1
|
Tchoukalova YD, Nair AA, Chen X, Zhang N, Myers CE, Badreldin A, Dudakovic A, Lott LG, Rebecca AM, Yi J, Cornella JL, van Wijnen AJ. Cell type specific differences in transcriptome profiles of adipose derived stem cells and vaginal fibroblasts in patients with pelvic organ prolapse. Gene 2025; 942:149230. [PMID: 39814191 DOI: 10.1016/j.gene.2025.149230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
This study examined the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and assessed whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.05) to identify differentially expressed genes (DEGs). The transcriptomes of VFBs were compared between POP and CTRL (non-adjusted p < 0.01) followed by Ingenuity Pathway Analysis on DEGs considering that pathways with FDR < 0.05 could be pathogenic. We also performed a pairwise comparison after combining the gene expression data of POP and CTRL for ASCs and VFBs to identify cell type specific DEGs and analyzed the functional associations among them (STRING platform). We found no DEGs between POP and CTRL in ASCs and VFBs. Less stringent statistical analysis of VFBs transcriptome showed 23 genes with higher and 29 genes with lower expression in POP compared to CTRL. Among the latter were five genes involved in the synaptogenesis pathway found to be significant. We were only able to validate POP related differences for very low density receptor (VLDLR). We found 508 DEGs with 4-fold difference between ASCs and VFBs (both POP and CTRL groups combined for each cell type) which formed cell type distinct functional networks including Homeobox transcription factors, extracellular matrix (ECM) related proteins, and growth factors. In summary, this study showed that the fibroblastic transcriptomes of VFBs and ASCs are different, and this cell type-specific difference is more prominent that the disease related effects of POP.
Collapse
Affiliation(s)
- Yourka D Tchoukalova
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Asha A Nair
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Xianfeng Chen
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Nan Zhang
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Cheryl E Myers
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Amr Badreldin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lott G Lott
- Head and Neck Regenerative Medicine Laboratory, Mayo Clinic Arizona, Scottsdale, AZ, USA; Department of Otolaryngology - Head and Neck Surgery, Division of Laryngology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Alanna M Rebecca
- Division of Plastic Surgery, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Johnny Yi
- Division of Gynecology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | | |
Collapse
|
2
|
Abril-Parreño L, Meade KG, Krogenæs AK, Druart X, Cormican P, Fair S. Ewe breed differences in the cervical transcriptome at the follicular phase of a synchronised oestrous cycle. BMC Genomics 2022; 23:363. [PMID: 35546662 PMCID: PMC9097332 DOI: 10.1186/s12864-022-08603-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background Cervical artificial insemination (AI) with frozen-thawed semen results in unacceptably low pregnancy rates internationally. The exception is in Norway, where vaginal deposition of frozen-thawed semen to a natural oestrous routinely yields pregnancy rates in excess of 70%. Previous studies by our group has demonstrated that this is due to differences in cervical sperm transport. However, a potentially important contributory factor is that ewes are inseminated to a natural oestrous in Norway but to a synchronised oestrous across most of the rest of the world. In this study, we interrogated the gene expression of the sheep cervix of four ewe breeds with known differences in pregnancy rates following cervical AI using frozen-thawed semen under the effect of exogenous hormones to synchronise the oestrous cycle. These four ewe breeds (n = 8 to 11 ewes per breed) are from two countries: Ireland (Belclare and Suffolk; medium and low fertility, respectively) and Norway (Norwegian White Sheep (NWS) and Fur; both with high fertility compared to the Irish ewe breeds). Results RNA extracted from cervical biopsies collected from these breeds was analysed by RNA-sequencing and differential gene expression analysis. Using the low-fertility Suffolk breed as a reference level; 27, 1827 and 2641 genes were differentially expressed in Belclare, Fur and NWS ewes, respectively (P < 0.05 and FC > 1.5). Gene ontology (GO) analysis revealed that Fur and NWS had an up-regulation of enriched pathways involved in muscle contraction and development compared to Suffolk. However, there was a down-regulation of the immune response pathway in NWS compared to Suffolk. In addition, GO analysis showed similar expression patterns involved in muscle contraction, extracellular matrix (ECM) development and cell-cell junction in both Norwegian ewe breeds, which differed to the Irish ewe breeds. Conclusions This novel study has identified a number of conserved and breed-specific biological processes under the effect of oestrous synchronisation that may impact cervical sperm transport during the follicular phase of the reproductive cycle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08603-8.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Xavier Druart
- UMR 6175 INRA, CNRS-Université de Tours-Haras Nationaux, Station de Physiologie de la Reproduction et des Comportements Institut National de la Recherche Agronomique, Nouzilly, France
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
3
|
Rodriguez‐Garcia M, Patel MV, Shen Z, Wira CR. The impact of aging on innate and adaptive immunity in the human female genital tract. Aging Cell 2021; 20:e13361. [PMID: 33951269 PMCID: PMC8135005 DOI: 10.1111/acel.13361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Mucosal tissues in the human female reproductive tract (FRT) are primary sites for both gynecological cancers and infections by a spectrum of sexually transmitted pathogens, including human immunodeficiency virus (HIV), that compromise women's health. While the regulation of innate and adaptive immune protection in the FRT by hormonal cyclic changes across the menstrual cycle and pregnancy are being intensely studied, little to nothing is known about the alterations in mucosal immune protection that occur throughout the FRT as women age following menopause. The immune system in the FRT has two key functions: defense against pathogens and reproduction. After menopause, natural reproductive function ends, and therefore, two overlapping processes contribute to alterations in immune protection in aging women: menopause and immunosenescence. The goal of this review is to summarize the multiple immune changes that occur in the FRT with aging, including the impact on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies indicate that major aspects of innate and adaptive immunity in the FRT are compromised in a site‐specific manner in the FRT as women age. Further, at some FRT sites, immunological compensation occurs. Overall, alterations in mucosal immune protection contribute to the increased risk of sexually transmitted infections (STI), urogenital infections, and gynecological cancers. Further studies are essential to provide a foundation for the development of novel therapeutic interventions to restore immune protection and reverse conditions that threaten women's lives as they age.
Collapse
Affiliation(s)
| | - Mickey V. Patel
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Zheng Shen
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| | - Charles R. Wira
- Department of Microbiology and Immunology Geisel School of Medicine at Dartmouth Lebanon NH USA
| |
Collapse
|
4
|
Patel MV, Shen Z, Rossoll RM, Wira CR. Estradiol-regulated innate antiviral responses of human endometrial stromal fibroblasts. Am J Reprod Immunol 2018; 80:e13042. [PMID: 30295964 PMCID: PMC6275105 DOI: 10.1111/aji.13042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
PROBLEM The contribution of fibroblasts to innate immune protection of the human female reproductive tract (FRT) against viral pathogens is relatively unknown. METHOD OF STUDY Endometrial (EM), endocervical (Cx) and ectocervical (ECx) fibroblasts were isolated from hysterectomy patients and grown in vitro. Fibroblasts were treated with the viral mimic poly (I:C) in the presence or absence of the sex hormone estradiol (E2 ), with gene expression measured by real-time RT-PCR and protein secretion by ELISA. RESULTS Poly (I:C) induced the expression of the interferon-stimulated genes (ISG) MxA, OAS2 and APOBEC3G, and the cytokines MCP-1, IL-8, IL-6, CCL20, IFNβ and RANTES by fibroblasts from all three sites. ISG upregulation was dependent upon Type I IFN signaling. E2 inhibited the poly (I:C)-induced upregulation of MxA and OAS2 in EM fibroblasts, but not Cx or ECx fibroblasts. E2 upregulated SDF-1α by EM fibroblasts but had no effect on secretion of other cytokines either alone or in the presence of poly (I:C). Conditioned media (CM) from poly (I:C)-treated or E2 -treated fibroblasts significantly reduced HIV infection of CD4+ T cells. CONCLUSION Stromal fibroblasts represent a level of innate immune protection against viral pathogens in the FRT beyond that seen with epithelial cells and immune cells. Our findings indicate that fibroblasts FRT are selectively responsive to E2 , capable of initiating an antiviral response against viral pathogens and may play a role in preventing HIV infection of CD4+ T cells.
Collapse
Affiliation(s)
- Mickey V. Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Richard M. Rossoll
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| |
Collapse
|
5
|
Patel MV, Shen Z, Wira CR. Poly (I:C) and LPS induce distinct immune responses by ovarian stromal fibroblasts. J Reprod Immunol 2018; 127:36-42. [PMID: 29758486 PMCID: PMC5991091 DOI: 10.1016/j.jri.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Despite its anatomical location, the ovary is a site of pathogen exposure in the human female reproductive tract (FRT). However, the role of ovarian stromal fibroblasts in immune protection is unclear. We generated a population of ovarian stromal fibroblasts derived from normal human ovaries that expressed the pattern recognition receptors TLR3, TLR4, RIG-I, & MDA5. Poly (I:C) and LPS, respective mimics of viral and bacterial infections, selectively upregulated antiviral gene expression and secretion of chemokines and antimicrobials. Poly (I:C) exclusively stimulated the expression of interferon (IFN) β, IFNλ1, and the IFN-stimulated gene OAS2. Poly (I:C) also significantly increased secretion of elafin, CCL20, and RANTES, but had no effect on SDF-1α. In contrast, LPS had no effect on IFN or ISG expression but significantly increased secretion of RANTES and SDF-1α. Secretions from poly (I:C)-treated fibroblasts had both greater anti-HIV activity and induced higher levels of CD4 + T cell chemotaxis than those from LPS-treated cells. Our studies demonstrate a potential key role for ovarian fibroblasts in innate immune protection against incoming pathogens in the normal ovary.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
6
|
de Barros IBL, Malvezzi H, Gueuvoghlanian-Silva BY, Piccinato CA, Rizzo LV, Podgaec S. “What do we know about regulatory T cells and endometriosis? A systematic review”. J Reprod Immunol 2017; 120:48-55. [DOI: 10.1016/j.jri.2017.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/31/2022]
|
7
|
Trauma and endometriosis. A review. May we explain surgical phenotypes and natural history of the disease? J Gynecol Obstet Hum Reprod 2017; 46:219-227. [PMID: 28403918 DOI: 10.1016/j.jogoh.2016.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/14/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The study was performed to evaluate whether trauma is an initial event of development of endometriosis. METHOD Using Medline database from January 1960 up to December 2014, a systematic review was made of all published studies using the keywords trauma, healing, injury, infection, hyperperistaltism, stretch and endometriosis, adenomyosis and trauma. Studies and review articles written in French and/or in English related to the topic were included and reviewed independently by two authors. RESULTS The role of trauma is well-established for endometriotic lesions diagnosed in surgical scars. Various traumas including delivery, uterine curettage or incision, intraperitoneal hemorrhage, or occult pelvic inflammatory diseases could be involved to explain other localizations of the disease. Many data suggested that the healing process, particularly growth factors and the associated estrogen production, may facilitate the implantation and the growth of ectopic endometrial cells. After the initial, a traumatic event, the phenotype of the disease would depend on the tissue in which the endometriotic lesion grows. CONCLUSIONS The present literature review may support a potential role of a trauma as an initial event of endometriosis.
Collapse
|
8
|
Ono YJ, Hayashi M, Tanabe A, Hayashi A, Kanemura M, Terai Y, Ohmichi M. Estradiol-mediated hepatocyte growth factor is involved in the implantation of endometriotic cells via the mesothelial-to-mesenchymal transition in the peritoneum. Am J Physiol Endocrinol Metab 2015; 308:E950-9. [PMID: 25852006 DOI: 10.1152/ajpendo.00573.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/24/2015] [Indexed: 12/16/2022]
Abstract
The pathogenesis of endometriosis, a chronic painful gynecological disease characterized by the presence of endometrial tissue located outside of the uterus and often adhering to the peritoneum, is known to be estrogen dependent. However, the precise pathophysiology of endometriosis remains elusive. Recent studies indicate that the epithelial-to-mesenchymal transition (EMT) of human endometrial cells is important for the progression of endometriosis, and another previous study has implicated hepatocyte growth factor (HGF) in endometriosis progression. The aim of the present study was to examine the role of estradiol in the regulation of HGF production and progression of peritoneal endometriosis, focusing on the interactions between the peritoneum and endometriotic cells. Consequently, estradiol was found to promote the proliferation, invasion, and migration of immortalized human endometrial epithelial cells (hEECs) via HGF upregulation, and the estradiol-induced direct binding of estrogen receptor-α to the HGF promoter was confirmed on a chromatin immunoprecipitation (ChIP) assay. Estradiol also induced the EMT in hEECs by promoting HGF production. Furthermore, human mesothelial cells underwent the mesothelial-to-mesenchymal transition (MMT) during culture with estradiol-stimulated hEEC conditioned medium. Importantly, estradiol itself did not induce the MMT, and the estradiol-stimulated hEEC-conditioned medium in the presence of HGF antibodies reversed the MMT process. These results, which were obtained using immortalized hEECs, indicate that estradiol-induced HGF production may play a crucial role in the peritoneal implantation of human endometriotic cells by exerting proliferative and invasive effects via the EMT in hEECs and promoting the MMT in mesothelial cells.
Collapse
Affiliation(s)
- Yoshihiro J Ono
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Akiko Tanabe
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Atsushi Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masanori Kanemura
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
9
|
Wira CR, Rodriguez-Garcia M, Patel MV. The role of sex hormones in immune protection of the female reproductive tract. Nat Rev Immunol 2015; 15:217-30. [PMID: 25743222 PMCID: PMC4716657 DOI: 10.1038/nri3819] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the human female reproductive tract (FRT), the challenge of protection against sexually transmitted infections (STIs) is coupled with the need to enable successful reproduction. Oestradiol and progesterone, which are secreted during the menstrual cycle, affect epithelial cells, fibroblasts and immune cells in the FRT to modify their functions and hence the individual's susceptibility to STIs in ways that are unique to specific sites in the FRT. The innate and adaptive immune systems are under hormonal control, and immune protection in the FRT varies with the phase of the menstrual cycle. Immune protection is dampened during the secretory phase of the cycle to optimize conditions for fertilization and pregnancy, which creates a 'window of vulnerability' during which potential pathogens can enter and infect the FRT.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
10
|
Wira CR, Rodriguez-Garcia M, Patel MV, Biswas N, Fahey JV. Endocrine Regulation of the Mucosal Immune System in the Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Rodriguez Garcia M, Patel MV, Shen Z, Fahey JV, Biswas N, Mestecky J, Wira CR. Mucosal Immunity in the Human Female Reproductive Tract. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00108-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Ghosh M, Rodriguez-Garcia M, Wira CR. The immune system in menopause: pros and cons of hormone therapy. J Steroid Biochem Mol Biol 2014; 142:171-5. [PMID: 24041719 PMCID: PMC3954964 DOI: 10.1016/j.jsbmb.2013.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 02/07/2023]
Abstract
With aging, a general decline in immune function is observed leading to immune-senescence. Several of these changes are gender specific affecting postmenopausal women. Menopause is a normal part of a woman's lifecycle and consists of a series of body changes that can last from one to ten years. It is known that loss of sex hormones due to aging results in a reduction of immune functions. However, there remains a major gap in our understanding regarding the loss of immune functions particularly in the female reproductive tract (FRT) following menopause and the role of menopausal hormone therapy (MHT) in protecting against immune senescence. The current review presents an overview of changes in the immune system due to aging, focusing on genital tract immunity in menopausal women and the risks and benefits of using MHT. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, The George Washington University, Washington, DC 20037, USA.
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
13
|
Wira CR, Rodriguez-Garcia M, Shen Z, Patel M, Fahey JV. The role of sex hormones and the tissue environment in immune protection against HIV in the female reproductive tract. Am J Reprod Immunol 2014; 72:171-81. [PMID: 24661500 DOI: 10.1111/aji.12235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
Despite extensive studies of the mucosal immune system in the female reproductive tract (FRT) and its regulation by sex hormones, relatively little attention has been paid to the tissue environment in the FRT that regulates immune cell function. Consisting of secretions from epithelial cells (EC), stromal fibroblasts, and immune cells in tissues from the upper (Fallopian tubes, uterus, and endocervix) and lower (ectocervix and vagina) tracts, each tissue compartment is unique and precisely regulates immune cells to optimize conditions for successful pregnancy and protection against sexually transmitted diseases including HIV. Our goal in this review is to focus on the mucosal (tissue) environment in the upper and lower FRT. Specifically, this review will identify the contributions of EC and fibroblasts to the tissue environment and examine the impact of this environment on HIV-target cells. Much remains to be learned about the complex interactions with the tissue environment at different sites in the FRT and the ways in which they are regulated by sex hormones and chemical contraceptives. Awareness of the involvement of the tissue environment in determining immune cell function and HIV acquisition is crucial for understanding the mechanisms that lead to HIV prevention, acquisition, and the development of new therapeutic modalities of immune protection.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | | | | | | |
Collapse
|
14
|
Reinhardt CD, Lee TL, Thomson DU, Mamedova LK, Bradford BJ. Restricted nutrient intake does not alter serum-mediated measures of implant response in cell culture. J Anim Sci Biotechnol 2013; 4:45. [PMID: 24245980 PMCID: PMC3866970 DOI: 10.1186/2049-1891-4-45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/22/2013] [Indexed: 12/19/2022] Open
Abstract
Background During nutritional stress, reduced intake may reduce the efficacy of anabolic implants. This study was conducted to evaluate basic cellular responses to a growth promotant implant at two intake levels. Methods Sixteen crossbred steers (293 ± 19.3 kg) were used to evaluate the impact of anabolic implants in either an adequate or a restricted nutritional state. Steers were trained to individual Calan gates, and then randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Treatments consisted of: presence or absence of an anabolic growth implant (Revalor-XS, 200 mg TBA and 40 mg estradiol; IMPLANT or CONTROL) and a moderate energy, pelleted, starting cattle diet fed at either 2.0 × or 1.0 × maintenance energy (NEM) requirements (HIGH or LOW). Serum (d 0, 14, and 28) was used for application to bovine muscle satellite cells. After treatment with the serum (20% of total media) from the trial cattle, the satellite cells were incubated for 72 h. Protein abundance of myosin heavy chain (MHC), phosphorylated extracellular signal-related kinase (phospho-ERK), and phosphorylated mammalian target of rapamycin (phospho-mTOR) were analyzed to determine the effects of implant, intake, and their interaction (applied via the serum). Results Intake had no effect on MHC (P = 0.85) but IMPLANT increased (P < 0.01) MHC abundance vs. CONTROL. Implant status, intake status, and the interaction had no effect on the abundance of phospho-ERK (P ≥ 0.23). Implanting increased phospho-mTOR (P < 0.01) but there was no effect (P ≥ 0.51) of intake or intake × implant. Conclusions The nearly complete lack of interaction between implant and nutritional status indicates that the signaling molecules measured herein respond to implants and nutritional status independently. Furthermore, results suggest that the muscle hypertrophic effects of anabolic implants may not be mediated by circulating IGF-1.
Collapse
Affiliation(s)
- Christopher D Reinhardt
- Department of Animal Sciences and Industry, 232 Weber Hall, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | |
Collapse
|
15
|
Shen Z, Fahey JV, Bodwell JE, Rodriguez-Garcia M, Rossoll RM, Crist SG, Patel MV, Wira CR. Estradiol regulation of nucleotidases in female reproductive tract epithelial cells and fibroblasts. PLoS One 2013; 8:e69854. [PMID: 23936114 PMCID: PMC3723851 DOI: 10.1371/journal.pone.0069854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/12/2013] [Indexed: 12/29/2022] Open
Abstract
The use of topical and oral adenosine derivatives in HIV prevention that need to be maintained in tissues and cells at effective levels to prevent transmission prompted us to ask whether estradiol could influence the regulation of catabolic nucleotidase enzymes in epithelial cells and fibroblasts from the upper and lower female reproductive tract (FRT) as these might affect cellular TFV-DP levels. Epithelial cells and fibroblasts were isolated from endometrium (EM), endocervix (CX) and ectocervix (ECX) tissues from hysterectomy patients, grown to confluence and treated with or without estradiol prior to RNA isolation. The expression of nucleotidase (NT) genes was measurable by RT-PCR in epithelial cells and fibroblasts from all FRT tissues. To determine if sex hormones have the potential to regulate NT, we evaluated NT gene expression and NT biological activity in FRT cells following hormone treatment. Estradiol increased expression of Cytosolic 5′-nucleotidase after 2 or 4 h in endometrial epithelial cells but not epithelial cells or fibroblasts from other sites. In studies using a modified 5′-Nucleotidase biological assay for nucleotidases, estradiol increased NT activity in epithelial cells and fibroblasts from the EM, CX and ECX at 24 and 48 h. In related studies, HUVEC primary cells and a HUVEC cell line were unresponsive to estradiol in terms of nucleotidase expression or biological activity. Our findings of an increase in nucleotidase expression and biological activity induced by estradiol do not directly assess changes in microbicide metabolism. However, they do suggest that when estradiol levels are elevated during the menstrual cycle, FRT epithelial cells and fibroblasts from the EM, CX and ECX have the potential to influence microbicide levels that could enhance protection of HIV-target cells (CD4+T cells, macrophages and dendritic cells) throughout the FRT.
Collapse
Affiliation(s)
- Zheng Shen
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - John V. Fahey
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Jack E. Bodwell
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Marta Rodriguez-Garcia
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Richard M. Rossoll
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Sarah G. Crist
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Mickey V. Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Charles R. Wira
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
16
|
Patel MV, Fahey JV, Rossoll RM, Wira CR. Innate immunity in the vagina (part I): estradiol inhibits HBD2 and elafin secretion by human vaginal epithelial cells. Am J Reprod Immunol 2013; 69:463-74. [PMID: 23398087 DOI: 10.1111/aji.12078] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/01/2013] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. METHOD OF STUDY Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E₂), progesterone (P₄) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. RESULTS E₂ significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E₂ -treated cells had no anti-HIV activity, while that from E₂ /P₄ -treated cells significantly inhibited HIV-BaL infection. CONCLUSION The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E₂, suggesting that innate immune protection varies in the vagina across the menstrual cycle.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| | | | | | | |
Collapse
|