472815 DOI: 10.1530/rep-13-0583] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is an example of the use of an animal model to try to understand the immune biology of pregnancy. A well-known model of recurrent spontaneous pregnancy loss is put in clinical, historical, and theoretical context, with emphasis on T cell biology.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, Vermont 05404, USA
| | | |
Collapse
|
29
|
Schumacher A, Zenclussen AC. Regulatory T cells: regulators of life. Am J Reprod Immunol 2014; 72:158-70. [PMID: 24661545 DOI: 10.1111/aji.12238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022] Open
Abstract
Pregnancy still represents one of the most fascinating paradoxical phenomena in science. Immediately after conception, the maternal immune system is challenged by the presence of foreign paternal antigens in the semen. This triggers mechanisms of recognition and tolerance that all together allow the embryo to implant and later the fetus to develop. Tolerance mechanisms to maintain pregnancy are of special interest as they defy the classical immunology rules. Several cell types, soluble factors, and immune regulatory molecules have been proposed to contribute to fetal tolerance. Within these, regulatory T cells (Treg) are one of the most studied immune cell populations lately. They are reportedly involved in fetal acceptance. Here, we summarize several aspects of Treg biology in normal and pathologic pregnancies focusing on Treg frequencies, subtypes, antigen specificity, and activity as well as on factors influencing Treg generation, recruitment, and function. This review also highlights the contribution of fetal Treg in tolerance induction and addresses the role of Treg in autoimmune diseases and infections during gestation. Finally, the potential of Treg as a predictive marker for the success of assisted reproductive techniques and for therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics & Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
30
|
CD80 and CD86 costimulatory molecules differentially regulate OT-II CD4⁺ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. Mediators Inflamm 2014; 2014:769239. [PMID: 24771983 PMCID: PMC3977523 DOI: 10.1155/2014/769239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/10/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022] Open
Abstract
Immune phenomena during the preimplantation period of pregnancy are poorly understood. The aim of our study was to assess the capacity for antigen presentation of splenic antigen-presenting cells (APCs) derived from pregnant and pseudopregnant mice in in vitro conditions. Therefore, sorted CD11c+ dendritic cells and macrophages F4/80+ and CD11b+ presenting ovalbumin (OVA) were cocultured with CD4+ T cells derived from OT-II mice's (C57BL6/J-Tg(TcraTcrb)1100Mjb/J) spleen. After 132 hours of cell culture, proliferation of lymphocytes (ELISA-BrdU), activation of these cells (flow cytometry), cytokine profile (ELISA), and influence of costimulatory molecules blocking on these parameters were measured. We did not detect any differences in regulation of Th1/Th2 cytokine balance. CD86 seems to be the main costimulatory molecule involved in the proliferation response but CD80 is the main costimulatory molecule influencing cytokine secretion in pregnant mice. In conclusion, this study showed that CD80 and CD86 costimulatory molecules regulate OT-II CD4+ T lymphocyte proliferation and cytokine response in cocultures with antigen-presenting cells derived from pregnant and pseudopregnant mice. The implications of these changes still remain unclear.
Collapse
|
31
|
Wang WJ, Liu FJ, Hao CF, Bao HC, Qu QL, Liu XM. Adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells reverses the increase in abortion rate caused by interleukin 17 in the CBA/JxBALB/c mouse model. Hum Reprod 2014; 29:946-52. [PMID: 24556316 DOI: 10.1093/humrep/deu014] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION Could adoptive transfer of pregnancy-induced CD4+CD25+ regulatory T cells (Tregs) reverse the increase in abortion rate caused by interleukin 17 (IL-17) in the CBA/J × BALB/c mouse model? SUMMARY ANSWER The effects of exogenous IL-17 on increased abortion rate, as well as decreased transforming growth factor (TGF)-β and IL-10 expression, are reversed by a pre-mating transfusion of Tregs in a mouse model of pregnancy. WHAT IS KNOWN ALREADY IL-17 is a pro-inflammatory cytokine mainly expressed by T helper 17 cells, and plays a pivotal role in the pathogenesis of endometriosis, miscarriage, preterm labor and pre-eclampsia. The activity of Th17 cells is attenuated by the anti-inflammatory action of Tregs. STUDY DESIGN, SIZE, DURATION Fifty microliters of phosphate-buffered saline (PBS) (Group 1,) or recombinant IL-17 (rIL) (10 µg/mouse) supernatant (Group 2) was administered in the vaginal vaults of anesthetized pregnant CBA/J mice on Day 1 of pregnancy. Tregs (2 × 10(5) cells) purified from pregnant CBA/J × BALB/c mice were given i.v. via the tail vein 2 days before mating (Group 3) or on Day 7 of pregnancy (Group 4). PARTICIPANTS/MATERIALS, SETTING, METHODS Mice (n = 40) were randomly assigned to one of four experimental groups. The numbers of surviving and reabsorbed fetuses in each group were counted on Day 14 of pregnancy, and the expression of interferon (IFN)-γ, IL-4, TGF-β and IL-10 in the decidual tissue was assessed by real-time RT-PCR and western blotting. MAIN RESULTS AND THE ROLE OF CHANCE Normal pregnant CBA/J mice mated with BALB/c males which received transvaginal rIL-17 presented with a significantly increased abortion rate compared with the group which received PBS (27.7 versus 9.9%, respectively; P < 0.05). The transfusion of pregnancy-induced Tregs from 14-day normal pregnant mice 2 days before mating reduced the abortion rate caused by IL-17 (12.5 versus 27.7%, respectively; P < 0.05), while transfusion of Tregs on Day 7 of pregnancy had no effect. Transfusion of Tregs did not affect IFN-γ or IL-4 expression in the decidual tissue at either the mRNA or protein level. Administration of rIL-17 resulted in a decrease in production of TGF-β and IL-10 at both mRNA and protein levels (P < 0.05). Transfusion of Tregs before mating increased TGF-β and IL-10 mRNA and protein levels (P < 0.05), while Tregs transfusion at Day 7 of pregnancy had no effect on TGF-β or IL-10 expression. LIMITATIONS, REASONS FOR CAUTION These data derive from only a small number of mice. It is unclear whether the same effects would be seen in humans. WIDER IMPLICATIONS OF THE FINDINGS Abnormally elevated expression of IL-17 in the feto-maternal interface may result in miscarriage. Transfer of antigen-specific Tregs before mating takes place may have potential applications in the prevention of recurrent spontaneous abortion. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a grant from the National Natural Science Foundation of China (81370013, 81000277 and 81300533) and Shandong Provincial Natural Science Foundation, China (ZR2013HQ002). There were no conflicts of interest.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Reproduction Medical Center, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, 20 Yuhuangding East Road, Yantai 264000, P. R. China
| | | | | | | | | | | |
Collapse
|
32
|
Varghese S, Crocker I, Bruce IN, Tower C. Systemic lupus erythematosus, regulatory T cells and pregnancy. Expert Rev Clin Immunol 2014; 7:635-48. [DOI: 10.1586/eci.11.59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Robertson SA, Prins JR, Sharkey DJ, Moldenhauer LM. Seminal fluid and the generation of regulatory T cells for embryo implantation. Am J Reprod Immunol 2013; 69:315-30. [PMID: 23480148 DOI: 10.1111/aji.12107] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/30/2013] [Indexed: 12/13/2022] Open
Abstract
T regulatory (Treg) cells are essential mediators of the maternal immune adaptation necessary for embryo implantation. In mice, insufficient Treg cell activity results in implantation failure, or constrains placental function and fetal growth. In women, Treg cell deficiency is linked with unexplained infertility, miscarriage, and pre-eclampsia. To devise strategies to improve Treg cell function, it is essential to define the origin of the Treg cells in gestational tissues, and the regulators that control their functional competence and recruitment. Male seminal fluid is a potent source of the Treg cell-inducing agents TGFβ and prostaglandin E, and coitus is one key factor involved in expanding the pool of inducible Treg cells that react with paternal alloantigens shared by conceptus tissues. In mice, coitus initiates a sequence of events whereby female dendritic cells cross-present seminal fluid antigens and activate T cells, which in turn circulate via the blood to be sequestered into the endometrium. Similar events may occur in the human genital tract, where seminal fluid induces immune cell changes that appear competent to prime Treg cells. Improved understanding of how seminal fluid influences Treg cells in women should ultimately assist in the development of new therapies for immune-mediated pathologies of pregnancy.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
34
|
Clark DA, Rahmati M, Gohner C, Bensussan A, Markert UR, Chaouat G. Seminal plasma peptides may determine maternal immune response that alters success or failure of pregnancy in the abortion-prone CBAxDBA/2 model. J Reprod Immunol 2013; 99:46-53. [PMID: 23701834 DOI: 10.1016/j.jri.2013.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022]
Abstract
Spontaneous abortion (resorption) in the DBA/2-mated CBA/J mouse involves a deficiency in Treg cell activity against paternal antigens at the time of mating. Preimmunization of female CBA/J by BALB/c splenocytes, but not DBA/2 splenocytes, protects against subsequent abortions after a CBAxDBA/2 mating. Previous immunogenetic studies with BALB/cxDBA/2 recombinants have indicated that H-2(d)-restricted presentation of a single minor non-H-2(d) peptide might be responsible for protection, while the product of a second independent allele might promote abortions. Using brefeldin-treated BALB/c and DBA/2 splenocytes, we found that incubation in BALB/c seminal plasma rendered DBA/2 splenocytes protective and DBA/2 seminal plasma eliminated protection. The active protective moiety was <10 kD consistent with a peptide. DBA/2 seminal plasma contained a <10-kD peptide that boosted the abortion rate. Maternal H-2(k) CBA/J splenocytes were unable to present the protective activity. Amicon fractionation also unmasked a <10-kD activity in DBA/2 seminal plasma that could boost abortion rates when presented by BALB/c splenocytes. SELDI-TOF mass spectrometry proteomic analysis of <10-kD filtrates reproducibly detected 1416, 1468, 1774 D peptides in BALB/c that were reduced or absent in DBA/2, and the presence of 2662, 4559 and 5320 D molecules in DBA/2, the latter two definitely not present in BALB/c. Direct antigen presentation of paternal H-2(d)-restricted paternal peptides (600-1800 D) may prevent the rejection of the CBAxDBA/2 embryos, and larger sized peptides may bind to immunizing splenocytes and augment abortion mechanisms.
Collapse
Affiliation(s)
- David A Clark
- Department of Medicine, Molecular Medicine & Pathology, Ob-Gyn., McMaster University, Health Sciences Centre, Room 3H1E, Hamilton, Ontario, Canada L8S 4K1; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Zenclussen AC. Adaptive immune responses during pregnancy. Am J Reprod Immunol 2013; 69:291-303. [PMID: 23418773 DOI: 10.1111/aji.12097] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 02/05/2023] Open
Abstract
It has long been believed that there is no immune interaction between mother and conceptus during pregnancy. This concept changed after evidence was provided that the maternal immune system is aware of the semiallogeneic conceptus and develops strategies to tolerate it. Since then, finely regulated mechanisms of active tolerance toward the fetus have been described. This Special Issue of the American Journal of Reproductive Immunology deals with these mechanisms. It begins with the description of minor histocompatibility antigens in the placenta; it further goes through adaptive immune responses toward paternal fetal antigens, mostly concentrating on regulatory T cells and molecules modulating the Th1/Th2 balance. The participation of antibody-producing B cells in normal and pathological pregnancies is also discussed. This introductory chapter resumes the concepts presented throughout the Issue and discusses the clinical applications raised from these concepts.
Collapse
Affiliation(s)
- Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
36
|
Teles A, Zenclussen AC, Schumacher A. Regulatory T cells are baby's best friends. Am J Reprod Immunol 2013; 69:331-9. [PMID: 23289369 DOI: 10.1111/aji.12067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cells (Treg) are one of the most and best studied immune cell population during human and murine pregnancy, and there is a general consent about their expansion during pregnancy. However, the identification of new and more reliable Treg markers during the last years resulted in some controversies about the kinetics of various Treg subsets at different pregnancy stages. No doubt exists regarding the importance of Treg for a normal pregnancy as pregnancy complications like spontaneous abortion and preeclampsia could be associated with a reduced Treg number and activity. In future, more attention should be paid to bring established data from the bench to the bedside to force the development of adequate therapies for treatment of pregnancy complications. In this article, we summarize previous and recent data on several aspects of Treg biology during human and murine pregnancy.
Collapse
Affiliation(s)
- Ana Teles
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
37
|
Clark DA, Chaouat G. Regulatory T cells and reproduction: how do they do it? J Reprod Immunol 2012; 96:1-7. [PMID: 23021867 DOI: 10.1016/j.jri.2012.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/04/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023]
Abstract
Regulatory T cells (Treg cells) identified by expression of Foxp3 play an important role in successful implantation and gestation. Various mechanisms have been proposed to explain their actions, and the more credible and less credible are set out in this review. Induction of Treg cells is believed to occur in response to paternal antigens in seminal plasma at the time of mating, and these Treg cells home to the uterus prior to implantation. Tolerogenic dendritic cells are proposed to play an important role in the generation of Treg cells in the draining lymph nodes and in maintaining Treg activity in the uterus. Recent data indicate that abortion in the CBAxDBA/2 model may be prevented by seminal plasma antigens from DBA/2 and BALB/c males, but H-2(d) restriction suggests that presentation to Treg cells might occur via a novel mechanism. The relevance of findings in mice to human pregnancy problems is also discussed.
Collapse
Affiliation(s)
- David A Clark
- Departments of Medicine, Molecular Medicine and Pathology, Obstetrics and Gynecology, McMaster University, Health Sciences Centre Rm 3H1E, Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
38
|
Sharkey DJ, Macpherson AM, Tremellen KP, Mottershead DG, Gilchrist RB, Robertson SA. TGF-β Mediates Proinflammatory Seminal Fluid Signaling in Human Cervical Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:1024-35. [DOI: 10.4049/jimmunol.1200005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Giannubilo SR, Landi B, Pozzi V, Sartini D, Cecati M, Stortoni P, Corradetti A, Saccucci F, Tranquilli AL, Emanuelli M. The involvement of inflammatory cytokines in the pathogenesis of recurrent miscarriage. Cytokine 2012; 58:50-56. [PMID: 22266274 DOI: 10.1016/j.cyto.2011.12.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/14/2011] [Accepted: 12/24/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the inflammatory cytokine expression pattern in trophoblastic tissue from women with unexplained recurrent miscarriage (RM). STUDY DESIGN Trophoblasts were obtained during uterine evacuation from 11 women with RM and from 20 healthy pregnant women undergoing elective termination of pregnancy, who served as controls. The array was performed using GEArray Q Series Human Inflammatory Cytokines & Receptors Gene Array HS-015 membranes. Data were confirmed by quantitative real-time PCR. The Mann-Whitney U test was performed for statistical analysis. RESULTS Microarray analysis identified three genes that were differentially expressed between RM patients and controls. We observed significant downregulation of Transforming Growth Factor beta 3 (TGF-β3) and Interleukin 25 (IL-25) (5-fold reduction and 2.5-fold reduction, respectively) and significant upregulation of CD-25, also known as Interleukin 2 receptor alpha (IL-2RA) (7-fold increase) in women with RM compared with controls. The median ΔC(t) of TGF-β3 was 8.2 (interquartile range, 7.67-8.9) in RM patients vs. 5.85 (interquartile range, 5.3-6.09) in controls; the median ΔC(t) of IL-25 was 5.18 (interquartile range, 4.46-5.76) in RM patients vs. 3.85 (interquartile range, 3.6-4.51) in controls, and the median ΔC(t) of CD-25 was 9.62 (interquartile range, 7.81-12.42) in RM patients vs. 12.44 (interquartile range, 11.02-13.86) in controls. DISCUSSION Our results suggest that the immunological and inflammatory regulation mechanisms of the placental environment play a key role in recurrent miscarriage. The observed trophoblast cytokine expression pattern at the maternal-fetal interface confirms the immunotrophic theory, as demonstrated by a switch from a T-helper-1 (Th1) profile to a T-helper-2 (Th2) profile in women who experience recurrent miscarriages.
Collapse
Affiliation(s)
- Stefano R Giannubilo
- Department of Clinical Sciences, Section of Woman Health Science, Università Politecnica Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ramhorst R, Fraccaroli L, Aldo P, Alvero AB, Cardenas I, Leirós CP, Mor G. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells. Am J Reprod Immunol 2011; 67:17-27. [PMID: 21819477 DOI: 10.1111/j.1600-0897.2011.01056.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PROBLEM The specialized regulatory T-cells (Treg) population, essential for maternal tolerance of the fetus, performs its suppressive actions in the critical peri-implantation phase of pregnancy. In the present work, we investigated whether trophoblast cells are able to induce Treg recruitment, differentiation, and whether these mechanisms are modified by a bacterial or viral infection. METHOD OF STUDY Human T-regulatory cells were differentiated from naïve CD45RA(+) CCR7(+) cells obtained from peripheral blood mononuclear cells cultured with IL-2 and TGFβ over 5 days. Induction of iTregs (CD4(+) Foxp3(+) cells) was evaluated using low serum conditioned media (LSCM), obtained from two first trimester trophoblast cell lines, Swan-71 and HTR8. Coculture experiments were carried out using transwell assays where trophoblast cells were in the absence or presence of PGN, LPS, or Poly [I:C]. Cytokine production was measured by multiplex analysis. RESULTS Trophoblast cells constitutively secrete high levels of TGFβ and induced a significant increase of Foxp3 expression accompanied by a specific T-reg cytokine profile. Moreover, trophoblast cells were able to recruit iTregs in a specific manner. CONCLUSION We demonstrate that trophoblast cells have an active role on the recruitment and differentiation of iTregs, therefore, contributing to the process of immune regulation at the placental-maternal interface.
Collapse
Affiliation(s)
- Rosanna Ramhorst
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and National Research Council (CONICET), Argentina
| | | | | | | | | | | | | |
Collapse
|
41
|
Lemons AR, Naz RK. Contraceptive vaccines targeting factors involved in establishment of pregnancy. Am J Reprod Immunol 2011; 66:13-25. [PMID: 21481058 DOI: 10.1111/j.1600-0897.2011.01001.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current methods of contraception lack specificity and are accompanied with serious side effects. A more specific method of contraception is needed. Contraceptive vaccines can provide most, if not all, the desired characteristics of an ideal contraceptive. This article reviews several factors involved in the establishment of pregnancy, focusing on those that are essential for successful implantation. Factors that are both essential and pregnancy-specific can provide potential targets for contraception. Using database search, 76 factors (cytokines/chemokines/growth factors/others) were identified that are involved in various steps of the establishment of pregnancy. Among these factors, three, namely chorionic gonadotropin (CG), leukemia inhibitory factor (LIF), and pre-implantation factor (PIF), are found to be unique and exciting molecules. Human CG is a well-known pregnancy-specific protein that has undergone phase I and phase II clinical trials, in women, as a contraceptive vaccine with encouraging results. LIF and PIF are pregnancy-specific and essential for successful implantation. These molecules are intriguing and may provide viable targets for immunocontraception. A multiepitope vaccine combining factors/antigens involved in various steps of the fertilization cascade and pregnancy establishment may provide a highly immunogenic and efficacious modality for contraception in humans.
Collapse
Affiliation(s)
- Angela R Lemons
- Reproductive Immunology and Molecular Biology Laboratories, Department of Obstetrics and Gynecology, School of Medicine, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9186, USA
| | | |
Collapse
|
42
|
Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod 2011; 85:397-408. [PMID: 21389340 DOI: 10.1095/biolreprod.110.088591] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulatory T (Treg) cells facilitate maternal immune tolerance of the semiallogeneic conceptus in early pregnancy, but the origin and regulation of these cells at embryo implantation is unclear. During the preimplantation period, factors in the seminal fluid delivered at coitus cause expansion of a CD4(+)CD25(+) putative Treg cell population in the para-aortic lymph nodes draining the uterus. Using flow cytometry, immunohistochemistry, and real-time quantitative PCR (qPCR) for the signature Treg cell transcription factor FOXP3, we confirmed the identity of the expanded lymph node population as FOXP3(+) Treg cells and showed that this is accompanied by a comparable increase in the uterus of FOXP3(+) Treg cells and expression of Foxp3 mRNA by Day 3.5 postcoitum. Seminal plasma was necessary for uterine Treg cell accumulation, as mating with seminal vesicle-deficient males failed to elicit an increase in uterine Treg cells. Furthermore seminal fluid induced expression of mRNA encoding the Treg chemokine CCL19 (MIP3beta), which acts through the CCR7 receptor to regulate Treg cell recruitment and retention in peripheral tissues. Glandular and luminal epithelial cells were identified as the major cellular origins of uterine CCL19, and exposure to both seminal plasma and sperm was required for maximum expression. Together, these results indicate that Treg cells accumulate in the uterus prior to embryo implantation and that seminal fluid is a key regulator of the uterine Treg cell population, operating by both increasing the pool of available Treg cells and promoting their CCL19-mediated recruitment from the circulation into the implantation site.
Collapse
Affiliation(s)
- Leigh R Guerin
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder that disproportionally affects women, especially in their reproductive years. SLE is associated with considerable pregnancy-related morbidity--including fetal loss, preterm birth, fetal growth restriction and pre-eclampsia. CD4+CD25+ regulatory T (T(REG)) cells have a potent immunosuppressive function and contribute to immunological self-tolerance. These cells might be essential for successful placental development by ensuring fetal tolerance. The numbers of T(REG) cells are augmented during normal pregnancy and, conversely, diminished numbers are associated with pregnancy loss and pre-eclampsia. Several studies have shown that patients with SLE have decreased numbers of T(REG) cells that might be functionally defective. This defective T(REG) cell functioning could predispose women with SLE to pregnancy complications. This article provides an overview of current knowledge of the role and function of T(REG) cells in SLE and pregnancy and how these cells might contribute to improving pregnancy-related outcomes in patients with SLE in the future.
Collapse
|
44
|
Leber A, Teles A, Zenclussen AC. Regulatory T Cells and Their Role in Pregnancy. Am J Reprod Immunol 2010; 63:445-59. [DOI: 10.1111/j.1600-0897.2010.00821.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
45
|
Clark DA, Chaouat G, Wong K, Gorczynski RM, Kinsky R. REVIEW ARTICLE: Tolerance Mechanisms in Pregnancy: A Reappraisal of the Role of Class I Paternal MHC Antigens*. Am J Reprod Immunol 2009; 63:93-103. [DOI: 10.1111/j.1600-0897.2009.00774.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Robertson SA, Guerin LR, Moldenhauer LM, Hayball JD. Activating T regulatory cells for tolerance in early pregnancy - the contribution of seminal fluid. J Reprod Immunol 2009; 83:109-16. [PMID: 19875178 DOI: 10.1016/j.jri.2009.08.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 07/23/2009] [Accepted: 08/05/2009] [Indexed: 02/08/2023]
Abstract
A state of active tolerance mediated by T regulatory (Treg) cells must be functional from the time of embryo implantation to prevent the conceptus from maternal immune attack. Male seminal fluid and ovarian steroid hormones are implicated in regulating the size and suppressive function of the Treg cell pool during the peri-implantation phase of early pregnancy. Evidence that antigens and cytokine signals in seminal fluid regulate the maternal immune response includes the following: (1) the Treg cell-inducing cytokine TGFbeta and male alloantigens are present in seminal fluid; (2) seminal fluid delivery at coitus is sufficient to induce a state of active immune tolerance to paternal alloantigen, even in the absence of conceptus tissue; (3) female dendritic cells can cross-present seminal fluid antigens to activate both CD8(+) and CD4(+) T cells, and (4) mating events deficient in either sperm or seminal plasma result in diminished CD4(+) CD25(+) Foxp3(+) Treg cell populations at the time of embryo implantation. Ongoing studies indicate that the cytokine environment during priming to male seminal fluid antigens influences the phenotype of responding T cells, and impacts fetal survival in later gestation. Collectively, these observations implicate factors in the peri-conceptual environment of both male and female origin as important determinants of maternal immune tolerance. Defining the mechanisms controlling tolerance induction will be helpful for developing new therapies for immune-mediated pathologies of pregnancy such as miscarriage and pre-eclampsia.
Collapse
Affiliation(s)
- Sarah A Robertson
- Research Centre for Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
47
|
Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 2009; 15:517-35. [PMID: 19279047 PMCID: PMC2725755 DOI: 10.1093/humupd/dmp004] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adaptation of the maternal immune response to accommodate the semi-allogeneic fetus is necessary for pregnancy success, and disturbances in maternal tolerance are implicated in infertility and reproductive pathologies. T regulatory (Treg) cells are a recently discovered subset of T-lymphocytes with potent suppressive activity and pivotal roles in curtailing destructive immune responses and preventing autoimmune disease. METHODS A systematic review was undertaken of the published literature on Treg cells in the ovary, testes, uterus and gestational tissues in pregnancy, and their link with infertility, miscarriage and pathologies of pregnancy. An overview of current knowledge on the generation, activation and modes of action of Treg cells in controlling immune responses is provided, and strategies for manipulating regulatory T-cells for potential applications in reproductive medicine are discussed. RESULTS Studies in mouse models show that Treg cells are essential for maternal tolerance of the conceptus, and that expansion of the Treg cell pool through antigen-specific and antigen non-specific pathways allows their suppressive actions to be exerted in the critical peri-implantation phase of pregnancy. In women, Treg cells accumulate in the decidua and are elevated in maternal blood from early in the first trimester. Inadequate numbers of Treg cells or their functional deficiency are linked with infertility, miscarriage and pre-eclampsia. CONCLUSIONS The potency and wide-ranging involvement of Treg cells in immune homeostasis and disease pathology indicates the considerable potential of these cells as therapeutic agents, raising the prospect of their utility in novel treatments for reproductive pathologies.
Collapse
Affiliation(s)
- Leigh R Guerin
- Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, University of Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
48
|
Erratum. Am J Reprod Immunol 2008. [DOI: 10.1111/j.1600-0897.2008.00635.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|