1
|
Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses 2020; 13:E41. [PMID: 33383891 PMCID: PMC7824680 DOI: 10.3390/v13010041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen with a high chronicity rate. An estimated 71 million people worldwide are living with chronic hepatitis C (CHC) infection, which carries the risk of progression to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Similar to other RNA viruses, HCV has a high rate of genetic variability generated by its high mutation rate and the actions of evolutionary forces over time. There are two levels of HCV genetic variability: intra-host variability, characterized by the distribution of HCV mutant genomes present in an infected individual, and inter-host variability, represented by the globally circulating viruses that give rise to different HCV genotypes and subtypes. HCV genetic diversity has important implications for virus persistence, pathogenesis, immune responses, transmission, and the development of successful vaccines and antiviral strategies. Here we will discuss how HCV genetic heterogeneity impacts viral spread and therapeutic control.
Collapse
Affiliation(s)
- Miguel Angel Martinez
- Miguel Angel Martínez, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | | |
Collapse
|
2
|
Hepatitis E Virus Shows More Genomic Alterations in Cell Culture than In Vivo. Pathogens 2019; 8:pathogens8040255. [PMID: 31766624 PMCID: PMC6963849 DOI: 10.3390/pathogens8040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E Virus (HEV) mutations following ribavirin treatment have been associated with treatment non-response and viral persistence, but spontaneous occurring genomic variations have been less well characterized. We here set out to study the HEV genome composition in 2 patient sample types and 2 infection models. Near full HEV genome Sanger sequences of serum- and feces-derived HEV from two chronic HEV genotype 3 (gt3) patients were obtained. In addition, viruses were sequenced after in vitro or in vivo expansion on A549 cells or a humanized mouse model, respectively. We show that HEV acquired 19 nucleotide mutations, of which 7 nonsynonymous amino acids changes located in Open Reading Frame 1 (ORF1), ORF2, and ORF3 coding regions, after prolonged in vitro culture. In vivo passage resulted in selection of 8 nucleotide mutations with 2 altered amino acids in the X domain and Poly-proline region of ORF1. Intra-patient comparison of feces- and serum-derived HEV gt3 of two patients showed 7 and 2 nucleotide mutations with 2 and 0 amino acid changes, respectively. Overall, the number of genomic alterations was up to 1.25× per 1000 nucleotides or amino acids in in vivo samples, and up to 2.84× after in vitro expansion of the same clinical HEV strain. In vitro replication of a clinical HEV strain is therefore associated with more mutations, compared to the minor HEV genomic alterations seen after passage of the same strain in an immune deficient humanized mouse; as well as in feces and blood of 2 immunosuppressed chronically infected HEV patients. These data suggest that HEV infected humanized mice more closely reflect the HEV biology seen in solid organ transplant recipients.
Collapse
|
3
|
[Hepatic tropism of hepatitis C virus infection]. Uirusu 2019; 68:63-70. [PMID: 31105136 DOI: 10.2222/jsv.68.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hepatitis C virus (HCV) infects over 170 million people worldwide and is a major cause of life-threatening liver diseases such as liver cirrhosis and hepatocellular carcinoma. In current research, we aimed to clarify the mechanism of hepatic tropism of HCV infection. Although non-hepatic cells could not permit replication of HCV RNA, exogenous expression of liver specific miRNA, miR-122 facilitated efficient replication of viral RNA through direct interaction with 5'UTR of viral genome, indicating that miR-122 is one of the key determinants for hepatic tropism of HCV infection. In spite of efficient replication of viral RNA, formation of infectious particles was not observed in non-hepatic cells exogenously expressing miR-122. We found that expression of apolipoprotein E (ApoE) facilitated the formation of infectious HCV particles in non-hepatic cells, indicating that not only miR-122 but also ApoE participate in tissue tropism of HCV infection. To understand the exact roles of miR-122 and apolipoproteins in hepatic tropism of HCV, we established miR-122 and ApoB/ApoE knockout (KO) Huh7 cells, respectively. Although slight increase of intracellular HCV RNA and infectious titers in the culture supernatants was observed, propagation of HCV was impaired in miR-122 KO Huh7 cells. After serial passages of HCV in miR-122 KO cells, we obtained an adaptive mutant that possessed G28A substitutions in the 5'UTR of the HCV genome and exhibited efficient translation and replication in both miR-122 KO Huh7 and non-hepatic cells without exogenous expression of miR-122. These results suggest that HCV mutants replicating in non-hepatic cells in an miR-122-independent manner participate in the induction of extrahepatic manifestations in chronic hepatitis C patients. Deficiency of both ApoB and ApoE strongly inhibited the formation of infectious HCV particles. Interestingly, expression not only of ApoE but also of ApoA or ApoC could rescue the production of infectious HCV particles in ApoB/ApoE KO cells, suggesting that exchangeable apolipoproteins redundantly participate in the formation of infectious HCV particles.
Collapse
|
4
|
Gambato M, Gregori J, Quer J, Koutsoudakis G, González P, Caro-Pérez N, García-Cehic D, García-González N, González-Candelas F, Esteban JI, Crespo G, Navasa M, Forns X, Pérez-Del-Pulgar S. Hepatitis C virus intrinsic molecular determinants may contribute to the development of cholestatic hepatitis after liver transplantation. J Gen Virol 2018; 100:63-68. [PMID: 30451649 DOI: 10.1099/jgv.0.001175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholestatic hepatitis C (CHC) is a severe form of hepatitis C virus (HCV) infection recurrence that leads to high graft loss rates early after liver transplantation (LT). To investigate the pathogenic mechanisms of CHC, we analysed HCV quasispecies in CHC patients compared to a control group (mild hepatitis C recurrence) by deep pyrosequencing. At the time of LT, NS5B quasispecies complexity was similar between the two groups but, after LT, it decreased more sharply in CHC patients than in the control group. Interestingly, the major variant before LT propagated efficiently and remained as the dominant sequence after LT in 62 % of CHC patients versus 11 % of controls (P=0.031). Sequence analysis of the complete non-structural region in a limited number of patients revealed a potential 12 aa signature specific to the CHC group. These data suggest that intrinsic molecular determinants in the circulating HCV quasispecies may provide a fitness advantage, contributing to the development of CHC.
Collapse
Affiliation(s)
- Martina Gambato
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain.,2Multivisceral Transplant Unit and Gastroenterology, Padova University Hospital, Padova, Italy.,†Present address: Multivisceral Transplant Unit and Gastroenterology, Padova University Hospital, Padova, Italy
| | - Josep Gregori
- 3Liver Unit, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron, CIBERehd, Barcelona, Spain.,4Roche Diagnostics SL. Sant Cugat del Vallès, Barcelona, Spain
| | - Josep Quer
- 3Liver Unit, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron, CIBERehd, Barcelona, Spain
| | - George Koutsoudakis
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Patricia González
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Noelia Caro-Pérez
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain.,‡Present address: Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Damir García-Cehic
- 3Liver Unit, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron, CIBERehd, Barcelona, Spain
| | - Neris García-González
- 5Joint Research Unit Infección y Salud Pública, FISABIO-Universitat de València, I2SysBio, CIBERESP, Valencia, Spain
| | - Fernando González-Candelas
- 5Joint Research Unit Infección y Salud Pública, FISABIO-Universitat de València, I2SysBio, CIBERESP, Valencia, Spain
| | - Juan Ignacio Esteban
- 3Liver Unit, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron, CIBERehd, Barcelona, Spain
| | - Gonzalo Crespo
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Miquel Navasa
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Xavier Forns
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Sofía Pérez-Del-Pulgar
- 1Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Russelli G, Pizzillo P, Iannolo G, Barbera F, Tuzzolino F, Liotta R, Traina M, Vizzini G, Gridelli B, Badami E, Conaldi PG. HCV replication in gastrointestinal mucosa: Potential extra-hepatic viral reservoir and possible role in HCV infection recurrence after liver transplantation. PLoS One 2017; 12:e0181683. [PMID: 28750044 PMCID: PMC5531480 DOI: 10.1371/journal.pone.0181683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Hepatitis C virus (HCV) predominantly infects hepatocytes, although it is known that receptors for viral entry are distributed on a wide array of target cells. Chronic HCV infection is indeed characterized by multiple non-liver manifestations, suggesting a more complex HCV tropism extended to extrahepatic tissues and remains to be fully elucidated. In this study, we investigated the gastrointestinal mucosa (GIM) as a potential extrahepatic viral replication site and its contribution to HCV recurrence. METHODS We analyzed GIM biopsies from a cohort of 76 patients, 11 of which were HCV-negative and 65 HCV-positive. Of these, 54 biopsies were from liver-transplanted patients. In 29 cases, we were able to investigate gastrointestinal biopsies from the same patient before and after transplant. To evaluate the presence of HCV, we looked for viral antigens and genome RNA, whilst to assess viral replicative activity, we searched for the replicative intermediate minus-strand RNA. We studied the genetic diversity and the phylogenetic relationship of HCV quasispecies from plasma, liver and gastrointestinal mucosa of HCV-liver-transplanted patients in order to assess HCV compartmentalization and possible contribution of gastrointestinal variants to liver re-infection after transplantation. RESULTS Here we show that HCV infects and replicates in the cells of the GIM and that the favorite hosts were mostly enteroendocrine cells. Interestingly, we observed compartmentalization of the HCV quasispecies present in the gastrointestinal mucosa compared to other tissues of the same patient. Moreover, the phylogenetic analysis revealed a high similarity between HCV variants detected in gastrointestinal mucosa and those present in the re-infected graft. CONCLUSIONS Our results demonstrated that the gastrointestinal mucosa might be considered as an extrahepatic reservoir of HCV and that could contribute to viral recurrence. Moreover, the finding that HCV infects and replicates in neuroendocrine cells opens new perspectives on the role of these cells in the natural history of HCV infection.
Collapse
Affiliation(s)
- Giovanna Russelli
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Pizzillo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Gioacchin Iannolo
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Floriana Barbera
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Rosa Liotta
- Pathology Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Mario Traina
- Endoscopy Service, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT, Palermo, Italy
| | - Giovanni Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | - Bruno Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, Palermo, Italy
| | | | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- Fondazione Ri.MED, Palermo, Italy
| |
Collapse
|
6
|
Antonucci F, Cento V, Sorbo MC, Manuelli MC, Lenci I, Sforza D, Di Carlo D, Milana M, Manzia TM, Angelico M, Tisone G, Perno CF, Ceccherini-Silberstein F. HCV-RNA quantification in liver bioptic samples and extrahepatic compartments, using the abbott RealTime HCV assay. J Virol Methods 2017; 246:1-7. [PMID: 28408312 DOI: 10.1016/j.jviromet.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS We evaluated the performance of a rapid method to quantify HCV-RNA in the hepatic and extrahepatic compartments, by using for the first time the Abbott RealTime HCV-assay. METHODS Non-tumoral (NT), tumoral (TT) liver samples, lymph nodes and ascitic fluid from patients undergoing orthotopic-liver-transplantation (N=18) or liver resection (N=4) were used for the HCV-RNA quantification; 5/22 patients were tested after or during direct acting antivirals (DAA) treatment. Total RNA and DNA quantification from tissue-biopsies allowed normalization of HCV-RNA concentrations in IU/μg of total RNA and IU/106 liver-cells, respectively. RESULTS HCV-RNA was successfully quantified with high reliability in liver biopsies, lymph nodes and ascitic fluid samples. Among the 17 untreated patients, a positive and significant HCV-RNA correlation between serum and NT liver-samples was observed (Pearson: rho=0.544, p=0.024). Three DAA-treated patients were HCV-RNA "undetectable" in serum, but still "detectable" in all tested liver-tissues. Differently, only one DAA-treated patient, tested after sustained-virological-response, showed HCV-RNA "undetectability" in liver-tissue. CONCLUSIONS HCV-RNA was successfully quantified with high reliability in liver bioptic samples and extrahepatic compartments, even when HCV-RNA was "undetectable" in serum. Abbott RealTime HCV-assay is a good diagnostic tool for HCV quantification in intra- and extra-hepatic compartments, whenever a bioptic sample is available.
Collapse
Affiliation(s)
| | - Valeria Cento
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Chiara Sorbo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Ilaria Lenci
- Hepatology Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Sforza
- Liver Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Martina Milana
- Hepatology Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Tommaso Maria Manzia
- Liver Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Mario Angelico
- Hepatology Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Tisone
- Liver Unit, Polyclinic Tor Vergata Foundation, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
7
|
Fukuhara T, Yamamoto S, Ono C, Nakamura S, Motooka D, Mori H, Kurihara T, Sato A, Tamura T, Motomura T, Okamoto T, Imamura M, Ikegami T, Yoshizumi T, Soejima Y, Maehara Y, Chayama K, Matsuura Y. Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity. Sci Rep 2017; 7:45228. [PMID: 28327559 PMCID: PMC5361118 DOI: 10.1038/srep45228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
It is well documented that a variety of viral quasispecies are found in the patients with chronic infection of hepatitis C virus (HCV). However, the significance of quasispecies in the specific infectivity to individual cell types remains unknown. In the present study, we analyzed the role of quasispecies of the genotype 2a clone, JFH1 (HCVcc), in specific infectivity to the hepatic cell lines, Huh7.5.1 and Hep3B. HCV RNA was electroporated into Huh7.5.1 cells and Hep3B/miR-122 cells expressing miR-122 at a high level. Then, we adapted the viruses to Huh7 and Hep3B/miR-122 cells by serial passages and termed the resulting viruses HCVcc/Huh7 and HCVcc/Hep3B, respectively. Interestingly, a higher viral load was obtained in the homologous combination of HCVcc/Huh7 in Huh7.5.1 cells or HCVcc/Hep3B in Hep3B/miR-122 cells compared with the heterologous combination. By using a reverse genetics system and deep sequence analysis, we identified several adaptive mutations involved in the high affinity for each cell line, suggesting that quasispecies of HCV participate in cell-specific infectivity.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Satomi Yamamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Veterinary Microbiology, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kurihara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Asuka Sato
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takashi Motomura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical &Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Hedegaard DL, Tully DC, Rowe IA, Reynolds GM, Bean DJ, Hu K, Davis C, Wilhelm A, Ogilvie CB, Power KA, Tarr AW, Kelly D, Allen TM, Balfe P, McKeating JA. High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease. J Hepatol 2017; 66:28-38. [PMID: 27531641 PMCID: PMC5558612 DOI: 10.1016/j.jhep.2016.07.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The high replication and mutation rate of hepatitis C virus (HCV) results in a heterogeneous population of viral sequences in vivo. HCV replicates in the liver and infected hepatocytes occur as foci surrounded by uninfected cells that may promote compartmentalization of viral variants. Given recent reports showing interferon stimulated gene (ISG) expression in chronic hepatitis C, we hypothesized that local interferon responses may limit HCV replication and evolution. METHODS To investigate the spatial influence of liver architecture on viral replication we measured HCV RNA and ISG mRNA from each of the 8 Couinaud segments of the liver from 21 patients undergoing liver transplant. RESULTS HCV RNA and ISG mRNA levels were comparable across all sites from an individual liver but showed up to 500-fold difference between patients. Importantly, there was no association between ISG and HCV RNA expression across all sites in the liver or plasma. Deep sequencing of HCV RNA isolated from the 8 hepatic sites from two subjects showed a similar distribution of viral quasispecies across the liver and uniform sequence diversity. Single genome amplification of HCV E1E2-envelope clones from 6 selected patients at 2 hepatic sites supported these data and showed no evidence for HCV compartmentalization. CONCLUSIONS We found no differences between the hepatic and plasma viral quasispecies in all patients sampled. We conclude that in end-stage liver disease HCV RNA levels and the genetic pool of HCV envelope sequences are indistinguishable between distant sites in the liver and plasma, arguing against viral compartmentalization. LAY SUMMARY HCV is an RNA virus that exists as a quasispecies of closely related genomes that are under continuous selection by host innate and adaptive immune responses and antiviral drug therapy. The primary site of HCV replication is the liver and yet our understanding of the spatial distribution of viral variants within the liver is limited. High resolution sequencing of HCV and monitoring of innate immune responses at multiple sites across the liver identified a uniform pattern of diversity and argues against viral compartmentalization.
Collapse
Affiliation(s)
| | | | - Ian A. Rowe
- Centre for Human Virology, University of Birmingham, Birmingham, UK
| | - Gary M. Reynolds
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | - David J. Bean
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ke Hu
- Centre for Human Virology, University of Birmingham, Birmingham, UK
| | | | - Annika Wilhelm
- NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK
| | | | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Alexander W. Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Deirdre Kelly
- Liver Unit, Birmingham Childrens’ Hospital, Birmingham, UK
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Peter Balfe
- Centre for Human Virology, University of Birmingham, Birmingham, UK.
| | - Jane A. McKeating
- Centre for Human Virology, University of Birmingham, Birmingham, UK,NIHR Birmingham Liver Biomedical Research Unit, University of Birmingham, UK,Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748 Garching, Germany
| |
Collapse
|
9
|
Datta S, Chakravarty R. Role of RNA secondary structure in emergence of compartment specific hepatitis B virus immune escape variants. World J Virol 2016; 5:161-169. [PMID: 27878103 PMCID: PMC5105049 DOI: 10.5501/wjv.v5.i4.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/09/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the role of subgenotype specific RNA secondary structure in the compartment specific selection of hepatitis B virus (HBV) immune escape mutations.
METHODS This study was based on the analysis of the specific observation of HBV subgenotype A1 in the serum/plasma, while subgenotype A2 with G145R mutation in the peripheral blood leukocytes (PBLs). Genetic variability found among the two subgenotypes was used for prediction and comparison of the full length pregenomic RNA (pgRNA) secondary structure and base pairings. RNA secondary structures were predicted for 37 °C using the Vienna RNA fold server, using default parameters. Visualization and detailed analysis was done using RNA shapes program.
RESULTS In this analysis, using similar algorithm and conditions, entirely different pgRNA secondary structures for subgenotype A1 and subgenotype A2 were predicted, suggesting different base pairing patterns within the two subgenotypes of genotype A, specifically, in the HBV genetic region encoding the major hydrophilic loop. We observed that for subgenotype A1 specific pgRNA, nucleotide 358U base paired with 1738A and nucleotide 587G base paired with 607C. However in sharp contrast, in subgenotype A2 specific pgRNA, nucleotide 358U was opposite to nucleotide 588G, while 587G was opposite to 359U, hence precluding correct base pairing and thereby lesser stability of the stem structure. When the nucleotides at 358U and 587G were replaced with 358C and 587A respectively (as observed specifically in the PBL associated A2 sequences), these nucleotides base paired correctly with 588G and 359U, respectively.
CONCLUSION The results of this study show that compartment specific mutations are associated with HBV subgenotype specific alterations in base pairing of the pgRNA, leading to compartment specific selection and preponderance of specific HBV subgenotype with unique mutational pattern.
Collapse
|
10
|
Tawar RG, Heydmann L, Bach C, Schüttrumpf J, Chavan S, King BJ, McClure CP, Ball JK, Pessaux P, Habersetzer F, Bartenschlager R, Zeisel MB, Baumert TF. Broad neutralization of hepatitis C virus-resistant variants by Civacir hepatitis C immunoglobulin. Hepatology 2016; 64:1495-1506. [PMID: 27531416 PMCID: PMC7615276 DOI: 10.1002/hep.28767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV)-induced end-stage liver disease is the major indication for liver transplantation (LT). However, reinfection of the liver graft is still common, especially in patients with detectable viral load at the time of LT. Limited data are available on direct-acting antivirals in the transplant setting for prevention of graft infection. The human hepatitis C immunoglobulin (HCIG) Civacir is an investigational drug that is currently being developed in an ongoing phase 3 clinical trial assessing its safety and efficacy at preventing HCV recurrence after liver transplantation (LT) in the United States. Using well-characterized patient-derived HCV variants selected during LT, we studied the molecular mechanism of action of Civacir. Inhibition of HCV infection was studied using infectious HCV models including HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) containing patient-derived viral envelope glycoproteins from 22 HCV variants isolated from patients before and after LT. The human hepatitis C immune globulin Civacir is an investigational drug that is currently being developed in an ongoing phase 3 clinical trial assessing safety and efficacy to prevent HCV recurrence after LT in the United States. Using well-characterized patient-derived HCV variants selected during LT, we studied the molecular mechanism of action of Civacir. Inhibition of HCV infection was studied using infectious HCV models including HCV pseudoparticles and cell culture-derived HCV containing patient-derived viral envelope glycoproteins from 22 HCV variants isolated from patients before and after liver transplantation. Additionally, we studied neutralization of different HCV genotypes and of direct-acting antiviral-resistant viruses. Our results indicate that Civacir potently, broadly, and dose-dependently neutralizes all tested patient variants in HCV pseudoparticles and cell culture-derived HCV assays including variants displaying resistance to host neutralizing antibodies and antiviral monoclonal antibodies. The half-maximal inhibitory concentrations were independent of the phenotype of the viral variant, indicating that virus neutralization by Civacir is not affected by viral selection. Furthermore, Civacir is equally active against tested direct-acting antiviral-resistant HCV isolates in cell culture. CONCLUSION Collectively, these results demonstrate broad neutralizing activity of Civacir against resistant viruses, likely due to synergy between anti-HCV antibodies derived from different plasma donors, and support its further clinical development for prevention of liver graft infection. (Hepatology 2016;64:1495-1506).
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Charlotte Bach
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | | | - Barnabas J King
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Patrick Pessaux
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Mirjam B Zeisel
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Gambato M, Pérez-Del-Pulgar S, Hedskog C, Svarovskia ES, Brainard D, Denning J, Curry MP, Charlton M, Caro-Pérez N, Londoño MC, Koutsoudakis G, Forns X. Hepatitis C Virus RNA Persists in Liver Explants of Most Patients Awaiting Liver Transplantation Treated With an Interferon-Free Regimen. Gastroenterology 2016; 151:633-636.e3. [PMID: 27373513 DOI: 10.1053/j.gastro.2016.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/09/2023]
Abstract
We assessed the presence of hepatitis C virus (HCV) RNA in liver explants from 39 patients awaiting liver transplantation who were treated with an interferon-free regimen and had undetectable serum HCV RNA at the time of liver transplantation. Interestingly, HCV RNA was detected in most liver explants (67%). Patients with HCV RNA-positive explants had received shorter courses of treatment, and HCV RNA was undetectable in serum for shorter periods before transplantation compared to patients with HCV RNA-negative explants (P = .014 and P = .013, respectively). Levels of HCV RNA in explants were significantly higher in patients with a relapse of HCV infection than patients who responded to treatment (P = .016), but most patients (85%) with residual HCV-RNA in the explant achieved a sustained virologic response after receiving their liver transplant.
Collapse
Affiliation(s)
- Martina Gambato
- Liver Unit, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Sofía Pérez-Del-Pulgar
- Liver Unit, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | - Noelia Caro-Pérez
- Liver Unit, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Maria Carlota Londoño
- Liver Unit, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - George Koutsoudakis
- Liver Unit, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clinic, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Kwo PY, Lacerda MA. After the Direct-acting Antivirals Are Gone, There Is Still Work to Be Done in the Liver. Gastroenterology 2016; 151:582-4. [PMID: 27590790 DOI: 10.1053/j.gastro.2016.08.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Paul Y Kwo
- Gastroenterology/Hepatology Division, Indiana University Health, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Marco A Lacerda
- Gastroenterology/Hepatology Division, Indiana University Health, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
13
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Raghwani J, Rose R, Sheridan I, Lemey P, Suchard MA, Santantonio T, Farci P, Klenerman P, Pybus OG. Exceptional Heterogeneity in Viral Evolutionary Dynamics Characterises Chronic Hepatitis C Virus Infection. PLoS Pathog 2016; 12:e1005894. [PMID: 27631086 PMCID: PMC5025083 DOI: 10.1371/journal.ppat.1005894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
The treatment of HCV infection has seen significant progress, particularly since the approval of new direct-acting antiviral drugs. However these clinical achievements have been made despite an incomplete understanding of HCV replication and within-host evolution, especially compared with HIV-1. Here, we undertake a comprehensive analysis of HCV within-host evolution during chronic infection by investigating over 4000 viral sequences sampled longitudinally from 15 HCV-infected patients. We compare our HCV results to those from a well-studied HIV-1 cohort, revealing key differences in the evolutionary behaviour of these two chronic-infecting pathogens. Notably, we find an exceptional level of heterogeneity in the molecular evolution of HCV, both within and among infected individuals. Furthermore, these patterns are associated with the long-term maintenance of viral lineages within patients, which fluctuate in relative frequency in peripheral blood. Together, our findings demonstrate that HCV replication behavior is complex and likely comprises multiple viral subpopulations with distinct evolutionary dynamics. The presence of a structured viral population can explain apparent paradoxes in chronic HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection. Our knowledge of HCV within-host evolution is substantially limited, which is surprising given that highly successful therapies against the virus have been developed. Key aspects of HCV infection, such as rapid fluctuations in viral diversity and the reappearance of viral strains years after their initial detection, remain unexplained. To better understand this problem, we analyse viral sequences from HCV-infected patients sampled over several years. Our findings suggest that the replication dynamics during chronic HCV infection are distinct from those of HIV-1, and dominated by the co-circulation of multiple viral strains. Although a major difference between the two chronic-infecting viruses is the level of recombination, our results indicate that HCV within-host evolution is most likely to be shaped by a structured viral population. Crucially, our study shows that HCV sampled from blood does not fully represent the within-host viral population at that time. This may have important implications for HCV treatment, especially in patients that have seemingly cleared the virus, as well as for molecular epidemiology studies investigating HCV transmission.
Collapse
Affiliation(s)
- Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| | - Rebecca Rose
- BioInfoExperts, Thibodaux, Los Angeles, California, United States of America
| | - Isabelle Sheridan
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven–University of Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Departments of Biomathematics, Biostatistics, Human Genetics, University of California, Los Angeles, California, United States of America
| | | | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (JR); (OGP)
| |
Collapse
|
15
|
Pérez PS, Di Lello FA, Mullen EG, Galdame OA, Livellara BI, Gadano AC, Campos RH, Flichman DM. Compartmentalization of hepatitis C virus variants in patients with hepatocellular carcinoma. Mol Carcinog 2016; 56:371-380. [PMID: 27163636 DOI: 10.1002/mc.22500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/03/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
Abstract
Chronic Hepatitis C Virus (HCV) infection is a major risk for hepatocellular carcinoma (HCC) development. HCV Core protein has been associated with the modulation of potentially oncogenic cellular processes and E2 protein has been useful in evolutive studies to analyze the diversity of HCV. Thus, the aim of this study was to evaluate HCV compartmentalization in tumoral, non-tumoral liver tissue and serum and to identify viral mutations potentially involved in carcinogenesis. Samples were obtained from four patients with HCC who underwent liver transplantation. Core and E2 were amplified, cloned and sequenced. Phylogenies and BaTS Test were performed to analyze viral compartmentalization and a signature sequence analysis was conducted by VESPA. The likelihood and Bayesian phylogenies showed a wide degree of compartmentalization in the different patients, ranging from total clustering to a more scattered pattern with small groups. Nevertheless, the association test showed compartmentalization for the three compartments and both viral regions tested in all the patients. Signature amino acid pattern supported the compartmentalization in three of the cases for E2 protein and in two of them for Core. Changes observed in Core included polymorphism R70Q/H previously associated with HCC. In conclusion, evidence of HCV compartmentalization in the liver of HCC patients was provided and further biological characterization of these variants may contribute to the understanding of carcinogenesis mediated by HCV infection. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paula S Pérez
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico A Di Lello
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Omar A Galdame
- Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Rodolfo H Campos
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego M Flichman
- Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Lee KW, Seo YD, Oh SC, Suh SW, Jeong J, Kim H, Yi NJ, Suh KS. What is the best immunosuppressant combination in terms of antitumor effect in hepatocellular carcinoma? Hepatol Res 2016; 46:593-600. [PMID: 26348114 DOI: 10.1111/hepr.12588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 12/09/2022]
Abstract
AIM Despite its known anticancer benefits, monotherapy with sirolimus is not sufficient to achieve optimal immunosuppression to prevent rejection. However, there is no published prospective study to compare the anticancer effect between various immunosuppressive combinations. Therefore, we analyzed the anticancer effects of various immunosuppressive regimens in order to provide experimental evidence for selecting an optimal immunosuppressive regimen after liver transplantation for hepatocellular carcinoma (HCC). METHODS The Huh7 cell line was used as a model for HCC in both in vitro and in vivo mouse experiments. The immunosuppressant regimens tested were: tacrolimus, sirolimus, MMF, sirolimus plus tacrolimus, and sirolimus plus MMF. 3-(4 5-Dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assays showed that the sirolimus plus MMF combination appeared to be synergistic in its cell suppressive effects, achieving statistically significant lowest cell viability. RESULTS In vitro western blot analysis showed that there were lower levels of expression of phosphorylated mammalian target of rapamycin, p70S6K and p4EBP1, transforming growth factor-β and pSmad3 expression in the cells treated with sirolimus, MMF and sirolimus plus MMF. Finally, in the mouse model of tumorigenesis, the sirolimus plus MMF and sirolimus plus tacrolimus showed the most suppressive effect in terms of tumor volume. CONCLUSION Throughout both the in vitro and in vivo experiments, the sirolimus and MMF combination had the most consistent and greatest antiproliferative effects.
Collapse
Affiliation(s)
- Kwang-Woong Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Yongwoo David Seo
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Cheol Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Suk-Won Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jaehong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeyoung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Joon Yi
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Pérez-Del-Pulgar S, Gregori J, Rodríguez-Frías F, González P, García-Cehic D, Ramírez S, Casillas R, Domingo E, Esteban JI, Forns X, Quer J. Quasispecies dynamics in hepatitis C liver transplant recipients receiving grafts from hepatitis C virus infected donors. J Gen Virol 2015; 96:3493-3498. [PMID: 26395289 DOI: 10.1099/jgv.0.000289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The allocation of liver grafts from hepatitis C virus (HCV)-positive donors in HCV-infected liver transplant (LT) recipients leads to infection with two different viral populations. In a previous study, we examined quasispecies dynamics during reinfection by clonal sequencing, which did not allow an accurate characterization of coexistence and competition events. To overcome this limitation, here we used deep-sequencing analysis of a fragment of the HCV NS5B gene in six HCV-infected LT recipients who received HCV-infected grafts. Successive expansions and contractions of quasispecies complexity were observed, evolving in all cases towards a more homogeneous population. The population that became dominant was the one displaying the highest mutant spectrum complexity. In four patients, coexistence of minority mutants, derived from the donor or the recipient, were detected. In conclusion, our study shows that, during reinfection with a different HCV strain in LT recipients, the viral population with the highest diversity always becomes dominant.
Collapse
Affiliation(s)
| | - Josep Gregori
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
- Roche Diagnostics, Sant Cugat del Vallès, Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Biochemistry Department, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Barcelona, Spain
| | | | - Damir García-Cehic
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Rosario Casillas
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CSIC-UAM), Campus de Cantoblanco, CIBERehd, Madrid, Spain
| | - Juan I Esteban
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Lab. Malalties Hepàtiques, Vall d'Hebron Institut de Recerca, Hospital Vall d'Hebron, CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Analysis of Post-Liver Transplant Hepatitis C Virus Recurrence Using Serial Cluster of Differentiation Antibody Microarrays. Transplantation 2015; 99:e120-6. [PMID: 25706280 DOI: 10.1097/tp.0000000000000617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) reinfection of the liver allograft after transplantation is universal, with some individuals suffering severe disease recurrence. Predictive markers of recurrent disease severity are urgently needed. In this study, we used a cluster of differentiation (CD) microarray to predict the severity of HCV recurrence after transplantation. METHODS The CD antibody microarray assays of live leukocytes were performed on peripheral blood taken in the first year after transplantation. The results were grouped into phases defined as; Pre-transplant (day 0), Early (day 3 to week 2), Mid (week 4 to week 10), and Late (week 12 to week 26). Hepatitis C virus severity was based on fibrosis stages in the first 2 years (F0-1 mild and F2-4 severe). RESULTS Serial blood samples from 16 patients were taken before and after liver transplantation. A total of 98 assays were performed. Follow-up was 3 years or longer. Comparing recurrence severity, significantly greater numbers of CD antigens were differentially expressed on the pretransplant samples compared to any posttransplant timepoints. Five differentially expressed CD antigens before transplantation (CD27 PH, CD182, CD260, CD41, and CD34) were significantly expressed comparing severe to mild recurrence, whereas expression of only CD152 was significant in the late phase after transplantation. No relationship was observed between the donor or recipient interleukin-28B genotypes and HCV recurrence severity. CONCLUSIONS This study shows that circulating leukocyte CD antigen expression has utility in assessing recurrent HCV disease severity after liver transplantation and serves as a proof of principle. Importantly, pretransplant CD antigen expression is most predictive of disease outcome.
Collapse
|
19
|
Attar BM, Van Thiel D. A New Twist to a Chronic HCV Infection: Occult Hepatitis C. Gastroenterol Res Pract 2015; 2015:579147. [PMID: 26221136 PMCID: PMC4495183 DOI: 10.1155/2015/579147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/15/2015] [Accepted: 05/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background. The prevalence of occult hepatitis C infection (OCI) in the population of HCV-RNA negative but anti-HCV positive individuals is presently unknown. OCI may be responsible for clinically overt recurrent disease following an apparent sustained viral response (SVR) weeks to years later. Purpose. To review the available current literature regarding OCI, prevalence, pathogenic mechanisms, clinical characteristics, and future directions. Data Sources. Searching MEDLINE, article references, and national and international meeting abstracts for the diagnosis of OCI (1990-2014). Data Synthesis. The long-term followup of individuals with an OCI suggests that the infection can be transient with the loss of detectable HCV-RNA in PPBMCs after 12-18 months or alternatively exist intermittently and potentially long term. The ultimate outcome of HCV infection is decided by interplay between host immune responses, antiviral therapies, and the various well-identified viral evasion mechanisms as well as the presence of HCV infection within extrahepatic tissues. Conclusion. The currently widely held assumption of a HCV-cure in individuals having had "SVR" after 8-12 weeks of a course of DAA therapy as recently defined may not be entirely valid. Careful longitudinal followup utilizing highly sensitive assays and unique approaches to viral isolation are needed.
Collapse
Affiliation(s)
- Bashar M. Attar
- Division of Gastroenterology and Hepatology, Cook County Health and Hospitals System, 1901 West Harrison Street, Chicago, IL 60612, USA
- Rush University Medical Center, Chicago, IL 60612, USA
| | - David Van Thiel
- Advanced Liver and Gastrointestinal Disease Center, Berwyn, IL 60402, USA
| |
Collapse
|
20
|
Curry MP, Forns X, Chung RT, Terrault NA, Brown R, Fenkel JM, Gordon F, O'Leary J, Kuo A, Schiano T, Everson G, Schiff E, Befeler A, Gane E, Saab S, McHutchison JG, Subramanian GM, Symonds WT, Denning J, McNair L, Arterburn S, Svarovskaia E, Moonka D, Afdhal N. Sofosbuvir and ribavirin prevent recurrence of HCV infection after liver transplantation: an open-label study. Gastroenterology 2015; 148:100-107.e1. [PMID: 25261839 DOI: 10.1053/j.gastro.2014.09.023] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/26/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Patients with detectable hepatitis C virus (HCV) RNA at the time of liver transplantation universally experience recurrent HCV infection. Antiviral treatment before transplantation can prevent HCV recurrence, but existing interferon-based regimens are poorly tolerated and are either ineffective or contraindicated in most patients. We performed a trial to determine whether sofosbuvir and ribavirin treatment before liver transplantation could prevent HCV recurrence afterward. METHODS In a phase 2, open-label study, 61 patients with HCV of any genotype and cirrhosis (Child-Turcotte-Pugh score, ≤7) who were on waitlists for liver transplantation for hepatocellular carcinoma, received up to 48 weeks of sofosbuvir (400 mg) and ribavirin before liver transplantation. The primary end point was the proportion of patients with HCV-RNA levels less than 25 IU/mL at 12 weeks after transplantation among patients with this HCV-RNA level at their last measurement before transplantation. RESULTS Sixty-one patients received sofosbuvir and ribavirin, and 46 received transplanted livers. The per-protocol efficacy population consisted of 43 patients who had HCV-RNA level less than 25 IU/mL at the time of transplantation. Of these 43 patients, 30 (70%) had a post-transplantation virologic response at 12 weeks, 10 (23%) had recurrent infection, and 3 (7%) died (2 from nonfunction of the primary graft and 1 from complications of hepatic artery thrombosis). Of all 61 patients given sofosbuvir and ribavirin, 49% had a post-transplantation virologic response. Recurrence was related inversely to the number of consecutive days of undetectable HCV RNA before transplantation. The most frequently reported adverse events were fatigue (in 38% of patients), headache (23%), and anemia (21%). CONCLUSIONS Administration of sofosbuvir and ribavirin before liver transplantation can prevent post-transplant HCV recurrence. ClinicalTrials.gov: NCT01559844.
Collapse
Affiliation(s)
- Michael P Curry
- Transplant Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Xavier Forns
- Liver Unit, Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Raymond T Chung
- GI Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Norah A Terrault
- Division of Gastroenterology, University of California San Francisco, San Francisco, California
| | - Robert Brown
- Center for Liver Diseases and Transplantation, Columbia University, New York, New York
| | - Jonathan M Fenkel
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Fredric Gordon
- Liver Transplantation & Hepatology, Lahey Clinic, Burlington, Massachusetts
| | | | - Alexander Kuo
- Liver Transplantation, University of California, San Diego, La Jolla, California
| | - Thomas Schiano
- Liver Diseases, Mount Sinai School of Medicine, New York, New York
| | - Gregory Everson
- Section of Hepatology, University of Colorado, Denver, Colorado
| | - Eugene Schiff
- Center for Liver Disease, University of Miami, Miami, Florida
| | - Alex Befeler
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, Missouri
| | - Edward Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - Sammy Saab
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | - Dilip Moonka
- Gastroenterology, Henry Ford Health System, Detroit, Michigan
| | - Nezam Afdhal
- Transplant Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
21
|
Liver transplantation for patient with pretransplant undetectable hepatitis C RNA: can eradication of virus guarantee superior outcome? Transplantation 2014; 97:e45-7. [PMID: 24732899 DOI: 10.1097/tp.0000000000000059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Mingorance L, Friesland M, Coto-Llerena M, Pérez-del-Pulgar S, Boix L, López-Oliva JM, Bruix J, Forns X, Gastaminza P. Selective inhibition of hepatitis C virus infection by hydroxyzine and benztropine. Antimicrob Agents Chemother 2014; 58:3451-60. [PMID: 24709263 PMCID: PMC4068423 DOI: 10.1128/aac.02619-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/02/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major biomedical problem worldwide as it causes severe liver disease in millions of humans around the world. Despite the recent approval of specific drugs targeting HCV replication to be used in combination with alpha interferon (IFN-α) and ribavirin, there is still an urgent need for pangenotypic, interferon-free therapies to fight this genetically diverse group of viruses. In this study, we used an unbiased screening cell culture assay to interrogate a chemical library of compounds approved for clinical use in humans. This system enables identifying nontoxic antiviral compounds targeting every aspect of the viral life cycle, be the target viral or cellular. The aim of this study was to identify drugs approved for other therapeutic applications in humans that could be effective components of combination therapies against HCV. As a result of this analysis, we identified 12 compounds with antiviral activity in cell culture, some of which had previously been identified as HCV inhibitors with antiviral activity in cell culture and had been shown to be effective in patients. We selected two novel HCV antivirals, hydroxyzine and benztropine, to characterize them by determining their specificity and genotype spectrum as well as by defining the step of the replication cycle targeted by these compounds. We found that both compounds effectively inhibited viral entry at a postbinding step of genotypes 1, 2, 3, and 4 without affecting entry of other viruses.
Collapse
Affiliation(s)
- Lidia Mingorance
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Martina Friesland
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | | | | | - Loreto Boix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Juan Manuel López-Oliva
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clinic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Pablo Gastaminza
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
23
|
Blackard JT, Ma G, Sengupta S, Martin CM, Powell EA, Shata MT, Sherman KE. Evidence of distinct populations of hepatitis C virus in the liver and plasma of patients co-infected with HIV and HCV. J Med Virol 2014; 86:1332-41. [PMID: 24788693 DOI: 10.1002/jmv.23968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 12/15/2022]
Abstract
Viral diversity is an important predictor of hepatitis C virus (HCV) treatment response and may influence viral pathogenesis. HIV influences HCV variability in the plasma; however, limited data on viral variability are available from distinct tissue/cell compartments in patients co-infected with HIV and HCV. Thus, this exploratory study evaluated diversity of the hypervariable region 1 (HVR1) of HCV in the plasma and liver for 14 patients co-infected with HIV and HCV. Median intra-patient genetic distances and entropy values were similar in the plasma and liver compartments. Positive immune selection pressure was observed in the plasma for five individuals and in the liver for three individuals. Statistical evidence supporting viral compartmentalization was found in five individuals. Linear regression identified ALT (P = 0.0104) and AST (P = 0.0130) as predictors of viral compartmentalization. A total of 12 signature amino acids that distinguish liver from plasma E1/HVR1 were identified. One signature amino acid was shared by at least two individuals. These findings suggest that HCV compartmentalization is relatively common among patients co-infected with HIV and HCV. These data also imply that evaluating viral diversity, including drug resistance patterns, in the serum/plasma only may not adequately represent viruses replicating with in the liver and, thus, deserves careful consideration in future studies.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
24
|
Gismondi MI, Díaz Carrasco JM, Valva P, Becker PD, Guzmán CA, Campos RH, Preciado MV. Dynamic changes in viral population structure and compartmentalization during chronic hepatitis C virus infection in children. Virology 2013; 447:187-96. [PMID: 24210114 DOI: 10.1016/j.virol.2013.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022]
Abstract
Classic phylogenetic and modern population-based clustering methods were used to analyze hepatitis C virus (HCV) evolution in plasma and to assess viral compartmentalization within peripheral blood mononuclear cells (PBMCs) in 6 children during 3.2-9.6yr of follow-up. Population structure analysis of cloned amplicons encompassing hypervariable region 1 led to the distinction of two evolutionary patterns, one highly divergent and another one genetically homogeneous. Viral adaptability was reflected by co-evolution of viral communities switching rapidly from one to another in the context of divergence and stability associated with highly homogeneous communities which were replaced by new ones after long periods. Additionally, viral compartmentalization of HCV in PBMCs was statistically demonstrated, suggesting their role as a pool of genetic variability. Our results support the idea of a community-based structure of HCV viral populations during chronic infection and highlight a role of the PBMC compartment in the persistence of such structure.
Collapse
Affiliation(s)
- María Inés Gismondi
- Laboratorio de Biología Molecular, División Patología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen CL, Tsukamoto H, Liu JC, Kashiwabara C, Feldman D, Sher L, Dooley S, French SW, Mishra L, Petrovic L, Jeong JH, Machida K. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J Clin Invest 2013; 123:2832-49. [PMID: 23921128 PMCID: PMC3696549 DOI: 10.1172/jci65859] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 04/08/2013] [Indexed: 12/17/2022] Open
Abstract
Tumor-initiating stem-like cells (TICs) are resistant to chemotherapy and associated with hepatocellular carcinoma (HCC) caused by HCV and/or alcohol-related chronic liver injury. Using HCV Tg mouse models and patients with HCC, we isolated CD133(+) TICs and identified the pluripotency marker NANOG as a direct target of TLR4, which drives the tumor-initiating activity of TICs. These TLR4/NANOG-dependent TICs were defective in the TGF-β tumor suppressor pathway. Functional oncogene screening of a TIC cDNA library identified Yap1 and Igf2bp3 as NANOG-dependent genes that inactivate TGF-β signaling. Mechanistically, we determined that YAP1 mediates cytoplasmic retention of phosphorylated SMAD3 and suppresses SMAD3 phosphorylation/activation by the IGF2BP3/AKT/mTOR pathway. Silencing of both YAP1 and IGF2BP3 restored TGF-β signaling, inhibited pluripotency genes and tumorigenesis, and abrogated chemoresistance of TICs. Mice with defective TGF-β signaling (Spnb2(+/-) mice) exhibited enhanced liver TLR4 expression and developed HCC in a TLR4-dependent manner. Taken together, these results suggest that the activated TLR4/NANOG oncogenic pathway is linked to suppression of cytostatic TGF-β signaling and could potentially serve as a therapeutic target for HCV-related HCC.
Collapse
MESH Headings
- AC133 Antigen
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Base Sequence
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Separation
- Drug Resistance, Neoplasm
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Glycoproteins/metabolism
- Homeodomain Proteins/metabolism
- Humans
- Inhibitory Concentration 50
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Nanog Homeobox Protein
- Neoplastic Stem Cells/metabolism
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Oncogenes
- Peptides/metabolism
- Phenylurea Compounds/pharmacology
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- Smad Proteins/metabolism
- Sorafenib
- Spheroids, Cellular/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Transcription Factors
- Transcriptional Activation
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Tumor Burden
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Chia-Lin Chen
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hidekazu Tsukamoto
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Chang Liu
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudine Kashiwabara
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Douglas Feldman
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Linda Sher
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Dooley
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samuel W. French
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lopa Mishra
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lydia Petrovic
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph H. Jeong
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology and
Department of Pathology, University of Southern California, Los Angeles, California, USA.
Southern California Research Center for ALPD and Cirrhosis, Los Angeles, California, USA.
Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA.
Department of Surgery, University of Southern California, Los Angeles, California, USA.
Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Department of Pathology, Harbor-UCLA Medical Center, Los Angeles, California, USA.
Department of Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Crespo G, Carrión JA, Coto-Llerena M, Mariño Z, Lens S, Pérez-Del-Pulgar S, García-Retortillo M, Miquel R, Bosch J, Navasa M, Forns X. Combinations of simple baseline variables accurately predict sustained virological response in patients with recurrent hepatitis C after liver transplantation. J Gastroenterol 2013; 48:762-9. [PMID: 23011083 DOI: 10.1007/s00535-012-0680-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/29/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND The efficacy of antiviral therapy in patients with hepatitis C recurrence after liver transplantation (LT) is far from optimal and a careful selection of candidates with the best chances to achieve sustained virological response (SVR) is relevant. Moreover, investigating the effects of sustained viral clearance on clinical outcomes is particularly significant. We aimed to identify and combine the best baseline predictors of SVR and to assess the clinical outcomes of antiviral therapy after LT. METHODS We studied 144 hepatitis C virus (HCV)-infected LT recipients who underwent antiviral therapy following transplantation. Baseline predictors of SVR including donor and recipient interleukin IL28B (IL28B) rs12979860 genotype were evaluated, and the long-term effects of antiviral therapy on clinical outcomes were assessed. RESULTS The presence of an IL28B CC genotype with either low viral load (VL), young donor age, or cyclosporine A (CsA)-based immunosuppression identified individuals with 69-80 % probabilities of SVR. In contrast, only 20% of recipients with a CT/TT IL28B genotype and either high VL, old donor age, or non-CsA immunosuppression achieved an SVR (p = 0.004). Regarding clinical outcomes, the 5-year cumulative probability of graft loss was 2% for the SVR patients and 48% for non-responders (p < 0.001). CONCLUSIONS The use of simple combinations of baseline variables including IL28B polymorphisms identifies HCV-infected LT recipients with different probabilities of response to antiviral treatment. SVR is associated with improved clinical outcomes.
Collapse
Affiliation(s)
- Gonzalo Crespo
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic, CIBERehd, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Recurrent diseases following liver transplantation: current concepts. Curr Opin Organ Transplant 2013; 17:293-302. [PMID: 22498649 DOI: 10.1097/mot.0b013e32835365f6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Liver transplantation is the treatment of choice for patients with chronic end-stage liver disease. The posttransplant setting is complex, and an improved long-term graft and patient survival adds to the complexity. There are often multiple causes of graft dysfunction and the associated morbidity and disorder are varied. This review focuses on the current concepts of several recurrent diseases, emphasizing the interpretation of the posttransplant liver biopsies in long-term survivors as challenging and clinically more relevant then ever. It confirms the importance and the necessity of clinico-pathologic correlation in the posttransplant setting. RECENT FINDINGS The long-term graft and patient survival following liver transplantation has improved significantly over the past decade. The spectrum of histopathologic patterns seen in liver biopsies and our understanding of them have evolved and expanded considerably, so much so, that both pathologists and clinicians alike now recognize new and emerging disease patterns not previously encountered in the nontransplant setting. SUMMARY Typical histopathologic features are usually easily identified and interpreted in liver biopsies. There are, however, a number of atypical histopathologic patterns, especially in the setting of recurrent diseases, often modified by immunosuppression, or altered by other immune-mediated processes, autoimmunity, or hepatotoxicity. Several conditions and entities, especially in the late posttransplant setting, including atypical allograft rejection, idiopathic posttransplant hepatitis, the spectrum of changes seen in recurrent hepatitis C, nodular regenerative hyperplasia, and de-novo disease occurrence, to name a few, have all been recognized in the past several years.
Collapse
|
28
|
Abstract
Hepatitis C virus (HCV) exhibits a narrow host range and a specific tissue tropism. Studies on HCV life cycle have been progressed by the developments of in vitro replication and infection systems and an HCV laboratory strain (HCVcc) capable of propagating in human hepatoma cell line, Huh7 cells. Mice expressing four human entry receptor candidates for HCV permit entry of HCVcc, therefore tissue tropism of HCV was believed to be rely on the expression of the entry receptors. However, HCV infection is often associated with extra-hepatic manifestations and the determinants for cell tropism of HCV remain elusive. Recently, we have shown that several nonhepatic cell lines permit HCV-RNA replication through an expression of a liver-specific microRNA, miR-122, upon infection with HCVcc, while no infectious particle was produced. In the nonhepatic cells, only small numbers of lipid droplets and low levels of VLDL-associated proteins were observed in compared with Huh7 cells, suggesting that expression of miR-122 and functional lipid metabolism participates in the replication and assembly of HCVcc, respectively In this review, we would like to discuss about involvement of miR-122 and functional lipid metabolism in the determination of HCV cell tropism.
Collapse
|
29
|
Angulo J, Pino K, Pavez C, Biel F, Labbé P, Miquel JF, Soza A, López-Lastra M. Genetic variations in host IL28B links to the detection of peripheral blood mononuclear cells-associated hepatitis C virus RNA in chronically infected patients. J Viral Hepat 2013; 20:263-72. [PMID: 23490371 DOI: 10.1111/jvh.12076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/01/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is mainly hepatotropic; however, several reports document the presence of genomic viral RNA in extrahepatic sites including peripheral blood mononuclear cells (PBMCs). In this study, the presence of HCV RNA was initially evaluated in the plasma and peripheral blood mononuclear cells (PBMCs) of 53 HCV-infected patients who were treated per protocol. PBMC-associated HCV RNA was detectable in 79% of patients. Early virological response to combined pegylated interferon-α (PegIFN) and ribavirin (RBV) therapy in patients with undetectable levels of PBMCs-associated HCV RNA was 100%, while it was 60% (P = 0.003) in those who had detectable levels of PBMC-associated HCV RNA. A sustained virological response was observed in 35% of patients with detectable PBMC-associated HCV RNA, but was 70% in patients with undetectable levels of PBMC-associated HCV RNA (P = 0.07). In a multivariate analysis incorporating parameters such as HCV genotype, viral load, presence of cirrhosis and absence of PBMC-associated HCV RNA, a significant relationship was observed between the detection of PBMC-associated HCV RNA and the sustained virological response (OR 19.4, 95% CI: 2.1-486.2, P = 0.0061). The association between single nucleotide polymorphism (SNP) in IL28B, known predictor of antiviral therapy outcome, and the occurrence of HCV RNA in PBMC in 84 chronically infected patients was then evaluated. Results suggest that the presence of a G allele in rs8099917, known to associate to a poor response to PegIFN/RBV therapy, also predicts an increased association of HCV RNA with PBMC (OR: 3.564; 95% CI: 1.114-11.40, P = 0.0437).
Collapse
Affiliation(s)
- J Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Koutsoudakis G, Forns X, Pérez-Del-Pulgar S. [The molecular biology of hepatitis C virus]. GASTROENTEROLOGIA Y HEPATOLOGIA 2013; 36:280-93. [PMID: 23490024 DOI: 10.1016/j.gastrohep.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 12/12/2022]
Abstract
Since the discovery of the hepatitis C virus (HCV), a plethora of experimental models have evolved, allowing the virus's life cycle and the pathogenesis of associated liver diseases to be investigated. These models range from inoculation of cultured cells with serum from patients with hepatitis C to the use of surrogate models for the study of specific stages of the HCV life cycle: retroviral pseudoparticles for the study of HCV entry, replicons for the study of HCV replication, and the HCV cell culture model, which reproduces the entire life cycle (replication and production of infectious particles). The use of these tools has been and remains crucial to identify potential therapeutic targets in the different stages of the virus's life cycle and to screen new antiviral drugs. A clear example is the recent approval of two viral protease inhibitors (boceprevir and telaprevir) in combination with pegylated interferon and ribavirin for the treatment of chronic hepatitis C. This review analyzes the advances made in the molecular biology of HCV and highlights possible candidates as therapeutic targets for the treatment of HCV infection.
Collapse
Affiliation(s)
- George Koutsoudakis
- Servicio de Hepatología, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, España
| | | | | |
Collapse
|
31
|
Abstract
Hepatitis C virus (HCV) exhibits a narrow host range and a specific tissue tropism. Mice expressing major entry receptors for HCV permit viral entry, and therefore the species tropism of HCV infection is considered to be reliant on the expression of the entry receptors. However, HCV receptor candidates are expressed and replication of HCV-RNA can be detected in several nonhepatic cell lines, suggesting that nonhepatic cells are also susceptible to HCV infection. Recently it was shown that the exogenous expression of a liver-specific microRNA, miR-122, facilitated the efficient replication of HCV not only in hepatic cell lines, including Hep3B and HepG2 cells, but also in nonhepatic cell lines, including Hec1B and HEK-293T cells, suggesting that miR-122 is required for the efficient replication of HCV in cultured cells. However, no infectious particle was detected in the nonhepatic cell lines, in spite of the efficient replication of HCV-RNA. In the nonhepatic cells, only small numbers of lipid droplets and low levels of very-low-density lipoprotein-associated proteins were observed compared with findings in the hepatic cell lines, suggesting that functional lipid metabolism participates in the assembly of HCV. Taken together, these findings indicate that miR-122 and functional lipid metabolism are involved in the tissue tropism of HCV infection. In this review, we would like to focus on the role of miR-122 and lipid metabolism in the cell tropism of HCV.
Collapse
|
32
|
Prevalence and follow-up of occult HCV infection in an Italian population free of clinically detectable infectious liver disease. PLoS One 2012; 7:e43541. [PMID: 22927986 PMCID: PMC3425488 DOI: 10.1371/journal.pone.0043541] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023] Open
Abstract
Background Occult hepatitis C virus infection (OCI) is a recently described phenomenon characterized by undetectable levels of HCV-RNA in serum/plasma by current laboratory assays, with identifiable levels in peripheral blood mononuclear cells (PBMCs) and/or liver tissue by molecular tests with enhanced sensitivity. Previous results from our group showed an OCI prevalence of 3.3% in a population unselected for hepatic disease. The present study aimed to evaluate OCI prevalence in a larger cohort of infectious liver disease-free (ILDF) subjects. Clinical follow-up of OCI subjects was performed to investigate the natural history of the infection. Methods and Findings 439 subjects referred to a Turin Blood Bank for phlebotomy therapy were recruited. They included 314 ILDF subjects, 40 HCV-positive subjects and 85 HBV-positive subjects, of whom 7 were active HBV carriers. Six subjects (4/314 ILDF subjects [1.27%] and 2/7 active HBV carriers [28%]) were positive for HCV-RNA in PBMCs, but negative for serological and virological markers of HCV, indicating OCI. HCV genotypes were determined in the PBMCs of 3/6 OCI subjects two had type 1b; the other had type 2a/2c. OCI subjects were followed up for at least 2 years. After 12 months only one OCI persisted, showing a low HCV viral load (3.73×101 UI/ml). By the end of follow-up all OCI subjects were negative for HCV. No seroconversion, alteration of liver enzyme levels, or reduction of liver synthesis occurred during follow-up. Conclusions This study demonstrated the existence of OCI in ILDF subjects, and suggested a high OCI prevalence among active HBV carriers. Follow-up suggested that OCI could be transient, with a trend toward the decrease of HCV viral load to levels undetectable by conventional methods after 12–18 months. Confirmation studies with a longer follow-up period are needed for identification of the OCI clearance or recurrence rates, and to characterize the viruses involved.
Collapse
|
33
|
Germani G, Tsochatzis E, Papastergiou V, Burroughs AK. HCV in liver transplantation. Semin Immunopathol 2012; 35:101-10. [PMID: 22829333 DOI: 10.1007/s00281-012-0329-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/01/2012] [Indexed: 12/23/2022]
Abstract
HCV-related cirrhosis represents the leading indication for liver transplantation in the Western countries. HCV reinfection after liver transplantation occurs in virtually all patients transplanted for HCV-related liver disease Histological evidence of chronic HCV infection develops in 50 to 90 % of patients by 12 months after liver transplantation, and cirrhosis occurs in about 20 % of patients within 5 years after transplant. Several studies have evaluated host, viral, and transplant-related factors that might be associated with the severity of HCV recurrence. Among host factors, immunosuppression is one of the major factors that accounts for accelerated HCV recurrence and it has been an area of extensive research and controversy. Donor age, steatosis, and immunogenetic factors are also relevant in determining the outcome in patients transplanted for HCV-related cirrhosis. A major step to prevent complications of HCV recurrence related to the rapid fibrosis is the posttransplant antiviral treatment. Two strategies have been tried: pre-emptive or other strategies as soon as possible after liver transplantation or elective therapy once there is histological evidence of recurrent hepatitis C. Retransplantation due to graft failure from recurrent hepatitis C is rarely an option in the era of organ shortage as it is associated with poor outcome, but many case needs to be considered early in the evolution of disease. New antivirals may change the outcome dramatically of patients transplanted for HCV cirrhosis.
Collapse
Affiliation(s)
- Giacomo Germani
- The Royal Free Sheila Sherlock Liver Centre and University Department of Surgery, Royal Free Hospital and UCL, London, UK
| | | | | | | |
Collapse
|
34
|
Blackard JT, Ma G, Welge JA, Martin CM, Sherman KE, Taylor LE, Mayer KH, Jamieson DJ. Analysis of a non-structural gene reveals evidence of possible hepatitis C virus (HCV) compartmentalization. J Med Virol 2012; 84:242-52. [PMID: 22170544 DOI: 10.1002/jmv.22269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viral diversity is a hallmark of hepatitis C virus (HCV) infection; however, only limited data are available regarding HCV variability in extrahepatic sites, and none have systematically compared diversity in non-structural and structural genomic regions. Therefore, HCV diversity in the NS5B and envelope 1 (E1) hypervariable region 1 (HVR1) genes was evaluated in matched sera and peripheral blood mononuclear cells (PBMCs) obtained from 13 HCV-infected women. Multiple clonal sequences were compared to evaluate quasispecies diversity and viral compartmentalization in PBMCs. Genetic distances were higher for E1/HVR1 compared to NS5B in both the sera and PBMCs (P = 0.0511 and 0.0284). Genetic distances were higher in serum NS5B compared to PBMC NS5B (P = 0.0003); however, they were not different when comparing E1/HVR1 in sera to PBMCs. By phylogenetic analysis of NS5B, evidence of possible PBMC compartmentalization was observed for one woman, while statistical methods were consistent with PBMC compartmentalization for six women. Evidence of compartmentalization within a non-structural genomic region may suggest that viral adaptation to a unique extracellular microenvironment(s) may be required for efficient replication and could contribute to HCV persistence.
Collapse
Affiliation(s)
- Jason T Blackard
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Unexpected maintenance of hepatitis C viral diversity following liver transplantation. J Virol 2012; 86:8432-9. [PMID: 22623804 DOI: 10.1128/jvi.00749-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection can lead to liver cirrhosis in up to 20% of individuals, often requiring liver transplantation. Although the new liver is known to be rapidly reinfected, the dynamics and source of the reinfecting virus(es) are unclear, resulting in some confusion concerning the relationship between clinical outcome and viral characteristics. To clarify the dynamics of liver reinfection, longitudinal serum viral samples from 10 transplant patients were studied. Part of the E1/E2 region was sequenced, and advanced phylogenetic analysis methods were used in a multiparameter analysis to determine the history and ancestry of reinfecting lineages. Our results demonstrated the complexity of HCV evolutionary dynamics after liver transplantation, in which a large diverse population of viruses is transmitted and maintained for months to years. As many as 30 independent lineages in a single patient were found to reinfect the new liver. Several later posttransplant lineages were more closely related to older pretransplant viruses than to viruses detected immediately after transplantation. Although our data are consistent with a number of interpretations, the persistence of high viral genetic variation over long periods of time requires an active mechanism. We discuss possible scenarios, including frequency-dependent selection or variation in selective pressure among viral subpopulations, i.e., the population structure. The latter hypothesis, if correct, could have relevance to the success of newer direct-acting antiviral therapies.
Collapse
|
36
|
Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J Virol 2012; 86:7918-33. [PMID: 22593164 DOI: 10.1128/jvi.00567-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.
Collapse
|
37
|
Wilson GK, Brimacombe CL, Rowe IA, Reynolds GM, Fletcher NF, Stamataki Z, Bhogal RH, Simões ML, Ashcroft M, Afford SC, Mitry RR, Dhawan A, Mee CJ, Hübscher SG, Balfe P, McKeating JA. A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration. J Hepatol 2012; 56:803-9. [PMID: 22178269 PMCID: PMC3343261 DOI: 10.1016/j.jhep.2011.11.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/25/2011] [Accepted: 11/14/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) causes progressive liver disease and is a major risk factor for the development of hepatocellular carcinoma (HCC). However, the role of infection in HCC pathogenesis is poorly understood. We investigated the effect(s) of HCV infection and viral glycoprotein expression on hepatoma biology to gain insights into the development of HCV associated HCC. METHODS We assessed the effect(s) of HCV and viral glycoprotein expression on hepatoma polarity, migration and invasion. RESULTS HCV glycoproteins perturb tight and adherens junction protein expression, and increase hepatoma migration and expression of epithelial to mesenchymal transition markers Snail and Twist via stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates many genes involved in tumor growth and metastasis, including vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β). Neutralization of both growth factors shows different roles for VEGF and TGFβ in regulating hepatoma polarity and migration, respectively. Importantly, we confirmed these observations in virus infected hepatoma and primary human hepatocytes. Inhibition of HIF-1α reversed the effect(s) of infection and glycoprotein expression on hepatoma permeability and migration and significantly reduced HCV replication, demonstrating a dual role for HIF-1α in the cellular processes that are deregulated in many human cancers and in the viral life cycle. CONCLUSIONS These data provide new insights into the cancer-promoting effects of HCV infection on HCC migration and offer new approaches for treatment.
Collapse
Key Words
- bc, bile canaliculi
- cmfda, 5-chloromethylfluorescein diacetate
- hcc, hepatocellular carcinoma
- emt, epithelial to mesenchymal transition
- hcvcc, hepatitis c virus cell culture
- hif-1α, hypoxia inducible factor 1 alpha
- jfh-1, japanese fulminant hepatitis-1
- mrp-2, multidrug resistant protein-2
- phh, primary human hepatocytes
- sr-bi, scavenger receptor class b member 1
- tgfβ, transforming growth factor-beta
- tnfα, tumor necrosis factor alpha
- vegf, vascular endothelial growth factor
- vsv-g, vesicular stomatitis virus glycoprotein
- hepatitis c
- hypoxia
- invasion
Collapse
Affiliation(s)
- Garrick K. Wilson
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire L. Brimacombe
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ian A. Rowe
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gary M. Reynolds
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicola F. Fletcher
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ricky H. Bhogal
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria L. Simões
- Division of Medicine, University College London, London, United Kingdom
| | - Margaret Ashcroft
- Division of Medicine, University College London, London, United Kingdom
| | - Simon C. Afford
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ragai R. Mitry
- Institute of Liver Studies, Kings College Hospital and Kings College London School of Medicine, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, Kings College Hospital and Kings College London School of Medicine, London, United Kingdom
| | - Christopher J. Mee
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stefan G. Hübscher
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,Department of Cellular Pathology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Peter Balfe
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jane A. McKeating
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,Corresponding author. Address: Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom. Fax: +44 121 414 3599.
| |
Collapse
|
38
|
Halfon P, Sarrazin C. Future treatment of chronic hepatitis C with direct acting antivirals: is resistance important? Liver Int 2012; 32 Suppl 1:79-87. [PMID: 22212577 DOI: 10.1111/j.1478-3231.2011.02716.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in molecular biology have led to the development of novel small molecules that target specific viral proteins of the hepatitis C virus (HCV) life cycle. These drugs, collectively termed directly acting antivirals (DAA), include a range of non-structural (NS) 3/NS4A protease, NS5B polymerase and NS5A inhibitors at various stages of clinical development. Some others drugs called 'non DAA'or indirect inhibitors are not focused on one site of the life cycle target and are still in early pre-clinical and clinical phase I, II and III trials. The rapid replication rate of HCV, along with the low fidelity of its polymerase, results in a generation of mutations throughout the viral genome and sequence variation in the HCV population known as a quasispecies. The efficacy of DAA is limited by the presence of these mutations, resulting in amino acid substitutions within the targeted proteins which affect viral sensitivity to these compounds. Thus, attributable to the high genetic variability of HCV, variants with reduced susceptibility to DAA can occur naturally even before treatment begins, but usually at low levels. Thus it is not surprising that these changes are selected in patients that either breakthrough or do not respond to potent DAA treatment. Six major position mutations in the NS3 HCV Protease (36, 54, 155, 156, 168 and 170), fifteen in the NS5B polymerase (96, 282, 316, 365, 414, 419, 423, 448, 482, 494, 495, 496, 499, 554, 559) and five in the NS5 A region (28, 30, 31, 58 and 93) have now been reported in vitro or in vivo associated with different levels of resistance. The amino acid composition at several of the drug resistance sites can vary between the HCV genotypes/subtypes, resulting in different consensus amino acids leading to a reduction in replicative fitness as well as reduced DAA and non- DAA sensitivity. Information on patterns of resistance to and cross resistance between antiviral agents is increasingly available and may be important for decisions on how to combine drugs to achieve an optimum antiviral effect. This review debates the clinical relevance of resistance to direct and indirect inhibitors taking into account the future potential therapeutic strategies to help patients who do develop resistance to HCV inhibitors. Finally, this chapter treats two points of view: 'for' and 'against' the question of the importance of resistance.
Collapse
Affiliation(s)
- Philippe Halfon
- Virological Departement Laboratoire Alphabio, Hôpital Ambroise Paré, Marseille, France
| | | |
Collapse
|
39
|
Chinnadurai R, Velazquez V, Grakoui A. Hepatic transplant and HCV: a new playground for an old virus. Am J Transplant 2012; 12:298-305. [PMID: 22044693 DOI: 10.1111/j.1600-6143.2011.03812.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) infection is a major global health problem affecting 170 million people worldwide. The majority of infected individuals fail to resolve their infection, with a significant number developing chronic, progressive HCV-related liver disease. HCV infection is the leading indication for liver transplantation and unfortunately, all patients with detectable viral load before transplantation will have rapid, recurrent infection. What remain to be determined are factors contributing to the severity of HCV recurrence. Such factors are unique to the posttransplant setting and include: viral genetic diversity and composition, immunosuppression, donor/recipient age and sex, genetic factors and the liver microenvironment. Importantly, the possibility that the severity of HCV recurrence might be also influenced by factors related to the primary course of disease (i.e. viral set point, previously acquired adaptations of the virus) must be further evaluated. In this sense, recurrent HCV infection should not be regarded merely as another acute infection, but rather, it should be cautioned that problems first arising during the primary course of disease may be accentuated during recurrence. Development of novel therapeutic approaches will require a thorough understanding of viral and host determinants of infection resolution and how these factors may change in the posttransplant setting.
Collapse
Affiliation(s)
- R Chinnadurai
- Department of Medicine, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
40
|
Kawaoka T, Aikata H, Miyaki D, Murakami E, Azakami T, Takaki S, Nagaoki Y, Hashimoto Y, Katamura Y, Hiramatsu A, Waki K, Hiraga N, Miki D, Tsuge M, Imamura M, Kawakami Y, Takahashi S, Ochi H, Tashiro H, Ohdan H, Chayama K. Eradication of hepatitis C virus genotype 1 after liver transplantation by interferon therapy before surgery: Report of three patients with analysis of interleukin-28 polymorphism, hepatitis C virus core region and interferon-sensitivity determining region. Hepatol Res 2011; 41:1126-31. [PMID: 22032680 DOI: 10.1111/j.1872-034x.2011.00853.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The achievement of sustained viral response (SVR) with interferon (IFN) therapy before liver transplantation (LT) is difficult due to liver dysfunction, pancytopenia and frequent side-effects. Here, we report eradication of hepatitis C virus (HCV) genotype 1 after LT in three patients by IFN therapy before surgery. All three patients achieved virological response (VR), namely, fall in serum HCV RNA titer below the detection limit of real-time polymerase chain reaction (PCR) during IFN administration. However, HCV RNA rebound after cessation of treatment in all three patients; namely, they could not achieve SVR despite treatment with pegylated (PEG) IFN plus ribavirin. All three patients had wild-type amino acids (a.a.) at either aa70 or aa91 in the core region. Genotyping of IL-28 single nucleotide polymorphisms (rs8099917) showed TT genotype in two patients and TG genotype in one. All three patients developed multiple hepatocellular carcinomas during the clinical course, and requested living donor LT using liver grafts from their relatives. The patients were treated with IFN to immediately before LT, at which time they remained negative for HCV RNA in serum by real-time PCR. The three patients were followed-up for 14-15 months after LT, during which they remained negative for HCV RNA despite no further IFN therapy. In conclusion, it is possible to eradicate HCV after LT by inducing VR with continuous IFN therapy to before LT in spite of viral and host evidences reflecting low susceptibility to IFN treatment.
Collapse
Affiliation(s)
- Tomokazu Kawaoka
- Department of Medicine and Molecular Science, Division of Frontier Medical Science Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima University Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN (The Institute of Physical and Chemical Research), Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Human cell types important for hepatitis C virus replication in vivo and in vitro: old assertions and current evidence. Virol J 2011; 8:346. [PMID: 21745397 PMCID: PMC3142522 DOI: 10.1186/1743-422x-8-346] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro.
Collapse
|
42
|
Motomura T, Taketomi A, Fukuhara T, Mano Y, Takeishi K, Toshima T, Harada N, Uchiyama H, Yoshizumi T, Soejima Y, Shirabe K, Matsuura Y, Maehara Y. The impact of IL28B genetic variants on recurrent hepatitis C in liver transplantation: significant lessons from a dual graft case. Am J Transplant 2011; 11:1325-9. [PMID: 21645259 DOI: 10.1111/j.1600-6143.2011.03537.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
IL28B genetic polymorphism is related to interferon-sensitivity in chronic hepatitis C, but the significance of grafts carrying different genotypes from recipients is still unclear in liver transplantation. A 51-year-old Japanese male carrying a minor genotype underwent dual liver transplantation for liver cirrhosis due to hepatitis C virus (HCV). The left lobe graft carried a major genotype, and the right a minor genotype. He achieved virological response during the course of pegylated-interferon and ribavirin therapy against recurrent hepatitis C for 2 years, but HCV relapsed immediately at the end of the therapy. Two years after antiviral therapy, liver biopsy was performed from each graft. The specimens showed A1F0 in the left lobe graft and A2F2 in the right. Moreover, quantitative polymerase chain reaction was performed using RNA extracted from each specimen to see there was no HCV RNA in the left lobe whereas there was in the right. This case provides clear evidence that IL28B genetic variants determine interferon sensitivity in recurrent hepatitis C following liver transplantation, which could result in new strategies for donor selection or for posttransplant antiviral therapy to HCV positive recipients.
Collapse
Affiliation(s)
- T Motomura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nellore A, Fishman JA. NK cells, innate immunity and hepatitis C infection after liver transplantation. Clin Infect Dis 2011; 52:369-77. [PMID: 21217184 DOI: 10.1093/cid/ciq156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver transplantation in patients with active hepatitis C virus (HCV) infection is followed by almost universal recurrence of viral infection. The control of HCV infection has been characterized largely in terms of the HCV-specific function of T-lymphocytes and the adaptive immune response. Emerging data suggest that components of the innate immune system, including natural killer cells, have a central role in determining the nature of posttransplant HCV infection and the likelihood of response to antiviral therapy. This review examines the emerging evidence implicating innate immunity in the pathogenesis of posttransplant HCV infections and the potential therapeutic implications of these observations.
Collapse
Affiliation(s)
- Anoma Nellore
- Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
44
|
Dragun J, Pérez-Del-Pulgar S, Crespo G, Ramírez S, Coto-Llerena M, Mensa L, García-Valdecasas JC, Navasa M, Forns X. Characterization of the cross-neutralizing antibody response against hepatitis C virus in the liver transplantation setting. Am J Transplant 2011; 11:767-74. [PMID: 21401864 DOI: 10.1111/j.1600-6143.2011.03440.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neutralizing antibody (nAb) activity during the course of natural infection is believed to be crucial to combating virus propagation. The aim of this study was to measure the impact of nAb response on HCV early kinetics and genetic evolution in the liver transplantation (LT) setting. A cohort of 28 patients undergoing LT for HCV-related cirrhosis was included in the study. Viral load, nAb titers and hypervariable region 1 (HVR1) sequences were determined in serum samples obtained before and at different time points after LT. Serum nAb titers were assessed using HCV pseudoparticles (HCVpp). HVR1 sequences were obtained by direct sequencing. Patients were classified according to viral kinetic patterns (plateau or increasing), during the first week after LT. All patients demonstrated high titers of nAbs before LT, although this was not associated with early kinetic patterns or HVR1 evolution during the first week after LT. We found that in patients with plateau HCV early kinetics, the virus required adaptive mutations, while in those with increasing viral loads, the HVR1 region remained largely conserved (p = 0.015). These data suggest that HCV adaptation via selection of the best-fitted variants may account for early viral kinetics following LT.
Collapse
Affiliation(s)
- J Dragun
- Liver Unit, Hospital Clínic, IDIBAPS, CIBERehd and University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ramirez S, Perez-del-Pulgar S, Carrion JA, Coto-Llerena M, Mensa L, Dragun J, Garcia-Valdecasas JC, Navasa M, Forns X. Hepatitis C virus superinfection of liver grafts: a detailed analysis of early exclusion of non-dominant virus strains. J Gen Virol 2010; 91:1183-8. [DOI: 10.1099/vir.0.018929-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|