1
|
Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol 2020; 11:575197. [PMID: 33133091 PMCID: PMC7579415 DOI: 10.3389/fimmu.2020.575197] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christina Michalski
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pascal M Lavoie
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Kaya MS, Kose M, Guzeloglu A, Kıyma Z, Atli MO. Early pregnancy-related changes in toll-like receptors expression in ovine trophoblasts and peripheral blood leukocytes. Theriogenology 2017; 93:40-45. [PMID: 28257865 DOI: 10.1016/j.theriogenology.2017.01.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
In the present study, we aimed to 1) demonstrate the presence of all 10 toll-like receptors (TLRs) in ovine trophoblasts, and 2) investigate the expression profiles of TLR1-10 mRNAs in peripheral blood leukocytes (PBLs) in ewes during early pregnancy. For those purposes, ovine trophoblasts (n = 6) were collected from pregnant ewes on day 13. PBLs were collected from non-pregnant (n = 6) and pregnant ewes (n = 17) on days of mating (d) 0 and 18. TLR mRNAs in ovine trophoblasts were visualized by free-floating in situ hybridization (ISH). To assess the expression profiles of TLR1-10 in PBLs, total RNA was isolated and transcribed to cDNA. TLR1-10 mRNA levels were determined by real-time PCR in triplicate. The Relative Expression Software Tool (REST 2009) was used for statistical analysis. We detected mRNAs for TLR2, TLR4, TLR5, TLR6, TLR7, TLR8, and TLR10 but not for TLR1, TLR3, and TLR9 in trophoblasts. TLR2, TLR5, TLR6, TLR7, TLR8, and TLR10 mRNAs were expressed by all trophoblasts, whereas TLR4 mRNA and protein in trophoblasts were more limited. In PBLs, TLR expression did not differ between day 0 and day 18 in non-pregnant ewes; however, ewes in early pregnancy exhibited significantly upregulated expression of TLR2 (2.3-fold), TLR4 (3.1-fold), TLR6 (1.7-fold), and TLR8 (2.2-fold) on day 18 compared with day 0. In contrast, TLR10 was downregulated (2-fold) on day 18 by pregnancy. Similar results were also obtained for TLR2, TLR4, TLR6, TLR8 and TLR10 from the comparison between day 18 non -pregnant and day 18 pregnant groups. According to these results, the presence of TLRs in early ovine trophoblasts suggests that these cells play an immunological role at the maternal-fetal interface. The results also suggest that tight regulation of some components of TLRs in PBLs due to embryo- and/or pregnancy-related factors is necessary for successful establishment of early pregnancy in ewes.
Collapse
Affiliation(s)
- Mehmet Salih Kaya
- University of Dicle, Faculty of Veterinary Medicine, Department of Physiology, 21280, Diyarbakir, Turkey
| | - Mehmet Kose
- University of Dicle, Faculty of Veterinary Medicine, Department of Gyneacology and Obstetrics, 21280, Diyarbakir, Turkey
| | - Aydin Guzeloglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Genetics, Konya, Turkey
| | - Zekeriya Kıyma
- Eskisehir Osmangazi University, Faculty of Agriculture, Department of Animal Science, 26480, Eskisehir, Turkey
| | - Mehmet Osman Atli
- University of Dicle, Faculty of Veterinary Medicine, Department of Gyneacology and Obstetrics, 21280, Diyarbakir, Turkey.
| |
Collapse
|
3
|
Nadeau-Vallée M, Quiniou C, Palacios J, Hou X, Erfani A, Madaan A, Sanchez M, Leimert K, Boudreault A, Duhamel F, Rivera JC, Zhu T, Noueihed B, Robertson SA, Ni X, Olson DM, Lubell W, Girard S, Chemtob S. Novel Noncompetitive IL-1 Receptor-Biased Ligand Prevents Infection- and Inflammation-Induced Preterm Birth. THE JOURNAL OF IMMUNOLOGY 2015; 195:3402-15. [PMID: 26304990 DOI: 10.4049/jimmunol.1500758] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022]
Abstract
Preterm birth (PTB) is firmly linked to inflammation regardless of the presence of infection. Proinflammatory cytokines, including IL-1β, are produced in gestational tissues and can locally upregulate uterine activation proteins. Premature activation of the uterus by inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. However, all currently available IL-1 inhibitors are large molecules that exhibit competitive antagonism properties by inhibiting all IL-1R signaling, including transcription factor NF-κB, which conveys important physiological roles. We hereby demonstrate the efficacy of a small noncompetitive (all-d peptide) IL-1R-biased ligand, termed rytvela (labeled 101.10) in delaying IL-1β-, TLR2-, and TLR4-induced PTB in mice. The 101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1R downstream stress-associated protein kinases/transcription factor c-jun and Rho GTPase/Rho-associated coiled-coil-containing protein kinase signaling pathways. The 101.10 is effective at decreasing proinflammatory and/or prolabor genes in myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, undermining NF-κB role in preterm labor. In this work, biased signaling modulation of IL-1R by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Christiane Quiniou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Julia Palacios
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Xin Hou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Atefeh Erfani
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ankush Madaan
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Mélanie Sanchez
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Kelycia Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada
| | - Amarilys Boudreault
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - François Duhamel
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - José Carlos Rivera
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Maisonneuve-Rosemont Hospital, Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Tang Zhu
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Baraa Noueihed
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xin Ni
- Department of Obstetrics and Gynecology, Second Military Medical University, Shanghai 200433, China
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada
| | - William Lubell
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Girard
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montreal, Quebec H3T 1C5, Canada; and Department of Physiology, CHU Sainte-Justine Research Centre, Montreal, Quebec H3T 1C5, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Maisonneuve-Rosemont Hospital, Research Center, Montreal, Quebec H1T 2M4, Canada;
| |
Collapse
|