1
|
Hernández-Rodríguez J, Pérez-Hernández J, Flores-Espinosa P, Olmos-Ortiz A, Velazquez P, Zamora-Escudero R, Islas-López M, Helguera-Repetto AC, Hernández-Bones K, Rodríguez-Flores S, Jiménez-Escutia R, Fortanel-Fonseca A, Flores-Pliego A, Lopez-Vancell R, Zaga-Clavellina V. Galectin-1 Elicits a Tissue-Specific Anti-Inflammatory and Anti-Degradative Effect Upon LPS-Induced Response in an Ex Vivo Model of Human Fetal Membranes Modeling an Intraamniotic Inflammation. Am J Reprod Immunol 2024; 92:e70016. [PMID: 39575516 PMCID: PMC11582940 DOI: 10.1111/aji.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
PROBLEM Intrauterine infection is one of the most jeopardizing conditions associated with adverse outcomes, including preterm birth; however, multiple tolerance mechanisms operate at the maternal-fetal interface to avoid the rejection of the fetus. Among the factors that maintain the uterus as an immunoprivileged site, Galectin-1 (Gal-1), an immunomodulatory glycan-binding protein secreted by the maternal-fetal unit, is pivotal in promoting immune cell homeostasis. This work aimed to evaluate the role of Gal-1 during a lipopolysaccharide (LPS)-induced-inflammatory milieu. METHOD OF STUDY Using an ex vivo culture with two independent compartments, human fetal membranes at term were pretreated with 40 and 80 ng/mL of Gal-1, then to reproduce an intraamniotic inflammation, the fetal side of membranes was stimulated with 500 ng/mL of LPS for 24 h. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein (MCP1), macrophage inflammatory protein (MIP1) α, regulated upon activation normal T cell expressed and secreted (RANTES), and matrix metalloproteinase (MMP)-9 were measured in both amnion and choriodecidua compartments. RESULTS In a tissue-specific fashion profile, pretreatment with the physiologic concentration of Gal-1 significantly diminished the LPS-dependent secretion of TNF-α, IL-1β, Il-6, MCP1, MIP1α, RANTES, and MMP-9. CONCLUSION Gal-1 elicits an anti-inflammatory effect on the human fetal membranes stimulated with LPS, which supports the hypothesis that Gal-1 is part of the immunomodulatory mechanisms intended to stop the harmful effect of inflammation of the maternal-fetal interface.
Collapse
Affiliation(s)
- Jazmin Hernández-Rodríguez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Jesús Pérez-Hernández
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Pilar Velazquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México, Mexico
| | | | - Marcela Islas-López
- Ginecología y Obstetricia, Hospital Ángeles Lomas-UNAM, Huixquilucan, Mexico
| | | | - Karla Hernández-Bones
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Médicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Samara Rodríguez-Flores
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Médicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rodrigo Jiménez-Escutia
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Arturo Flores-Pliego
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Rosario Lopez-Vancell
- Laboratorio de Patología Experimental UME, Unidad de Medicina Experimental, Facultad de Medicina UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | | |
Collapse
|
2
|
Seifert CT, Unverdorben L, Knabl J, Hutter S, Keckstein S, Schmoeckel E, Kessler M, Jeschke U, Mahner S, Kolben T, Ganster F. Galectin-7 Expression in the Placentas of Women with Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:10186. [PMID: 39337670 PMCID: PMC11432196 DOI: 10.3390/ijms251810186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common condition during pregnancy. The prevalence of GDM is continuously increasing worldwide. Due to accessible diagnostic methods and a clear understanding of risk factors, GDM can be effectively diagnosed and managed. Galectins may influence immunomodulatory and inflammatory processes. This study examines the expression of galectin-7 in the placentas of women with gestational diabetes (GDM), compares it to its expression in healthy pregnancies, and evaluates the associated clinical outcomes. The placentas of 40 healthy women and 40 GDM placentas were included in the cohort. The expression level of galecin-7 was measured in the syncytiotrophoblast (SCT) and in the decidua of the placenta by immunohistochemistry and double immunofluorescence staining. The evaluation was performed by an immunoreactivity score (IRS). The study results show an increased expression of galectin-7 in the SCT and the decidua of GDM placentas as compared to the placentas of the control group. Elevated levels of galectin-7 were observed in both the nucleus and the cytoplasm. This study investigated the hypothesis that galectins are involved in pathophysiological processes of gestational diabetes. Statistical analysis of gene expression patterns confirmed that galectin-7 is indeed upregulated in GDM placentas. Further studies are needed to show the correlation of galectin-7 and the development and maintenance of gestational diabetes mellitus.
Collapse
Affiliation(s)
| | - Laura Unverdorben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Knabl
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stefan Hutter
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Keckstein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
3
|
Gallo DM, Fitzgerald W, Romero R, Gomez-Lopez N, Gudicha DW, Than NG, Bosco M, Chaiworapongsa T, Jung E, Meyyazhagan A, Suksai M, Gotsch F, Erez O, Tarca AL, Margolis L. Proteomic profile of extracellular vesicles in maternal plasma of women with fetal death. J Matern Fetal Neonatal Med 2023; 36:2177529. [PMID: 36813269 PMCID: PMC10395052 DOI: 10.1080/14767058.2023.2177529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES Fetal death is a complication of pregnancy caused by multiple etiologies rather than being the end-result of a single disease process. Many soluble analytes in the maternal circulation, such as hormones and cytokines, have been implicated in its pathophysiology. However, changes in the protein content of extracellular vesicles (EVs), which could provide additional insight into the disease pathways of this obstetrical syndrome, have not been examined. This study aimed to characterize the proteomic profile of EVs in the plasma of pregnant women who experienced fetal death and to evaluate whether such a profile reflected the pathophysiological mechanisms of this obstetrical complication. Moreover, the proteomic results were compared to and integrated with those obtained from the soluble fraction of maternal plasma. METHODS This retrospective case-control study included 47 women who experienced fetal death and 94 matched, healthy, pregnant controls. Proteomic analysis of 82 proteins in the EVs and the soluble fractions of maternal plasma samples was conducted by using a bead-based, multiplexed immunoassay platform. Quantile regression analysis and random forest models were implemented to assess differences in the concentration of proteins in the EV and soluble fractions and to evaluate their combined discriminatory power between clinical groups. Hierarchical cluster analysis was applied to identify subgroups of fetal death cases with similar proteomic profiles. A p-value of <.05 was used to infer significance, unless multiple testing was involved, with the false discovery rate controlled at the 10% level (q < 0.1). All statistical analyses were performed by using the R statistical language and environment-and specialized packages. RESULTS Nineteen proteins (placental growth factor, macrophage migration inhibitory factor, endoglin, regulated upon activation normal T cell expressed and presumably secreted (RANTES), interleukin (IL)-6, macrophage inflammatory protein 1-alpha, urokinase plasminogen activator surface receptor, tissue factor pathway inhibitor, IL-8, E-Selectin, vascular endothelial growth factor receptor 2, pentraxin 3, IL-16, galectin-1, monocyte chemotactic protein 1, disintegrin and metalloproteinase domain-containing protein 12, insulin-like growth factor-binding protein 1, matrix metalloproteinase-1(MMP1), and CD163) were found to have different plasma concentrations (of an EV or a soluble fraction) in women with fetal death compared to controls. There was a similar pattern of change for the dysregulated proteins in the EV and soluble fractions and a positive correlation between the log2-fold changes of proteins significant in either the EV or the soluble fraction (ρ = 0.89, p < .001). The combination of EV and soluble fraction proteins resulted in a good discriminatory model (area under the ROC curve, 82%; sensitivity, 57.5% at a 10% false-positive rate). Unsupervised clustering based on the proteins differentially expressed in either the EV or the soluble fraction of patients with fetal death relative to controls revealed three major clusters of patients. CONCLUSION Pregnant women with fetal death have different concentrations of 19 proteins in the EV and soluble fractions compared to controls, and the direction of changes in concentration was similar between fractions. The combination of EV and soluble protein concentrations revealed three different clusters of fetal death cases with distinct clinical and placental histopathological characteristics.
Collapse
Affiliation(s)
- Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Systems, Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Qian LH, Kong X, Zhou LL. Expression and Significance of Galectin-1 and Galectin-3 in the Serum and Placental Tissues of Patients with Intrahepatic Cholestasis of Pregnancy. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1656-1664. [PMID: 37744532 PMCID: PMC10512149 DOI: 10.18502/ijph.v52i8.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 09/26/2023]
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease, usually occurring in the third trimester of pregnancy. Its typical clinical manifestations are itching and elevated serum total bile acid levels, which are more harmful to the fetus, and can lead to a variety of adverse pregnancy outcomes. This paper discusses the expressions of galectin -1 and 3 in the serum and placenta of ICP patients and their relationship with the effect of the incidence of ICP. Methods Galectin-1 and 3 in serum and placenta were detected in 22 pregnant women with ICP and 20 healthy pregnant women admitted to the obstetrics Department of Northern Jiangsu People's Hospital from May 2021 to February 2022. Results Serum levels of galectin-1 and galectin-3 in ICP pregnant women were significantly higher than those in controls, with significant differences (P<0.05). Placental galectin-1 and 3 were higher in normal pregnant women, and there were statistical differences between groups (P<0.05). Conclusion In ICP, the maternal serum and placental galectin-1 and 3 levels were significantly increased, both of which may play an important role in the development of ICP, which may be the initiation factor of ICP pathophysiology, a marker of ICP prediction, and a target of ICP prevention strategies.
Collapse
Affiliation(s)
- Li-Hua Qian
- Clinical Medical College of Yangzhou University, No. 136 Middle Jiangyang Road, Hanjiang District, Yangzhou 225000, China
- Department of Obstetrics and Gynecology, Taixing People’s Hospital, No. 1 Changzheng Road, Taixing City, Taizhou 225400, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Liu-Lin Zhou
- Department of Obstetrics and Gynecology, Taixing People’s Hospital, No. 1 Changzheng Road, Taixing City, Taizhou 225400, China
| |
Collapse
|
5
|
Galectin-1 and Galectin-9 Concentration in Maternal Serum: Implications in Pregnancies Complicated with Preterm Prelabor Rupture of Membranes. J Clin Med 2022; 11:jcm11216330. [PMID: 36362558 PMCID: PMC9658671 DOI: 10.3390/jcm11216330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Preterm prelabor rupture of membranes (pPROM) accounts for nearly half of premature births. Although several risk factors have been identified, no markers allowing for effective prevention have been discovered. In this study, we investigated how the maternal serum levels of galectin-1 and galectin-9 change in patients with pPROM in comparison to uncomplicated pregnancies. A total of 75 patients were enrolled to both study and control group (37 vs. 38, respectively). The serum concentration of galectin-1 and galectin-9 were assayed in duplicate using an enzyme-linked immunoassay. All analyses were performed using PQ Stat v. 1.8.4 software. Galectin-1 levels were significantly higher in the controls (13.32 vs. 14.71 ng/mL, p = 0.02). Galectin-9 levels were similar in both groups (13.31 vs. 14.76 ng/mL, p = 0.30). Lower galectin levels were detected for early pPROM (before 32nd GW) in comparison to late pPROM and the controls (8.85 vs. 14.45 vs. 14.71 ng/mL, p = 0.0004). Similar trend was observed in galectin-9 levels, although no statistical significance was found (11.57 vs. 14.25 vs. 14.76 ng/mL, p = 0.26). Low galectin-1 maternal serum level is associated with the incidence of preterm prelabor rupture of membranes. Galectin-9 maternal serum levels were not significantly correlated with pPROM. However, in order to investigate gal-1 and gal-9 levels as potential, promising markers of pPROM, further clinical studies on larger groups are required.
Collapse
|
6
|
Chen M, Shi JL, Zheng ZM, Lin Z, Li MQ, Shao J. Galectins: Important Regulators in Normal and Pathologic Pregnancies. Int J Mol Sci 2022; 23:ijms231710110. [PMID: 36077508 PMCID: PMC9456357 DOI: 10.3390/ijms231710110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gal) are characterized by their affinity for galactoside structures on glycoconjugates. This relationship is mediated by carbohydrate recognition domains, which are multifunctional regulators of basic cellular biological processes with high structural similarity among family members. They participate in both innate and adaptive immune responses, as well as in reproductive immunology. Recently, the discovery that galectins are highly expressed at the maternal–fetal interface has garnerd the interest of experts in human reproduction. Galectins are involved in a variety of functions such as maternal–fetal immune tolerance, angiogenesis, trophoblast invasion and placental development and are considered to be important mediators of successful embryo implantation and during pregnancy. Dysregulation of these galectins is associated with abnormal and pathological pregnancies (e.g., preeclampsia, gestational diabetes mellitus, fetal growth restriction, preterm birth). Our work reviews the regulatory mechanisms of galectins in normal and pathological pregnancies and has implications for clinicians in the prevention, diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
- Correspondence: (M.-Q.L.); (J.S.)
| | - Jun Shao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- Department of Obstetrics, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
- Correspondence: (M.-Q.L.); (J.S.)
| |
Collapse
|
7
|
Acute chorioamnionitis and intra-amniotic inflammation are more severe according to outside-in neutrophil migration within the same chorio-decidua. Taiwan J Obstet Gynecol 2021; 60:639-652. [PMID: 34247801 DOI: 10.1016/j.tjog.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE No information exists about whether acute histologic chorioamnionitis (acute-HCA) is more advanced and severe, and intra-amniotic inflammation is more frequent and intense according to outside in neutrophil migration within the same chorio-decidua. The objective of current study is to examine this issue. MATERIALS AND METHODS We included 106 singleton preterm-births (gestational age at delivery: 20-34 weeks) due to either preterm-labor or preterm-PROM in the context of acute chorio-deciduitis. Study-population was divided into 3 groups according to outside-in neutrophil migration within chorio-decidua as follows: 1) group-1: 'inflammation restricted to the decidua' (n = 22); 2) group-2: 'inflammation restricted to the MT of chorion and the decidua' (n = 31); 3) group-3: 'inflammation in the CT of chorion' (n = 53). We examined the frequency of inflammation in each placental compartment beyond chorio-decidua (i.e., amnion, umbilical cord, and chorionic-plate), and total grade (1-8) of acute-HCA. Moreover, the frequency of intra-amniotic infection (defined as positive amniotic-fluid culture for aerobic and anaerobic bacteria and genital mycoplasmas) and intra-amniotic inflammation (defined as amniotic fluid WBC ≥ 19 cells/mm3), and an intra-amniotic inflammatory response gauged by amnioticfluid WBC count (cells/mm3) were examined in 50 amniotic fluid samples within 7 days of birth. RESULTS Amnionitis, funisitis and chorionic plate inflammation were more frequent (each for P < 0.01) and median total grade of acute-HCA was increased (P < 0.001) according to outside-in neutrophil migration within chorio-decidua (group-1vs.group-2vs.group-3). Moreover, intra-amniotic infection and inflammation were more frequent (each-for P < 0.05) and median amniotic-fluid WBC count was increased (P < 0.01) according-to outside-in neutrophil-migration within chorio-decidua (group-1 vs. group-2 vs. group-3). CONCLUSION Acute-HCA is more advanced and severe, and intra-amniotic inflammation is more frequent and intense according to outside in neutrophil migration within the same chorio-decidua. This finding suggests that what is now acute chorio-deciduitis should be subdivided.
Collapse
|
8
|
Kaya B, Turhan U, Sezer S, Kaya S, Dağ İ, Tayyar A. Maternal serum galectin-1 and galectin-3 levels in pregnancies complicated with preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2019; 33:861-868. [PMID: 31242786 DOI: 10.1080/14767058.2019.1637409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To investigate maternal serum galectin-1 and galectin-3 levels in pregnancies complicated with preterm prelabor rupture of membranes (PPROM) and to compare with pregnancies delivered at term.Materials and methods: In this cross-sectional study, 40 women with singleton pregnancies complicated with PPROM between 24 and 34 weeks of gestation were compared with gestational age-matched 40 pregnant women with no obstetrics complications, who delivered at term. The maternal serum galectin-1 and galectin-3 levels were measured.Results: Patients complicated with PPROM had significantly higher levels of galectin-1 (p = .001) and galectin-3 (p = .003) than the control group. Maternal serum galectin-3 levels were found significantly negatively correlated with the gestational age at delivery and birth weight.Conclusion: Maternal serum galectin-1 and galectin-3 levels were significantly higher in pregnancies complicated with PPROM. Galectin-1 and galectin-3, with their regulatory effects in key biological processes, may be both an initiating factor in the pathophysiology of PPROM, a marker in the prediction, and a target of preventing strategies of PPROM.
Collapse
Affiliation(s)
- Başak Kaya
- Department of Maternal-Fetal Medicine, İstanbul Medipol University Hospital, İstanbul, Turkey
| | - Uğur Turhan
- Department of Maternal-Fetal Medicine, Health Sciences University, Samsun Education and Research Hospital, Samsun, Turkey
| | - Salim Sezer
- Department of Obstetrics and Gynecology, Health Sciences University, Kanuni Sultan Süleyman Education and Research Hospital, İstanbul, Turkey
| | - Serdar Kaya
- Department of Maternal-Fetal Medicine, Akdeniz University, Antalya, Turkey
| | - İsmail Dağ
- Department of Clinical Biochemistry, Eyüp State Hospital, İstanbul, Turkey
| | - Ahmet Tayyar
- Department of Maternal-Fetal Medicine, İstanbul Medipol University Hospital, İstanbul, Turkey
| |
Collapse
|
9
|
Szekeres-Bartho J, Šućurović S, Mulac-Jeričević B. The Role of Extracellular Vesicles and PIBF in Embryo-Maternal Immune-Interactions. Front Immunol 2018; 9:2890. [PMID: 30619262 PMCID: PMC6300489 DOI: 10.3389/fimmu.2018.02890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/26/2018] [Indexed: 02/01/2023] Open
Abstract
Pregnancy represents a unique immunological situation. Though paternal antigens expressed by the conceptus are recognized by the immune system of the mother, the immune response does not harm the fetus. Progesterone and a progesterone induced protein; PIBF are important players in re-adjusting the functioning of the maternal immune system during pregnancy. PIBF expressed by peripheral pregnancy lymphocytes, and other cell types, participates in the feto-maternal communication, partly, by mediating the immunological actions of progesterone. Several splice variants of PIBF were identified with different physiological activity. The full length 90 kD PIBF protein plays a role in cell cycle regulation, while shorter splice variants are secreted and act as cytokines. Aberrant production of PIBF isoforms lead to the loss of immune-regulatory functions, resulting in and pregnancy failure. By up regulating Th2 type cytokine production and by down-regulating NK activity, PIBF contributes to the altered attitude of the maternal immune system. Normal pregnancy is characterized by a Th2-dominant cytokine balance, which is partly due to the action of the smaller PIBF isoforms. These bind to a novel form of the IL-4 receptor, and induce increased production of IL-3, IL-4, and IL-10. The communication between the conceptus and the mother is established via extracellular vesicles (EVs). Pre-implantation embryos produce EVs both in vitro, and in vivo. PIBF transported by the EVs from the embryo to maternal lymphocytes induces increased IL-10 production by the latter, this way contributing to the Th2 dominant immune responses described during pregnancy.
Collapse
Affiliation(s)
- Julia Szekeres-Bartho
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary.,János Szentágothai Research Centre, Pécs University, Pécs, Hungary.,Endocrine Studies, Centre of Excellence, Pécs University, Pécs, Hungary.,MTA-PTE Human Reproduction Research Group, Pécs, Hungary
| | - Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
10
|
Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 2018; 8:17070. [PMID: 30459472 PMCID: PMC6244280 DOI: 10.1038/s41598-018-35256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Male sex is a risk factor for development of bronchopulmonary dysplasia (BPD), a common chronic lung disease following preterm birth. We previously found that tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants developing BPD show reduced expression of PDGFRα, which is required for normal lung development. We hypothesized that MSCs from male infants developing BPD exhibit a pathologic gene expression profile deficient in PDGFR and its downstream effectors, thereby favoring delayed lung development. In a discovery cohort of 6 male and 7 female premature infants, we analyzed the tracheal aspirate MSCs transcriptome. A unique gene signature distinguished MSCs from male infants developing BPD from all other MSCs. Genes involved in lung development, PDGF signaling and extracellular matrix remodeling were differentially expressed. We sought to confirm these findings in a second cohort of 13 male and 12 female premature infants. mRNA expression of PDGFRA, FGF7, WNT2, SPRY1, MMP3 and FOXF2 were significantly lower in MSCs from male infants developing BPD. In female infants developing BPD, tracheal aspirate levels of proinflammatory CCL2 and profibrotic Galectin-1 were higher compared to male infants developing BPD and female not developing BPD. Our findings support a notion for sex-specific differences in the mechanisms of BPD development.
Collapse
|
11
|
Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A, Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H, LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A, Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knöfler M, Erez O, Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 2018; 9:1661. [PMID: 30135684 PMCID: PMC6092567 DOI: 10.3389/fimmu.2018.01661] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, United States
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | | | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Balazs Andras Gyorffy
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Laszlo Orosz
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anett Szecsi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Hunyadi-Gulyas
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Katalin Eder
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Vanessa Topping
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Haidy El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Christopher LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Susan Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Olga Torok
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Sorin Draghici
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Department of Clinical and Translational Science, Wayne State University, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Gabor Juhasz
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
El-Azzamy H, Balogh A, Romero R, Xu Y, LaJeunesse C, Plazyo O, Xu Z, Price TG, Dong Z, Tarca AL, Papp Z, Hassan SS, Chaiworapongsa T, Kim CJ, Gomez-Lopez N, Than NG. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition. J Pathol Transl Med 2017; 51:264-283. [PMID: 28226203 PMCID: PMC5445200 DOI: 10.4132/jptm.2016.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14) or without labor (TNL, n = 15). Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR). Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1), galectin-1 (LGALS1), and progestogen-associated endometrial protein (PAEP); the expression of estrogen receptor 1 (ESR1), homeobox A11 (HOXA11), interleukin 1β (IL1B), IL8, progesterone receptor membrane component 2 (PGRMC2), and prostaglandin E synthase (PTGES) was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2), CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and IL-8 were found. Conclusions Our data suggests that with the initiation of parturition, the decidual expression of anti-inflammatory mediators decreases, while the expression of pro-inflammatory mediators and steroid receptors increases. This shift may affect downstream signaling pathways that can lead to parturition.
Collapse
Affiliation(s)
- Haidy El-Azzamy
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | | | - Olesya Plazyo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Theodore G Price
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA.,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Stefanoska I, Tadić J, Vilotić A, Jovanović Krivokuća M, Abu Rabi T, Vićovac L. Histological chorioamnionitis in preterm prelabor rupture of the membranes is associated with increased expression of galectin-3 by amniotic epithelium. J Matern Fetal Neonatal Med 2016; 30:2232-2236. [PMID: 27690725 DOI: 10.1080/14767058.2016.1243100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Gal-3, which can regulate immune responses upon infection and inflammation, was not studied so far in intrauterine infection leading to preterm prelabor rupture of the membranes (PPROM), although gal-1 was reported to be implicated in the process. Gal-3 mRNA and protein expression in amnion and its changes during histological chorioamnionitis were studied here. MATERIALS AND METHODS Fetal membranes were obtained from women with PPROM with (n =15) and without histological chorioamnionitis (n =15) during second and third trimester. Immunohistochemical reactivity was evaluated semiquantitatively and analyzed using t-test. Galectin profile of amniotic epithelia was determined by polymerase chain reaction (PCR) and change assessed in gal-3 in PPROM with (n =5) or without histological chorioamnionitis (n =5) by real-time PCR. RESULTS Human amniotic epithelium was found to express gal-1, gal-3, gal-7 and gal-8 mRNA. Gal-3 mRNA and protein is increased in fetal membranes and in the amniotic epithelium in patients with chorionamnionitis. CONCLUSION Histological chorioamnionitis is associated with increased gal-3 expression and strong immunoreactivity of the amnion. Gal-3 may participate in the regulation of the inflammatory responses to chorioamniotic infection and/or direct interaction with pathogens.
Collapse
Affiliation(s)
- Ivana Stefanoska
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| | - Jasmina Tadić
- b Department of Histopathology , Clinical Center of Serbia , Belgrade , Serbia
| | - Aleksandra Vilotić
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| | | | - Tamara Abu Rabi
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| | - Ljiljana Vićovac
- a Institute for the Application of Nuclear Energy, INEP, University of Belgrade , Belgrade , Serbia and
| |
Collapse
|
14
|
Giaglis S, Stoikou M, Grimolizzi F, Subramanian BY, van Breda SV, Hoesli I, Lapaire O, Hasler P, Than NG, Hahn S. Neutrophil migration into the placenta: Good, bad or deadly? Cell Adh Migr 2016; 10:208-25. [PMID: 26933824 PMCID: PMC4853040 DOI: 10.1080/19336918.2016.1148866] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Almost 2 decades have passed since the discovery that pregnancy is associated with a basal inflammatory state involving neutrophil activation, and that this is more overt in cases with preeclampsia, than in instances with sepsis. This pivotal observation paved the way for our report, made almost a decade ago, describing the first involvement of neutrophil extracellular traps (NETs) in a non-infectious human pathology, namely preeclampsia, where an abundance of these structures were detected directly in the placental intervillous space. Despite these remarkable findings, there remains a paucity of interest among reproductive biologists in further exploring the role or involvement of neutrophils in pregnancy and related pathologies. In this review we attempt to redress this deficit by highlighting novel recent findings including the discovery of a novel neutrophil subset in the decidua, the interaction of placental protein 13 (PP13) and neutrophils in modulating spiral artery modification, as well as the use of animal model systems to elucidate neutrophil function in implantation, gestation and parturition. These model systems have been particularly useful in identifying key components implicated in recurrent fetal loss, preeclampsia or new signaling molecules such as sphingolipids. Finally, the recent discovery that anti-phospolipid antibodies can trigger NETosis, supports our hypothesis that these structures may contribute to placental dysfunction in pertinent cases with recurrent fetal loss.
Collapse
Affiliation(s)
- Stavros Giaglis
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland.,b Department Rheumatology , Cantonal Hospital Aarau , Aarau , Switzerland
| | - Maria Stoikou
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Franco Grimolizzi
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland.,c Polytechnic University Marche , Ancona , Italy
| | - Bibin Y Subramanian
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Shane V van Breda
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Irene Hoesli
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Olav Lapaire
- d Department of Obstetrics , University Women's Hospital Basel , Basel , Switzerland
| | - Paul Hasler
- b Department Rheumatology , Cantonal Hospital Aarau , Aarau , Switzerland
| | - Nandor Gabor Than
- e Lendulet Reproduction Research Group, Institute of Enzymology , Research Center for Natural Sciences; Hungarian Academy of Sciences , Budapest , Hungary
| | - Sinuhe Hahn
- a Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| |
Collapse
|
15
|
Park CW, Park JS, Jun JK, Yoon BH. The inflammatory milieu of amniotic fluid in acute-chorioamnionitis decreases with increasing gestational age. Placenta 2015; 36:1283-90. [PMID: 26462905 DOI: 10.1016/j.placenta.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/06/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The inflammatory milieu decreases in the placenta and amniotic fluid (AF) with gestational age (GA). However, there is no information about whether the inflammatory milieu of AF in the setting of the same placental inflammatory condition decreases with GA. We hypothesized that the inflammatory milieu of AF in acute chorioamnionitis would decrease with increasing GA. METHODS The inflammatory milieu of AF was examined in 617 singleton preterm pregnancies (<36 weeks) delivered within 5 days of amniocentesis. Study population was divided into GA at delivery ≤30 weeks (n = 148), 30-34 weeks (n = 226), and 34-36 weeks (n = 226). Acute-chorioamnionitis was classified according to the severity (i.e., mild, total grade 1; moderate, total grade 2; and severe, total grade 3-6) or involved compartment (i.e., chorionic plate, amnion and chorio-decidua). The inflammatory milieu of AF was determined by matrix metalloproteinase-8 (MMP-8) concentration. RESULTS 1) AF MMP-8 concentrations decreased in patients with acute-chorioamnionitis (P < 0.001), but not inflammation-free placenta, with increasing GA; 2) AF MMP-8 concentrations were less intense at higher GA in patients with moderate and severe (each-for P < 0.005), but not mild, acute-chorioamnionitis; 3) AF MMP-8 concentrations decreased in the context of the same involved compartment (i.e., chorionic plate inflammation, amnionitis, or chorio-deciduitis) of acute-chorioamnionitis (each-for P < 0.001) with increasing GA; 4) Moreover, there was a significant inverse relationship between GA and AF MMP-8 concentrations in patients with acute-chorioamnionitis (r = -0.453, P < 0.0000001), but not inflammation-free placenta (r = -0.071, P = 0.170). DISCUSSION AF MMP-8 concentrations in acute-chorioamnionitis distinctly decrease throughout preterm-gestation. This finding suggests that the inflammatory milieu of AF decrease in acute-chorioamnionitis with GA.
Collapse
Affiliation(s)
- Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34:863-72. [PMID: 23911101 DOI: 10.1016/j.placenta.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Galectins are classified as lectins that share structural similarities and bind β-galactosides via a conserved carbohydrate recognition domain. So far 16 out of 19 identified galectins were shown to be present in humans and numerous studies revealed galectins as pivotal modulators of cell death, differentiation and growth. Galectins were highlighted to interact with both the adaptive and innate immune response. In the field of reproductive medicine and placenta research different roles for galectins have been proposed. Several galectins, being abundantly present at the human feto-maternal interphase and endometrium, were hypothesized to significantly contribute to endometrial receptivity and pregnancy physiology. Hence, this review outlines selected aspects of galectin action within endometrial function and at the feto-maternal interphase. Further current knowledge on galectins in reproductive and pregnancy disorders like endometriosis, abortion or preeclampsia is summarized.
Collapse
|
18
|
Topping V, Romero R, Than NG, Tarca AL, Xu Z, Kim SY, Wang B, Yeo L, Kim CJ, Hassan SS, Kim JS. Interleukin-33 in the human placenta. J Matern Fetal Neonatal Med 2013; 26:327-38. [PMID: 23039129 PMCID: PMC3563729 DOI: 10.3109/14767058.2012.735724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Interleukin-33 (IL-33) is the newest member of the IL-1 cytokine family, a group of key regulators of inflammation. The purpose of this study was to determine whether IL-33 is expressed in the human placenta and to investigate its expression in the context of acute and chronic chorioamnionitis. METHODS Placental tissues were obtained from five groups of patients: 1) normal pregnancy at term without labor (n = 10); 2) normal pregnancy at term in labor (n = 10); 3) preterm labor without inflammation (n = 10); 4) preterm labor with acute chorioamnionitis and funisitis (n = 10); and 5) preterm labor with chronic chorioamnionitis (n = 10). Immunostaining was performed to determine IL-33 protein expression patterns in the placental disk, chorioamniotic membranes, and umbilical cord. mRNA expression of IL-33 and its receptor IL1RL1 (ST2) was measured in primary amnion epithelial and mesenchymal cells (AECs and AMCs, n = 4) and human umbilical vein endothelial cells (HUVECs, n = 4) treated with IL-1β (1 and 10 ng/ml) and CXCL10 (0.5 and 1 or 5 ng/ml). RESULTS 1) Nuclear IL-33 expression was found in endothelial and smooth muscle cells in the placenta, chorioamniotic membranes, and umbilical cord; 2) IL-33 was detected in the nucleus of CD14+ macrophages in the chorioamniotic membranes, chorionic plate, and umbilical cord, and in the cytoplasm of myofibroblasts in the Wharton's jelly; 3) acute (but not chronic) chorioamnionitis was associated with the presence of IL-33+ macrophages in the chorioamniotic membranes and umbilical cord; 4) expression of IL-33 or IL1RL1 (ST2) mRNA in AECs was undetectable; 5) IL-33 mRNA expression increased in AMCs and HUVECs after IL-1β treatment but did not change with CXCL10 treatment; and 6) IL1RL1 (ST2) expression decreased in AMCs and increased in HUVECs after IL-1β but not CXCL10 treatment. CONCLUSIONS IL-33 is expressed in the nucleus of placental endothelial cells, CD14+ macrophages, and myofibroblasts in the Wharton's jelly. IL-1β can induce the expression of IL-33 and its receptor. Protein expression of IL-33 is detectable in macrophages of the chorioamniotic membranes in acute (but not chronic) chorioamnionitis.
Collapse
Affiliation(s)
- Vanessa Topping
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Sun Young Kim
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Bing Wang
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jung-Sun Kim
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Blidner AG, Rabinovich GA. ‘Sweetening’ Pregnancy: Galectins at the Fetomaternal Interface. Am J Reprod Immunol 2013; 69:369-82. [DOI: 10.1111/aji.12090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ada G. Blidner
- Instituto de Oncología Ángel H. Roffo; Universidad de Buenos Aires; Buenos Aires; Argentina
| | | |
Collapse
|
20
|
Than NG, Romero R, Kim CJ, McGowen MR, Papp Z, Wildman DE. Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends Endocrinol Metab 2012; 23:23-31. [PMID: 22036528 PMCID: PMC3640805 DOI: 10.1016/j.tem.2011.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/21/2011] [Accepted: 09/13/2011] [Indexed: 01/03/2023]
Abstract
Galectins are multifunctional regulators of fundamental cellular processes. They are also involved in innate and adaptive immune responses, and play a functional role in immune-endocrine crosstalk. Some galectins have attracted attention in the reproductive sciences because they are highly expressed at the maternal-fetal interface, their functional significance in eutherian pregnancies has been documented, and their dysregulated expression is observed in the 'great obstetrical syndromes'. The evolution of these galectins has been linked to the emergence of eutherian mammals. Based on published evidence, galectins expressed at the maternal-fetal interface may serve as important proteins involved in maternal-fetal interactions, and the study of these galectins may facilitate the prediction, prevention, diagnosis, and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Detroit, MI, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Kliman HJ, Sammar M, Grimpel YI, Lynch SK, Milano KM, Pick E, Bejar J, Arad A, Lee JJ, Meiri H, Gonen R. Placental protein 13 and decidual zones of necrosis: an immunologic diversion that may be linked to preeclampsia. Reprod Sci 2011; 19:16-30. [PMID: 21989657 DOI: 10.1177/1933719111424445] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We evaluated the role of placental protein 13 (PP13; galectin 13) in the process of trophoblast invasion and decidual necrosis. Immunohistochemical analysis for PP13, immune cells, human placental lactogen, cytokeratin, and apoptosis markers was performed on 20 elective pregnancy termination specimens between 6 and 15 weeks of gestation. Placental protein 13 was localized to syncytiotrophoblasts in the chorionic villi and to occasional multinucleated luminal trophoblasts within converted decidual spiral arterioles. Cytotrophoblasts, anchoring trophoblasts, and invasive trophoblasts did not stain for PP13. Extracellular PP13 aggregates were found around decidual veins associated with T-cell-, neutrophil- and macrophage-containing decidual zones of necrosis (ZONEs). We hypothesize that PP13 is secreted into the intervillus space, drains through the decidua basalis veins, and forms perivenous PP13 aggregates which attract and activate maternal immune cells. Thus, syncytiotrophoblast-derived PP13 may create a ZONE that facilitates trophoblast invasion and conversion of the maternal spiral arterioles.
Collapse
Affiliation(s)
- Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Harp DF, Chowdhury I. Trichomoniasis: evaluation to execution. Eur J Obstet Gynecol Reprod Biol 2011; 157:3-9. [PMID: 21440359 PMCID: PMC4888369 DOI: 10.1016/j.ejogrb.2011.02.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 02/27/2011] [Indexed: 12/22/2022]
Abstract
Trichomoniasis is the most common sexually transmitted disease, caused by a motile flagellate non-invasive parasitic protozoan, Trichomonas vaginalis (T. vaginalis). More than 160 million people worldwide are annually infected by this protozoan. T. vaginalis occupies an extracellular niche in the complex human genito-urinary environment (vagina, cervix, penis, prostate gland, and urethra) to survive, multiply and evade host defenses. T. vaginalis (strain G3) has a ∼160 megabase genome with 60,000 genes, the largest number of genes ever identified in protozoans. The T. vaginalis genome is a highly conserved gene family that encodes a massive proteome with one of the largest coding (expressing ∼4000 genes) capacities in the trophozoite stage, and helps T. vaginalis to adapt and survive in diverse environment. Based on recent developments in the field, we review T. vaginalis structure, patho-mechanisms, parasitic virulence, and advances in diagnosis and therapeutics.
Collapse
Affiliation(s)
- Djana F. Harp
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, USA
| |
Collapse
|
23
|
Gursoy T, Aliefendioglu D, Caglayan O, Aktas A, Ovali F. Resistin levels in preterms: are they influenced by fetal inflammatory course? J Perinatol 2011; 31:171-5. [PMID: 20689515 DOI: 10.1038/jp.2010.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Many different factors are involved in the pathogenesis of preterm deliveries and among them maternal or perinatal infections and inflammatory response have the major role. Researches were carried out about resistin, which is thought to have a role in inflammatory cytokine cycle and it was shown to be associated with growth in neonates. However, no research has been carried out showing its relationship with inflammation in neonates. In this study, we aimed to evaluate the resistin levels in premature neonates and the effect of events such as preterm prelabour rupture of the membranes (PPROMs) and the use of antenatal steroids on these levels. STUDY DESIGN The study included 118 preterm neonates. Their medical data together with their mothers' were recorded. Serum resistin levels together with interleukin (IL)-6, C-reactive protein (CRP) and procalcitonin were evaluated in the first 2 h of life. RESULT Mean gestational age and birth weight of babies included in the study were 29.6 ± 2.7 weeks and 1306.4 ± 393.4 g, respectively. Babies with PPROMs had significantly higher levels of resistin ((n=30); 70.7 (7.8 to 568.4) ng ml(-1)) than babies without PPROM ((n=88); 25.9 (5.5 to 528.9) ng ml(-1)) (P=0.005), and the babies of mothers who received antenatal steroids had significantly lower resistin levels ((n=44); 20.8 (5.5 to 159.9) ng ml(-1)) than the babies of mothers who did not ((n=66); 34.6 (7.2 to 568.4) ng ml(-1)) (P=0.015). There were significant correlations between resistin and IL-6 levels and between IL-6 and procalcitonin and CRP levels in babies whose mothers did not receive antenatal steroids. However, no correlation was found between these parameters in babies whose mothers received antenatal steroids. CONCLUSION Preterm delivery and PPROM involve complex cascade of events including inflammation, and steroids are potent anti-inflammatory agents. Elevated resistin levels in babies with PPROM and suppressed levels in babies whose mothers received antenatal steroids reported in this study might have been observed as a result of the effects of fetal inflammation on resistin levels.
Collapse
Affiliation(s)
- T Gursoy
- Department of Pediatrics, Zeynep Kamil Maternity and Children's Education and Training Hospital, NICU, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
24
|
Mazaki-Tovi S, Vaisbuch E, Romero R, Kusanovic JP, Chaiworapongsa T, Kim SK, Ogge G, Yoon BH, Dong Z, Gonzalez JM, Gervasi MT, Hassan SS. Hyperresistinemia - a novel feature in systemic infection during human pregnancy. Am J Reprod Immunol 2010; 63:358-69. [PMID: 20178460 PMCID: PMC3426318 DOI: 10.1111/j.1600-0897.2010.00809.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PROBLEM Resistin, originally described as an adipokine, has emerged as a potent pro-inflammatory protein associated with both acute and chronic inflammation. Moreover, resistin has been proposed as a powerful marker of sepsis severity, as well as a predictor of survival of critically ill non-pregnant patients. The aim of this study was to determine whether pyelonephritis during pregnancy is associated with changes in maternal plasma resistin concentrations. METHODS OF STUDY This cross-sectional study included the following groups: (i) normal pregnant women (n = 85) and (ii) pregnant women with pyelonephritis (n = 40). Maternal plasma resistin concentrations were determined by ELISA. Non-parametric statistics was used for analyses. RESULTS (i) The median maternal plasma resistin concentration was higher in patients with pyelonephritis than in those with a normal pregnancy (P < 0.001); (ii) among patients with pyelonephritis, the median maternal resistin concentration did not differ significantly between those with and without a positive blood culture (P = 0.3); (iii) among patients with pyelonephritis who were diagnosed with systemic inflammatory response syndrome (SIRS), those who fulfilled > or =3 criteria for SIRS had a significantly higher median maternal plasma resistin concentration than those who met only two criteria; and (iv) maternal WBC count positively correlated with circulating resistin concentration (r = 0.47, P = 0.02). CONCLUSION Hyperresistinemia is a feature of acute pyelonephritis during pregnancy. The results of this study support the role of resistin as an acute-phase protein in the presence of bacterial infection during pregnancy.
Collapse
Affiliation(s)
- Shali Mazaki-Tovi
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Edi Vaisbuch
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Sun Kwon Kim
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Giovanna Ogge
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Bo H. Yoon
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, South Korea
| | - Zhong Dong
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Juan M. Gonzalez
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Maria Teresa Gervasi
- Department of Obstetrics and Gynecology, Azienda Ospedaliera of Padova, Padova, Italy
| | - Sonia S. Hassan
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| |
Collapse
|
25
|
Mazaki-Tovi S, Vaisbuch E, Romero R, Kusanovic JP, Chaiworapongsa T, Kim SK, Nhan-Chang CL, Gomez R, Yoon BH, Yeo L, Mittal P, Ogge G, Gonzalez JM, Hassan SS. Maternal plasma concentration of the pro-inflammatory adipokine pre-B-cell-enhancing factor (PBEF)/visfatin is elevated in pregnant patients with acute pyelonephritis. Am J Reprod Immunol 2010; 63:252-62. [PMID: 20085562 PMCID: PMC3459674 DOI: 10.1111/j.1600-0897.2009.00804.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Visfatin/pre-B-cell-enhancing factor (PBEF) has been implicated in the regulation of the innate immune system, as well as in glucose metabolism. Specifically, visfatin plays a requisite role in delayed neutrophil apoptosis in patients with sepsis. The aim of this study was to determine whether pyelonephritis during pregnancy is associated with changes in maternal plasma visfatin concentration in normal weight and overweight/obese patients. METHOD OF STUDY This cross-sectional study included the following groups: (1) normal pregnant women (n = 200) and (2) pregnant women with pyelonephritis (n = 40). Maternal plasma visfatin concentrations were determined by ELISA. Non-parametric statistics was used for analyses. RESULTS (1) The median maternal plasma visfatin concentration was significantly higher in patients with pyelonephritis than in those with a normal pregnancy; (2) among overweight/obese pregnant women, those with pyelonephritis had a significantly higher median plasma visfatin concentration than women with a normal pregnancy; and (3) pyelonephritis was independently associated with higher maternal plasma visfatin concentrations after adjustment for maternal age, pre-gestational body mass index, smoking status, gestational age at sampling, and birthweight. CONCLUSION Acute pyelonephritis during pregnancy is associated with a high circulating maternal visfatin concentration. These findings suggest that visfatin/PBEF may play a role in the regulation of the complex and dynamic crosstalk between inflammation and metabolism during pregnancy.
Collapse
Affiliation(s)
- Shali Mazaki-Tovi
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Edi Vaisbuch
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Sun Kwon Kim
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Chia-Ling Nhan-Chang
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Ricardo Gomez
- CEDIP (Center for Perinatal Diagnosis and Research), Department of Obstetrics and Gynecology, Sotero del Rio Hospital, P. Universidad Catolica de Chile, Santiago, Chile
| | - Bo H. Yoon
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, South Korea
| | - Lami Yeo
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Pooja Mittal
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Giovanna Ogge
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Juan M. Gonzalez
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Sonia S. Hassan
- Perinatology Research Branch, Intramural Division, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| |
Collapse
|
26
|
Madsen-Bouterse SA, Romero R, Tarca AL, Kusanovic JP, Espinoza J, Kim CJ, Kim JS, Edwin SS, Gomez R, Draghici S. The transcriptome of the fetal inflammatory response syndrome. Am J Reprod Immunol 2010; 63:73-92. [PMID: 20059468 PMCID: PMC3437779 DOI: 10.1111/j.1600-0897.2009.00791.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The fetal inflammatory response syndrome (FIRS) is considered the counterpart of the systemic inflammatory response syndrome (SIRS), but similarities in their regulatory mechanisms are unclear. This study characterizes the fetal mRNA transcriptome of peripheral leukocytes to identify key biological processes and pathways involved in FIRS. METHOD OF STUDY Umbilical cord blood from preterm neonates with FIRS (funisitis, plasma IL-6 >11 pg/mL; n = 10) and neonates with no evidence of inflammation (n = 10) was collected at birth. Results Microarray analysis of leukocyte RNA revealed differential expression of 541 unique genes, changes confirmed by qRT-PCR for 41 or 44 genes tested. Similar to SIRS and sepsis, ontological and pathway analyses yielded significant enrichment of biological processes including antigen processing and presentation, immune response, and processes critical to cellular metabolism. RESULTS are comparable with microarray studies of endotoxin challenge models and pediatric sepsis, identifying 25 genes across all studies. CONCLUSION This study is the first to profile genome-wide expression in FIRS, which demonstrates a substantial degree of similarity with SIRS despite differences in fetal and adult immune systems.
Collapse
Affiliation(s)
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Wayne State University/Hutzel Women’s Hospital, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
- Wayne State University, Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Wayne State University, Department of Computer Science, Detroit, Michigan, USA
| | - Juan Pedro. Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Wayne State University/Hutzel Women’s Hospital, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Jimmy Espinoza
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Wayne State University/Hutzel Women’s Hospital, Department of Obstetrics and Gynecology, Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Wayne State University, Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Jung-Sun Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Wayne State University, Department of Pathology, Wayne State University, Detroit, MI, USA
| | - Samuel S. Edwin
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Ricardo Gomez
- CEDIP (Center for Perinatal Diagnosis and Research), Department of Obstetrics and Gynecology, Sotero del Rio Hospital, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Sorin Draghici
- Wayne State University, Department of Computer Science, Detroit, Michigan, USA
| |
Collapse
|
27
|
Fichorova RN. Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J Reprod Immunol 2009; 83:185-9. [PMID: 19850356 DOI: 10.1016/j.jri.2009.08.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 08/23/2009] [Accepted: 08/31/2009] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is the most common non-viral sexually transmitted pathogen. The infection is prevalent in reproductive age women and is associated with vaginitis, endometritis, adnexitis, pyosalpinx, infertility, preterm birth, low birth weight, bacterial vaginosis, and increased risk of cervical cancer, HPV, and HIV infection. In men, its complications include urethritis, prostatitis, epididymitis, and infertility through inflammatory damage or interference with the sperm function. The infection is often asymptomatic and recurrent despite the presence of specific antibodies, suggesting the importance of the innate immune defense. T. vaginalis adhesion proteins, cysteine proteases, and the major parasite lipophosphoglycan (LPG) play distinct roles in the pathogenesis and evasion of host immunity. LPG plays a key role in the parasite adherence and signaling to human vaginal and cervical epithelial cells, which is at least in part mediated by galectins. The epithelial cells respond to T. vaginalis infection and purified LPG by selective upregulation of proinflammatory mediators. At the same time, T. vaginalis triggers an immunosuppressive response in monocytes, macrophages, and dendritic cells. The molecular mechanisms underlying reproductive complications and epidemiologic risks associated with T. vaginalis infection remain to be elucidated.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02155, USA.
| |
Collapse
|
28
|
Emergence of hormonal and redox regulation of galectin-1 in placental mammals: implication in maternal-fetal immune tolerance. Proc Natl Acad Sci U S A 2008; 105:15819-24. [PMID: 18824694 DOI: 10.1073/pnas.0807606105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Galectin-1 is an anti-inflammatory lectin with pleiotropic regulatory functions at the crossroads of innate and adaptive immunity. It is expressed in immune privileged sites and is implicated in establishing maternal-fetal immune tolerance, which is essential for successful pregnancy in eutherian mammals. Here, we show conserved placental localization of galectin-1 in primates and its predominant expression in maternal decidua. Phylogenetic footprinting and shadowing unveil conserved cis motifs, including an estrogen responsive element in the 5' promoter of LGALS1, that were gained during the emergence of placental mammals and could account for sex steroid regulation of LGALS1 expression, thus providing additional evidence for the role of galectin-1 in immune-endocrine cross-talk. Maximum parsimony and maximum likelihood analyses of 27 publicly available vertebrate and seven newly sequenced primate LGALS1 coding sequences reveal that intense purifying selection has been acting on residues in the carbohydrate recognition domain and dimerization interface that are involved in immune functions. Parsimony- and codon model-based phylogenetic analysis of coding sequences show that amino acid replacements occurred in early mammalian evolution on key residues, including gain of cysteines, which regulate immune functions by redox status-mediated conformational changes that disable sugar binding and dimerization, and that the acquired immunoregulatory functions of galectin-1 then became highly conserved in eutherian lineages, suggesting the emergence of hormonal and redox regulation of galectin-1 in placental mammals may be implicated in maternal-fetal immune tolerance.
Collapse
|