1
|
Boukharov N, Yuan S, Ruangsirluk W, Ayyadurai S, Rahman A, Rivera-Hernandez M, Sunkara S, Tonini K, Park EYH, Deshpande M, Islam R. Developing Gene Therapy for Mitigating Multisystemic Pathology in Fabry Disease: Proof of Concept in an Aggravated Mouse Model. Hum Gene Ther 2024; 35:680-694. [PMID: 38970423 DOI: 10.1089/hum.2023.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Fabry disease (FD) is a multisystemic lysosomal storage disorder caused by the loss of α-galactosidase A (α-Gal) function. The current standard of care, enzyme replacement therapies, while effective in reducing kidney pathology when treated early, do not fully ameliorate cardiac issues, neuropathic manifestations, and risk of cerebrovascular events. Adeno-associated virus (AAV)-based gene therapies (AAV-GT) can provide superior efficacy across multiple tissues owing to continuous, endogenous production of the therapeutic enzyme and lower treatment burden. We set out to develop a robust AAV-GT to achieve optimal efficacy with the lowest feasible dose to minimize any safety risks that are associated with high-dose AAV-GTs. In this proof-of-concept study, we evaluated the effectiveness of an rAAV9 vector expressing human GLA transgene under a strong ubiquitous promoter, combined with woodchuck hepatitis virus posttranscriptional regulatory element (rAAV9-hGLA). We tested our GT at three different doses, 5e10 vg/kg, 2.5e11 vg/kg, and 6.25e12 vg/kg in the G3Stg/GLAko Fabry mouse model that has tissue Gb3 substrate levels comparable with patients with FD and develops several early FD pathologies. After intravenous injections of rAAV9-hGLA at 11 weeks of age, we observed dose-dependent increases in α-Gal activity in the key target tissues, reaching as high as 393-fold of WT in the kidneys and 6156-fold in the heart at the highest dose. Complete or near-complete substrate clearance was observed in animals treated with the two higher dose levels tested in all tissues except for the brain. We also found dose-dependent improvements in several pathological biomarkers, as well as prevention of structural and functional organ pathology. Taken together, these results indicate that an AAV-GT under a strong ubiquitous promoter has the potential to address the unmet therapeutic needs in patients with FD at relatively low doses.
Collapse
|
2
|
Pan C, Wang X, Fan Z, Mao W, Shi Y, Wu Y, Liu T, Xu Z, Wang H, Chen H. Polystyrene microplastics facilitate renal fibrosis through accelerating tubular epithelial cell senescence. Food Chem Toxicol 2024; 191:114888. [PMID: 39053876 DOI: 10.1016/j.fct.2024.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs), emerging contaminants, are easily transported and enriched in the kidney, suggesting the kidney is susceptible to the toxicity of MPs. In this study, we explored the toxicity of MPs, including unmodified polystyrene (PS), negative-charged PS-SO3H, and positive-charged PS-NH2 MPs, in mice models for 28 days at a human equivalent concentration. The results showed MPs significantly increased levels of UREA, urea nitrogen (BUN), creatinine (CREA), and uric acid (UA) levels in serum and white blood cells, protein, and microalbumin in urine. In the kidney, MPs triggered persistent inflammation and renal fibrosis, which was caused by the increased senescence of tubular epithelial cells. Moreover, we identified the critical role of the Klotho/Wnt/β-catenin signaling pathway in the process of MPs induced senescence of tubular epithelial cells, promoting the epithelial-mesenchymal transformation of epithelial cells. MPs supported the secretion of TGF-β1 by senescent epithelial cells and induced the activation of renal fibroblasts. On the contrary, restoring the function of Klotho can alleviate the senescence of epithelial cells and reverse the activation of fibroblasts. Thus, our study revealed new evidence between MPs and renal fibrosis, and adds an important piece to the whole picture of the plastic pollution on people's health.
Collapse
Affiliation(s)
- Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xinglong Wang
- Department of Orthopedics, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenwen Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujie Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yin Wu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
4
|
Sun L, Huang Z, Fei S, Ni B, Wang Z, Chen H, Tao J, Han Z, Ju X, Gu M, Tan R. Vascular calcification progression and its association with mineral and bone disorder in kidney transplant recipients. Ren Fail 2023; 45:2276382. [PMID: 37936391 PMCID: PMC10653689 DOI: 10.1080/0886022x.2023.2276382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The assessment and prevention of vascular calcification (VC) in kidney transplant recipients (KTRs) have not been systematically studied. We aimed to evaluate VC change one year after kidney transplantation (KT) and identify their influencing factors. METHODS 95 KTRs (68 males; ages 40.2 ± 10.8 years) were followed one year after KT. Changes in bone mineral density (BMD) and bone metabolism biomarkers were assessed. Coronary artery calcification (CAC) and thoracic aortic calcification (TAC) were measured using 192-slice third-generation dual-source CT. The relationship between bone metabolism indicators and VC and the factors influencing VC were analyzed. RESULTS Postoperative estimated glomerular filtration rate was 79.96 ± 24.18 mL/min*1.73 m2. One year after KT, serum phosphorus, intact parathyroid hormone (iPTH), osteocalcin, type I collagen N-terminal peptide (NTx), type I collagen C-terminal peptide, and BMD decreased, 25-hydroxyvitamin D remained low, and VC increased. Post-CAC and TAC were negatively correlated with pre-femoral neck BMD, and TAC was positively correlated with post-calcium. CAC and TAC change were positively correlated with post-calcium and 25-hydroxyvitamin D. Increased CAC was positively associated with hemodialysis and pre-femoral neck osteopenia. CAC change was positively associated with prediabetes, post-calcium, and pre-CAC and negatively associated with preoperative and postoperative femoral neck BMD, and NTx change. Increased TAC was positively associated with age, prediabetes, preoperative parathyroid hyperplasia/nodule, post-calcium, and post-femoral neck osteopenia. TAC change was positively associated with age, diabetes, pre-triglyceride, pre-TAC, dialysis time, post-calcium and post-iPTH, and negatively associated with post-femoral neck BMD. CONCLUSIONS Mineral and bone disorders persisted, and VC progressed after KT, showing a close relationship.
Collapse
Affiliation(s)
- Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengkai Huang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Ni
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Lee HK, Jung NH, Lee DE, Lee H, Yang J, Kim YS, Han SS, Han N, Kim IW, Oh JM. Discovery of Biomarkers Related to Interstitial Fibrosis and Tubular Atrophy among Kidney Transplant Recipients by mRNA-Sequencing. J Pers Med 2023; 13:1242. [PMID: 37623492 PMCID: PMC10455123 DOI: 10.3390/jpm13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Interstitial fibrosis and tubular atrophy (IF/TA) after kidney transplantation causes a chronic deterioration of graft function. IF/TA can be diagnosed by means of a graft biopsy, which is a necessity as non-invasive diagnostic methods are unavailable. In this study, we identified IF/TA-related differentially expressed genes (DEGs) through next-generation sequencing using peripheral blood mononuclear cells. Blood samples from kidney transplant recipients undergoing standard immunosuppressive therapy (tacrolimus/mycophenolate mofetil or mycophenolate sodium/steroid) and diagnosed as IF/TA (n = 41) or normal (controls; n = 41) at their one-year protocol biopsy were recruited between January of 2020 and August of 2020. DEGs were derived through mRNA sequencing and validated by means of a quantitative real-time polymerase chain reaction. We identified 34 DEGs related to IF/TA. ADAMTS2, PLIN5, CLDN9, and KCNJ15 demonstrated a log2(fold change) of >1.5 and an area under the receiver operating characteristic curve (AUC) value of >0.6, with ADAMTS2 showing the largest AUC value and expression levels, which were 3.5-fold higher in the IF/TA group relative to that observed in the control group. We identified and validated DEGs related to IF/TA progression at one-year post-transplantation. Specifically, we identified ADAMTS2 as a potential IF/TA biomarker.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Na Hyun Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Da Eun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| |
Collapse
|
6
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Cui Y, Li Y. T-2 Toxin Induces Kidney Fibrosis via the mtROS-NLRP3-Wnt/β-Catenin Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13765-13777. [PMID: 36239691 DOI: 10.1021/acs.jafc.2c05816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T-2 toxin causes kidney fibrosis. Wnt/β-catenin signaling promotes kidney fibrosis when sustained and activated. However, whether T-2-induced kidney fibrosis involves Wnt/β-catenin signaling activation has not been explored yet. T-2 toxin causes renal mitochondrial damage, leading to mitochondrial reactive oxygen species (mtROS) overproduction and NLRP3-inflammasome activation. The activated NLRP3-inflammasome can mediate fibrosis. However, whether the NLRP3-inflammasome can be mediated by mtROS and further regulate T-2-induced kidney fibrosis through Wnt/β-catenin signaling is unclear. In this study, first, we confirmed that T-2 toxin caused Wnt/β-catenin signaling activation in mice kidneys and HK-2 cells. Second, we confirmed that mtROS activated the NLRP3-inflammasome in T-2-exposed mice kidneys and HK-2 cells. Third, we confirmed that the NLRP3-inflammasome regulated the Wnt/β-catenin signaling in T-2 toxin-exposed mice kidneys and HK-2 cells. Finally, we confirmed that Wnt/β-catenin signaling regulated fibrosis in T-2 toxin-exposed mice kidneys and HK-2 cells. The above results confirm that T-2 toxin induces kidney fibrosis via the mtROS-NLRP3-Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, 028000 Tongliao, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
ShenKang Injection Attenuates Renal Fibrosis by Inhibiting EMT and Regulating the Wnt/β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9705948. [PMID: 35800011 PMCID: PMC9256403 DOI: 10.1155/2022/9705948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Shenkang Injection (SKI) is a traditional Chinese medicine injection commonly used in the clinical treatment of chronic kidney disease. Although it has been confirmed that SKI has anti-kidney fibrosis effects, the underlying mechanism remains unclear. To investigate the effects of SKI on epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathway and explore its potential anti-fibrosis mechanism. A unilateral ureteral obstruction (UUO) model was induced by ligating the left ureter of male SD rats. A total of 24 rats were randomly divided into the following four groups: sham group, model group, SKI group, and benazepril group. The rats in each group were treated for 28 days, and renal function was evaluated by blood urea nitrogen (BUN) and serum creatinine (Scr). The degree of renal fibrosis was assessed by hematoxylin and eosin (HE) and Masson staining. Extracellular matrix (ECM) deposition was evaluated by immunohistochemistry. Real-time fluorescent quantitative PCR (RT-qPCR) and western blotting were used to detect the expression of genes and proteins in the Wnt/β-catenin signaling pathway. Further studies were performed in vitro using HK-2 cells treated with TGF-β1. At 28 days postoperation, the levels of BUN and Scr expression were significantly increased in the UUO group. SKI and benazepril reduced the levels of BUN and Scr, which displayed protective renal effects. Pathological staining showed that compared with the sham operation group, the renal parenchymal structure was severely damaged, the number of glomeruli was reduced, and a large amount of collagen was deposited in the kidney tissue of the UUO group. SKI treatment reduced morphological changes. Immunohistochemistry showed that compared with the sham operation group, the content of collagen I and FN in the kidney tissue of the UUO group were significantly increased, whereas the SKI content was decreased. In addition, compared with the UUO group, the levels of Wnt1, active β-catenin, Snail1, and PAI-1 expression were reduced in the SKI group, suggesting that SKI may reduce renal fibrosis by mediating the Wnt/β-catenin pathway. Further in vitro studies showed that collagen I, FN, and α-SMA levels in HK-2 cells were significantly increased following stimulation with TGF-β1. SKI could significantly reduce the expression of collagen I, FN, and α-SMA. A scratch test showed that SKI could reduce HK-2 migration. In addition, by stimulating TGF-β1, the levels of Wnt1, active β-catenin, snail1, and PAI-1 were significantly upregulated. SKI treatment could inhibit the activity of the Wnt/β-catenin signaling pathway in HK-2 cells. SKI improves kidney function by inhibiting renal fibrosis. The anti-fibrotic effects may be mediated by regulation of the Wnt/β-catenin pathway and EMT inhibition.
Collapse
|
8
|
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2022; 9:701547. [PMID: 35059392 PMCID: PMC8763969 DOI: 10.3389/fcell.2021.701547] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Ran Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Xinjie Wu
- Basic Medical School, Jining Medical University, Jining, China
| | - Yafen Chen
- Basic Medical School, Jining Medical University, Jining, China
| | - Wei Ji
- Basic Medical School, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yawen Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxiang Yuan
- Collaborative Innovation Center, Jining Medical University, Jining, China
| |
Collapse
|
9
|
Al-Hakeim HK, Asad HN, Maes M. Wnt/β-catenin pathway proteins in end-stage renal disease. Biomark Med 2021; 15:1423-1434. [PMID: 34554011 DOI: 10.2217/bmm-2021-0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aim: To delineate the association of end-stage renal disease (ESRD) and Wnt-proteins including the agonist R-spondin-1, the transducer β-catenin and the antagonists DKK1 and sclerostin. Materials & methods: Serum Wnt-pathway proteins levels were measured by ELISA in 60 ESRD patients and 30 normal controls. Results: DKK1 and sclerostin were significantly higher in ESRD than in controls, and β-catenin and the catenin + R-spondin-1/DKK1 + sclerostin ratio, reflecting the ratio of agonist and transducer on antagonists (AT/ANTA), were significantly lower in ESRD. Estimated glomerular filtration rate was significantly associated with DKK1 and sclerostin (inversely), β-catenin (positively) and the AT/ANTA ratio (r = 0.468, p < 0.001). Conclusion: Wnt/β-catenin pathway proteins show significant alterations in ESRD, indicating significantly increased levels of antagonists.
Collapse
Affiliation(s)
| | - Halah N Asad
- Al Najaf Health Directorate, Higher Health Institute, Najaf, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.,School of Medicine, IMPACT Strategic Research Centre, Deakin University, VIC, 3220, Australia
| |
Collapse
|
10
|
Uterine Sensitization-Associated Gene-1 in the Progression of Kidney Diseases. J Immunol Res 2021; 2021:9752139. [PMID: 34414243 PMCID: PMC8369194 DOI: 10.1155/2021/9752139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Uterine sensitization-associated gene-1 (USAG-1), originally identified as a secretory protein preferentially expressed in the sensitized rat endometrium, has been determined to modulate bone morphogenetic protein (BMP) and Wnt expression to play important roles in kidney disease. USAG-1 affects the progression of acute and chronic kidney damage and the recovery of allograft kidney function by regulating the BMP and Wnt signaling pathways. Moreover, USAG-1 has been found to be involved in the process of T cell immune response, and its ability to inhibit germinal center activity and reduce humoral immunity is of great significance for the treatment of autoimmune nephropathy and antibody-mediated rejection (AMR) after renal transplantation. This article summarizes the many advances made regarding the roles of USAG-1 in the progression of kidney disease and outlines potential treatments.
Collapse
|
11
|
Kuang Q, Wu S, Xue N, Wang X, Ding X, Fang Y. Selective Wnt/β-Catenin Pathway Activation Concomitant With Sustained Overexpression of miR-21 is Responsible for Aristolochic Acid-Induced AKI-to-CKD Transition. Front Pharmacol 2021; 12:667282. [PMID: 34122087 PMCID: PMC8193720 DOI: 10.3389/fphar.2021.667282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is increasingly recognized as a cumulative risk factor for chronic kidney disease (CKD) progression. However, the underlying mechanisms remain unclear. Using an aristolochic acid (AA)-induced mouse model of AKI-to-CKD transition, we found that the development of tubulointerstitial fibrosis following AKI was accompanied with a strong activation of miR-21 and canonical Wnt signaling, whereas inhibition of miR-21 or selective silencing of Wnt ligands partially attenuated AKI-to-CKD transition. To explore the interaction between miR-21 and Wnt/β-catenin signaling, we examined the effects of genetic absence or pharmacologic inhibition of miR-21 on Wnt/β-catenin pathway expression. In miR-21-/- mice and in wild-type mice treated with anti-miR21 oligos, Wnt1 and Wnt4 canonical signaling in the renal tissue was significantly reduced, with partial reversal of renal interstitial fibrosis. Although the renal abundance of miR-21 remained unchanged after inhibition or activation of Wnt/β-catenin signaling, early intervention with ICG-001, a β-catenin inhibitor, significantly attenuated renal interstitial fibrosis. Moreover, early (within 24 h), but not late β-catenin inhibition after AA administration attenuated AA-induced apoptosis and inflammation. In conclusion, inhibition of miR-21 or β-catenin signaling may be an effective approach to prevent AKI-to-CKD progression.
Collapse
Affiliation(s)
- Qing Kuang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng Wu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Nephrology, Suzhou Dushuhu Public Hospital, Suzhou, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqianq Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| |
Collapse
|
12
|
Huffstater T, Merryman WD, Gewin LS. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease. Semin Nephrol 2021; 40:126-137. [PMID: 32303276 DOI: 10.1016/j.semnephrol.2020.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) portends a poor clinical prognosis and increases the risk for the development of chronic kidney disease (CKD). Currently, there are no therapies to treat AKI or prevent its progression to CKD. Wnt/β-catenin is a critical regulator of kidney development that is up-regulated after injury. Most of the literature support a beneficial role for Wnt/β-catenin in AKI, but suggest that this pathway promotes the progression of tubulointerstitial fibrosis, the hallmark of CKD progression. We review the role of Wnt/β-catenin in renal injury with a focus on its potential as a therapeutic target in AKI and in AKI to CKD transition.
Collapse
Affiliation(s)
- Tessa Huffstater
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Leslie S Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.
| |
Collapse
|
13
|
Expression profiles and prognostic significance of WNT family members in glioma via bioinformatic analysis. Biosci Rep 2021; 40:222401. [PMID: 32181818 PMCID: PMC7103590 DOI: 10.1042/bsr20194255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 01/11/2023] Open
Abstract
AIMS The dysregulation and essential role of WNTs in glioma have been widely implicated. However, there is a paucity of literature on the expression status of all the 19 WNTs in glioma. Our study was aimed to evaluate the expression and prognostic values of the 19 WNTs in glioma. METHODS mRNA expression and clinical data were retrieved from the Cancer Genome Atlas (TCGA) database, Chinese Glioma Genome Atlas (CGGA), GTEx and ONCOMINE databases. The 50 frequent neighbor genes of WNT5A and WNT10B were shown with PPI network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS We found that the mRNA expression of WNT5A was significantly higher in glioma; however, the WNT10B expression was significantly lower in glioma. Furthermore, the expression of WNT5A and WNT10B was associated with the clinicopathology of glioma. The survival analysis revealed that the higher expressions of WNT5A and WNT16 were associated poor overall survival (OS) in patients with glioma. Conversely, overexpression of WNT3, WNT5B, and WNT10B was associated with better OS. Finally, Go and KEGG analysis revealed WNT5A was associated with multiple signal translations, and crucial oncogenes (EGFR and MDM2) and 2 important tumor suppressors (PTEN and IKN4a/ARF) were found closely correlated with WNT5A in glioma. CONCLUSION Among 19WNTs, WNT5A can serve as a candidate to diagnose and therapy glioma, while WNT10B might be valuable for anti-glioma research. The presumed direction was provided to explore the relation of WNTs signal and multiple pathways in glioma.
Collapse
|
14
|
Suo C, Gui Z, Wang Z, Zhou J, Zheng M, Chen H, Fei S, Gu M, Tan R. Bortezomib limits renal allograft interstitial fibrosis by inhibiting NF-κB/TNF-α/Akt/mTOR/P70S6K/Smurf2 pathway via IκBα protein stabilization. Clin Sci (Lond) 2021; 135:53-69. [PMID: 33289516 DOI: 10.1042/cs20201038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023]
Abstract
Chronic allograft dysfunction is a major cause of late graft failure after kidney transplantation. One of the histological changes is interstitial fibrosis, which is associated with epithelial-mesenchymal transition. Bortezomib has been reported to prevent the progression of fibrosis in organs. We used rat renal transplantation model and human kidney 2 cell line treated with tumor necrosis factor-α (TNF-α) to examine their response to bortezomib. To explore the mechanism behind it, we assessed the previously studied TNF-α/protein kinase B (Akt)/Smad ubiquitin regulatory factor 2 (Smurf2) signaling and performed RNA sequencing. Our results suggested that bortezomib could attenuate the TNF-α-induced epithelial-mesenchymal transition and renal allograft interstitial fibrosis in vitro and in vivo. In addition to blocking Akt/mammalian target of rapamycin (mTOR)/p70S6 kinase/Smurf2 signaling, bortezomib's effect on the epithelial-mesenchymal transition was associated with inhibition of nuclear factor kappa B (NF-κB) pathway by stabilizing inhibitor of NF-κB. The study highlighted the therapeutic potential of bortezomib on renal allograft interstitial fibrosis. Such an effect may result from inhibition of NF-κB/TNF-α/Akt/mTOR/p70S6 kinase/Smurf2 signaling via stabilizing protein of inhibitor of NF-κB.
Collapse
Affiliation(s)
- Chuanjian Suo
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Zijie Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jiajun Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Ming Zheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hao Chen
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Shuang Fei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| |
Collapse
|
15
|
Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020; 10:biom10060960. [PMID: 32630493 PMCID: PMC7356035 DOI: 10.3390/biom10060960] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc-dependent endopeptidase that is implicated in regulating kidney homeostasis and diseases. MMP-7 is produced as an inactive zymogen, and proteolytic cleavage is required for its activation. MMP-7 is barely expressed in normal adult kidney but upregulated in acute kidney injury (AKI) and chronic kidney disease (CKD). The expression of MMP-7 is transcriptionally regulated by Wnt/β-catenin and other cues. As a secreted protein, MMP-7 is present and increased in the urine of patients, and its levels serve as a noninvasive biomarker for predicting AKI prognosis and monitoring CKD progression. Apart from degrading components of the extracellular matrix, MMP-7 also cleaves a wide range of substrates, such as E-cadherin, Fas ligand, and nephrin. As such, it plays an essential role in regulating many cellular processes, such as cell proliferation, apoptosis, epithelial-mesenchymal transition, and podocyte injury. The function of MMP-7 in kidney diseases is complex and context-dependent. It protects against AKI by priming tubular cells for survival and regeneration but promotes kidney fibrosis and CKD progression. MMP-7 also impairs podocyte integrity and induces proteinuria. In this review, we summarized recent advances in our understanding of the regulation, role, and mechanisms of MMP-7 in the pathogenesis of kidney diseases. We also discussed the potential of MMP-7 as a biomarker and therapeutic target in a clinical setting.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
16
|
The Role of Wnt Signalling in Chronic Kidney Disease (CKD). Genes (Basel) 2020; 11:genes11050496. [PMID: 32365994 PMCID: PMC7290783 DOI: 10.3390/genes11050496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) encompasses a group of diverse diseases that are associated with accumulating kidney damage and a decline in glomerular filtration rate (GFR). These conditions can be of an acquired or genetic nature and, in many cases, interactions between genetics and the environment also play a role in disease manifestation and severity. In this review, we focus on genetically inherited chronic kidney diseases and dissect the links between canonical and non-canonical Wnt signalling, and this umbrella of conditions that result in kidney damage. Most of the current evidence on the role of Wnt signalling in CKD is gathered from studies in polycystic kidney disease (PKD) and nephronophthisis (NPHP) and reveals the involvement of β-catenin. Nevertheless, recent findings have also linked planar cell polarity (PCP) signalling to CKD, with further studies being required to fully understand the links and molecular mechanisms.
Collapse
|
17
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
18
|
Age-related changes in DNA methylation affect renal histology and post-transplant fibrosis. Kidney Int 2019; 96:1195-1204. [DOI: 10.1016/j.kint.2019.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
|
19
|
Seifert ME, Gaut JP, Guo B, Jain S, Malone AF, Geraghty F, Manna DD, Yang ES, Yi N, Brennan DC, Mannon RB. WNT pathway signaling is associated with microvascular injury and predicts kidney transplant failure. Am J Transplant 2019; 19:2833-2845. [PMID: 30916889 PMCID: PMC6763350 DOI: 10.1111/ajt.15372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/25/2023]
Abstract
Microvascular injury is associated with accelerated kidney transplant dysfunction and allograft failure. Molecular pathology can identify new mechanisms of microvascular injury while improving on the diagnostic and prognostic capabilities of traditional histology. We conducted a case-control study of archived kidney biopsy specimens stored up to 10 years with microvascular injury (n = 50) compared with biopsy specimens without histologic injury (n = 45) from patients of similar age, race, and sex. We measured WNT gene expression with a multiplex quantification platform by using digital barcoding, given the importance of WNT reactivation to the response to wounding in the kidney microvasculature and other compartments. Of 210 genes from a commercial WNT panel, 71 were associated with microvascular injury and 79 were associated with allograft failure, with considerable overlap of genes between each set. Molecular pathology identified 46 biopsy specimens with molecular evidence of microvascular injury; 18 (39%) were either C4d negative, donor-specific antibody negative, or had no microvascular injury by histology. The majority of cases with molecular evidence of microvascular injury had poor long-term outcomes. We identified novel WNT pathway genes associated with microvascular injury and allograft failure in residual clinical biopsy specimens obtained up to 10 years earlier. Further mechanistic studies may identify the WNT pathway as a new diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Michael E. Seifert
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL
| | - Joseph P. Gaut
- Department of Pathology, Washington University, St. Louis, Missouri
| | - Boyi Guo
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, Alabama
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Andrew F. Malone
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Feargal Geraghty
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Deborah Della Manna
- UAB NanoString Laboratory, Department of Radiation Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Eddy S. Yang
- UAB NanoString Laboratory, Department of Radiation Oncology, University of Alabama School of Medicine, Birmingham, Alabama
| | - Nengjun Yi
- Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, Alabama
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, Missouri,Comprehensive Transplant Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Roslyn B. Mannon
- Department of Medicine, University of Alabama School of Medicine, Birmingham, Alabama,Comprehensive Transplant Institute, University of Alabama School of Medicine, Birmingham, Alabama
| |
Collapse
|
20
|
Lan L, Wang W, Huang Y, Bu X, Zhao C. Roles of Wnt7a in embryo development, tissue homeostasis, and human diseases. J Cell Biochem 2019; 120:18588-18598. [PMID: 31271226 DOI: 10.1002/jcb.29217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human Wnt family comprises 19 proteins which are critical to embryo development and tissue homeostasis. Binding to different frizzled (FZD) receptor, Wnt7a initiates both β-catenin dependent pathway, and β-catenin independent pathways such as PI3K/Akt, RAC/JNK, and extracellular signal-regulated kinase 5/peroxisome proliferator-activated receptor-γ. In the embryo, Wnt7a plays a crucial role in cerebral cortex development, synapse formation, and central nervous system vasculature formation and maintenance. Wnt7a is also involved in the development of limb and female reproductive system. Wnt7a mutation leads to human limb malformations and animal female reproductive system defects. Wnt7a is implicated in homeostasis maintenance of skeletal muscle, cartilage, cornea and hair follicle, and Wnt7a treatment may be potentially applied in skeletal muscle dystrophy, corneal damage, wound repair, and hair follicle regeneration. Wnt7a plays dual roles in human tumors. Wnt7a is downregulated in lung cancers, functioning as a tumor suppressor, however, it is upregulated in several other malignancies such as ovarian cancer, breast cancer, and glioma, acting as a tumor promoter. Moreover, Wnt7a overexpression is associated with inflammation and fibrosis, but its roles need to be further investigated.
Collapse
Affiliation(s)
- Lihui Lan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.,Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yue Huang
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xianmin Bu
- Department of Hepatobiliary and Spleen Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Qingshen Buyang Formula Attenuates Renal Fibrosis in 5/6 Nephrectomized Rats via Inhibiting EMT and Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5370847. [PMID: 31186661 PMCID: PMC6521559 DOI: 10.1155/2019/5370847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 11/20/2022]
Abstract
As renal fibrosis significantly contributes to various kinds of chronic kidney diseases, this study aimed to investigate the renal protective effects of Qingshen Buyang Formula against renal fibrosis on 5/6 nephrectomized rats, and its underlying mechanisms were explored. A total of 24 male Sprague-Dawley rats were randomly divided into sham operation group (Sham group), 5/6 nephrectomy group (5/6Nx group), and Qingshen Buyang Formula treatment group (QBF group). The intervention was intragastric administration for 12 weeks. In the end, the blood samples were collected to test renal functional parameters, urine proteins were measured, and the left kidneys were removed for histological studies, as well as mRNA and protein expression analysis. The results showed that Qingshen Buyang Formula significantly decreased BUN, Scr, and proteinuria in 5/6Nx rats. Meanwhile, it ameliorated the kidney injury and fibrosis, exemplified by the depressed expression of collagen I and fibronectin (FN), which are the main components of ECM. Furthermore, the process of EMT inhibited the Wnt/β-catenin signaling pathway related genes, such as Wnt4, TCF4, β-catenin, and p-GSK3β. Collectively, the Qingshen Buyang Formula can improve renal function and attenuate renal fibrosis, and its underlying mechanisms may be related with inhibiting EMT and Wnt/β-catenin signaling pathway.
Collapse
|
22
|
Tang H, Xu Y, Zhang Z, Zeng S, Dong W, Jiao W, Hu X. SDF‑1/CXCR4 induces epithelial‑mesenchymal transition through activation of the Wnt/β‑catenin signaling pathway in rat chronic allograft nephropathy. Mol Med Rep 2019; 19:3696-3706. [PMID: 30896799 PMCID: PMC6470988 DOI: 10.3892/mmr.2019.10045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/06/2019] [Indexed: 12/03/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been demonstrated to serve a crucial role in the progression of interstitial fibrosis, which is one of the principal pathological features of chronic allograft nephropathy (CAN). However, to the best of our knowledge, the mechanisms of EMT in CAN have not been investigated. In the present study, the effect of stromal cell-derived factor 1 (SDF-1) and the Wnt signaling pathway on the progression of EMT following kidney transplantation was investigated. The CAN model was established using Fisher 344 and Lewis rats, treated with low-dose cyclosporine with or without AMD3100. CAN was confirmed by the pathological alterations and chronic allograft damage index scoring, and EMT was confirmed by western blotting and reverse transcription-quantitative polymerase chain reaction. In the AMD3100 group, there were lower expression levels of α-SMA and higher expression levels of E-cadherin, which indicated that CAN and EMT were ameliorated by AMD3100. The kidney tissue was analyzed using an mRNA + long noncoding (lnc)RNA microarray. A total of 506 mRNAs and 404 lncRNAs were demonstrated to be significantly differentially expressed between the two groups, which revealed the involvement of SDF-1/CXC chemokine receptor 4 (CXCR4) and the Wnt pathway. SDF-1 was demonstrated to induce EMT in vitro through the upregulation of α-SMA, downregulation of E-cadherin and the wound healing assay, and in the rat renal tubular epithelial cells via the nuclear accumulation of β-catenin, which were all inhibited by either AMD3100 or DKK-1. CXXC finger protein 5 (CXXC5), a negative regulator of the Wnt pathway, was downregulated following treatment with SDF-1, which was inhibited by AMD3100 but not by DKK-1. Thus, CXXC5 may be a regulator downstream of SDF-1/CXCR4 in EMT. In conclusion, SDF-1/CXCR4 induces EMT of renal tubular epithelial cells with the involvement of the Wnt pathway, which may be a novel mechanism and therapeutic target in kidney allograft fibrosis of rats.
Collapse
Affiliation(s)
- Hao Tang
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Yue Xu
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Zijian Zhang
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Song Zeng
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Wenbo Dong
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Wenjiao Jiao
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Xiaopeng Hu
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| |
Collapse
|
23
|
Xiao L, Xu B, Zhou L, Tan RJ, Zhou D, Fu H, Li A, Hou FF, Liu Y. Wnt/β-catenin regulates blood pressure and kidney injury in rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1313-1322. [PMID: 30710617 DOI: 10.1016/j.bbadis.2019.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Activation of the renin-angiotensin system (RAS) plays a pivotal role in mediating hypertension, chronic kidney and cardiovascular diseases. As Wnt/β-catenin regulates multiple RAS genes, we speculated that this developmental signaling pathway might also participate in blood pressure (BP) regulation. To test this, we utilized two rat models of experimental hypertension: chronic angiotensin II infusion and remnant kidney after 5/6 nephrectomy. Inhibition of Wnt/β-catenin by ICG-001 blunted angiotensin II-induced hypertension. Interestingly, angiotensin II was able to induce the expression of multiple Wnt genes in vivo and in vitro, thereby creating a vicious cycle between Wnt/β-catenin and RAS activation. In the remnant kidney model, renal β-catenin was upregulated, and delayed administration of ICG-001 also blunted BP elevation and abolished the induction of angiotensinogen, renin, angiotensin-converting enzyme and angiotensin II type 1 receptor. ICG-001 also reduced albuminuria, serum creatinine and blood urea nitrogen, and inhibited renal expression of fibronectin, collagen I and plasminogen activator inhibitor-1, and suppressed the infiltration of CD3+ T cells and CD68+ monocytes/macrophages. In vitro, incubation with losartan prevented Wnt/β-catenin-mediated fibronectin, α-smooth muscle actin and Snail1 expression, suggesting that the fibrogenic action of Wnt/β-catenin is dependent on RAS activation. Taken together, these results suggest an intrinsic linkage of Wnt/β-catenin signaling with BP regulation. Our studies also demonstrate that hyperactive Wnt/β-catenin can drive hypertension and kidney damage via RAS activation.
Collapse
Affiliation(s)
- Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bo Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Roderick J Tan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
24
|
Lipid Metabolism Disorder and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:525-541. [PMID: 31399983 DOI: 10.1007/978-981-13-8871-2_26] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the lipid nephrotoxicity hypothesis was proposed in 1982, increasing evidence has supported the hypothesis that lipid abnormalities contributed to the progression of glomerulosclerosis. In this chapter, we will discuss the general promises of the original hypothesis, focusing especially on the role of lipids and metabolic inflammation accompanying CKD in renal fibrosis and potential new strategies of prevention.
Collapse
|
25
|
Eikrem Ø, Walther TC, Flatberg A, Beisvag V, Strauss P, Farstad M, Beisland C, Koch E, Mueller TF, Marti HP. Fine needle aspirates of kidneys: a promising tool for RNA sequencing in native and transplanted kidneys. BMC Nephrol 2018; 19:221. [PMID: 30185151 PMCID: PMC6126030 DOI: 10.1186/s12882-018-1012-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/23/2018] [Indexed: 01/17/2023] Open
Abstract
Background Transcriptome analysis is emerging as emerging as a promising tool to enhance precision of diagnosis and monitoring in solid organ transplantation. Clinical progress has however been hampered by the current reliance on samples from core needle biopsies. This proof-of-principle study examined whether fine needle aspirates, being less invasive, permit the ascertainment of the identical molecular information as core biopsies. Methods We collected fine needles aspirates from various needle sizes (G19, 21, 23, 25) and the corresponding core biopsies (G16 needle) of non-tumor tissue of full nephrectomy specimens from patients suffering from clear cell renal cell carcinoma (n = 11). RNA expression patterns of two gene sets (156 genes) were executed using targeted RNA sequencing in samples from fine needle vs. core needle samples. A subgroup of kidneys (n = 6) also underwent whole transcriptome RNA sequencing from core biopsies of tumor and peri-tumoral normal tissue (Tru Seq RNA Access, Illumina). Results Samples from all needle sizes except two G25 aspirates yielded RNA potentially suitable for sequencing of both gene sets. The mRNA expression patterns of the two gene sets were highly correlated between fine needle aspirates (G23) and corresponding (G16) core biopsies (r = 0.985 and 0.982, respectively). This close correlation was further documented by heat map, Principal Component Analyses (PCA) and whole transcription RNA sequencing. The similarity between fine neddle aspirates and core needle biopsies was additionally confirmed in the subgroup with complete RNA sequencing. Conclusions Fine needle biopsies yield similar genomic information to core needle biopsies. The less invasive nature of fine needle biopsies may therefore permit more frequent molecular monitoring and a more targeted use of core needle biopsies in native and especially in transplanted kidneys.
Collapse
Affiliation(s)
- Øystein Eikrem
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tedd C Walther
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vidar Beisvag
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway
| | - Magnus Farstad
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway.,Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Even Koch
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway
| | - Thomas F Mueller
- Division of Nephrology, Department of Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Hans-Peter Marti
- Department of Clinical Medicine, Nephrology, University of Bergen, Bergen, Norway. .,Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
26
|
Wang CP, Yu TH, Wu CC, Hung WC, Hsu CC, Tsai IT, Tang WH, Chung FM, Houng JY, Lee YJ, Lu YC. Circulating secreted frizzled-related protein 5 and chronic kidney disease in patients with acute ST-segment elevation myocardial infarction. Cytokine 2018; 110:367-373. [PMID: 29807686 DOI: 10.1016/j.cyto.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/05/2018] [Accepted: 04/07/2018] [Indexed: 12/25/2022]
Abstract
Secreted frizzled-related protein-5 (Sfrp5) known as secreted antagonist binds to Wnt protein. It has been shown to be downregulated by histone acetylation and promoter methylation, and to function as a tumor suppressor gene by inducing apoptosis in renal cell cancer cells. However, its relationship with chronic kidney disease (CKD) has not been well studied. Our objective was to investigate the effect of plasma Sfrp5 levels in subjects with and without CKD. Plasma Sfrp5 levels were determined by enzyme-linked immunosorbent assays in 196 consecutive patients with acute ST-segment elevation myocardial infarction (STEMI). CKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m2. For the purpose of this study, stage 1 or 2 CKD patients (eGFR ≥ 60 ml/min per 1.73 m2) were classified as not having CKD. With increasing Sfrp5 tertiles, the patients had higher frequencies of hypertension, stage 4 or 5 CKD, and waist-to-hip ratio, incrementally lower eGFRs and serum hemoglobin levels, and higher levels of blood urine nitrogen (BUN), creatinine, and adiponectin. Multivariate logistic regression analysis showed that an increased plasma Sfrp5 level was independently associated with CKD for all subjects (adjusted odds ratio (OR), 1.08; 95% confidence interval (CI), 1.02-1.14; p = 0.011). Sfrp5 was also significantly positively related to BUN, creatinine, and adiponectin, and significantly negatively related to eGFR and hemoglobin. When the patients were stratified by age, plasma Sfrp5 level was independently related to CKD for patients >65 years old (adjusted OR, 1.10; 95% CI, 1.00-1.20; p = 0.045), however, the association was not significant for those <65 years old. In addition, Sfrp5 was significantly positively related to BUN, creatinine, and adiponectin, and significantly negatively related to eGFR and hemoglobin in patients >65 years old. Our results suggest that Sfrp5 may play a role in the pathogenesis of CKD in acute STEMI patients who are older than 65 years.
Collapse
Affiliation(s)
- Chao-Ping Wang
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Teng-Hung Yu
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Cheng-Ching Wu
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Wei-Chin Hung
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Chia-Chang Hsu
- Division of Gastroenterology and Hepatology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - I-Ting Tsai
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan 26058, Taiwan.
| | - Fu-Mei Chung
- Division of Cardiology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Jer-Yiing Houng
- Department of Nutrition, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Yau-Jiunn Lee
- Lee's Endocrinologic Clinic, Pingtung 90000, Taiwan.
| | - Yung-Chuan Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; School of Medicine for International Students, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan.
| |
Collapse
|
27
|
Feng Y, Liang Y, Ren J, Dai C. Canonical Wnt Signaling Promotes Macrophage Proliferation during Kidney Fibrosis. KIDNEY DISEASES 2018; 4:95-103. [PMID: 29998124 DOI: 10.1159/000488984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Indexed: 12/26/2022]
Abstract
Background Wnt/β-catenin, an evolutionary conserved signaling pathway, plays an essential role in modulating kidney injury and repair. Our previous studies demonstrated that Wnt/β-catenin signaling could stimulate macrophage M2 polarization and contribute to kidney fibrosis. However, whether canonical Wnt signaling activation leads to macrophage proliferation during kidney fibrosis remains to be determined. Methods In this study, a mouse model with macrophage-specific β-catenin gene deletion was generated and a unilateral ureter obstruction (UUO) model was created. Results In a mouse model with UUO nephropathy, deletion of β-catenin in macrophages attenuated macrophage proliferation and accumulation in kidney tissue. Wnt3a, a well-known canonical Wnt signaling stimulator, could markedly promote macrophage proliferation, whereas blocking canonical Wnt signaling with ICG-001 or ablating β-catenin could largely inhibit macrophage colony-stimulating factor-stimulated macrophage proliferation. Wnt3a treatment could time-dependently upregulate cyclin D1 protein expression and blocking β-catenin signaling could downregulate it. Conclusion These results demonstrate that Wnt/ β-catenin signaling is essential for promoting macrophage proliferation during kidney fibrosis.
Collapse
Affiliation(s)
- Ye Feng
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiafa Ren
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J, Zhang Y, Li H, Liu Y, Hou FF, Zhou L. Wnt9a Promotes Renal Fibrosis by Accelerating Cellular Senescence in Tubular Epithelial Cells. J Am Soc Nephrol 2018; 29:1238-1256. [PMID: 29440280 DOI: 10.1681/asn.2017050574] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/03/2018] [Indexed: 12/24/2022] Open
Abstract
Cellular senescence is associated with renal disease progression, and accelerated tubular cell senescence promotes the pathogenesis of renal fibrosis. However, the underlying mechanism is unknown. We assessed the potential role of Wnt9a in tubular cell senescence and renal fibrosis. Compared with tubular cells of normal subjects, tubular cells of humans with a variety of nephropathies and those of several mouse models of CKD expressed high levels of Wnt9a that colocalized with the senescence-related protein p16INK4A Wnt9a expression level correlated with the extent of renal fibrosis, decline of eGFR, and expression of p16INK4A Furthermore, ectopic expression of Wnt9a after ischemia-reperfusion injury (IRI) induced activation of β-catenin and exacerbated renal fibrosis. Overexpression of Wnt9a exacerbated tubular senescence, evidenced by increased detection of p16INK4A expression and senescence-associated β-galactosidase activity. Conversely, shRNA-mediated knockdown of Wnt9a repressed IRI-induced renal fibrosis in vivo and impeded the growth of senescent tubular epithelial cells in culture. Notably, Wnt9a-induced renal fibrosis was inhibited by shRNA-mediated silencing of p16INK4A in the IRI mouse model. In a human proximal tubular epithelial cell line and primary renal tubular cells, Wnt9a remarkably upregulated levels of senescence-related p16INK4A, p19ARF, p53, and p21 and decreased the phosphorylation of retinoblastoma protein. Wnt9a also induced senescent tubular cells to produce TGF-β1, which promoted proliferation and activation in normal rat kidney fibroblasts. Thus, Wnt9a drives tubular senescence and fibroblast activation. Furthermore, the Wnt9a-TGF-β pathway appears to create a reciprocal activation loop between senescent tubular cells and activated fibroblasts that promotes and accelerates the pathogenesis of renal fibrosis.
Collapse
Affiliation(s)
- Congwei Luo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Yahong Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Li Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Jiafeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China; and
| | - Hongyan Li
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital and
| |
Collapse
|
29
|
Wang Z, Yang H, Si S, Han Z, Tao J, Chen H, Ge Y, Guo M, Wang K, Tan R, Wei JF, Gu M. Polymorphisms of nucleotide factor of activated T cells cytoplasmic 2 and 4 and the risk of acute rejection following kidney transplantation. World J Urol 2017; 36:111-116. [PMID: 29103109 PMCID: PMC5758697 DOI: 10.1007/s00345-017-2117-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Acute rejection (AR) is a common complication of kidney transplantation. Nuclear factors of activated T cells (NFATs) are transcription factors involved in the activation of T lymphocytes, but their association with AR is unclear. METHODS This retrospective, case-control study included 200 renal transplant recipients who were divided into the AR group (n = 69) and stable group (n = 131). Their blood samples were collected, and DNA was extracted from the whole blood. High-throughput next-generation sequencing was used to identify single nucleotide polymorphisms (SNPs) of the NFATC2 and NFATC4 genes. The correlation of these SNPs with AR was determined by logistic analysis. RESULTS Seventy-one SNPs of the NFATC2 and NFATC4 genes were identified by the sequencing and Hardy-Weinberg equilibrium analyses. After adjusting for age, gender and immunosuppressive protocols, 27 SNPs were correlated with AR, of which the SNP rs2426295 of the NFATC2 gene showed a significant correlation with AR in the HET model (AA vs. AC: OR = 0.43, 95% CI = 0.19-0.98, P = 0.045), but no significant NFATC4 SNPs were identified. CONCLUSIONS Our study shows that the rs2426295 variant of the NFATC2 gene is significantly associated with the occurrence of AR following kidney transplantation. And patients with AA genotypes in rs2426295 are inclined to suffer from AR pathogenesis.
Collapse
Affiliation(s)
- Zijie Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Shuhui Si
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Yuqiu Ge
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Min Gu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
30
|
Chen L, Chen DQ, Wang M, Liu D, Chen H, Dou F, Vaziri ND, Zhao YY. Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chem Biol Interact 2017; 273:56-72. [PMID: 28578904 DOI: 10.1016/j.cbi.2017.05.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/21/2017] [Accepted: 05/31/2017] [Indexed: 01/11/2023]
Abstract
Renin-angiotensin system (RAS) plays a key role in the development and progression of chronic kidney disease (CKD). Recent studies have demonstrated activation of Wnt/β-catenin pathway by RAS in CKD. However, the underlying mechanisms of RAS and Wnt/β-catenin signaling interaction and their contribution to the pathogenesis of CKD have not been fully elucidated. Present study is designed to investigate the role of RAS/Wnt/β-catenin axis activation in tubulo-interstitial fibrosis and glomerulosclerosis by the cultured HK-2 and podocytes. HK-2 cells and podocytes are treated by angiotensin II (Ang II). Ang II up-regulates expression of various Wnt mRNA and active β-catenin protein in HK-2 cells and podocytes in the time- and dose-dependent manners. In addition, Ang II induces injury, oxidative stress and inflammation and impaired Nrf2 activation in HK-2 cells and podocytes. This was accompanied by up-regulations of RAS components as well as Wnt1, activated β-catenin and its target proteins. RAS/Wnt/β-catenin axis activation results in epithelial-to-mesenchymal transition in HK-2 cells and injuries podocytes. The effect of Ang II is inhibited by losartan and ICG-001, a Wnt/β-catenin inhibitor. We further found that treatment with natural products, ergone, alisol B 23-acetate and pachymic acid B inhibit extracellular matrix accumulation in HK-2 cells and attenuated podocyte injury, in part, by inhibiting Ang II induced RAS/Wnt/β-catenin axis activation. In summary, activation of RAS/Wnt/β-catenin axis results in podocytes and tubular epithelial cell, injury and up-regulations of oxidative, inflammatory and fibrotic pathways. These adverse effects are ameliorated by ergone, alisol B 23-acetate and pachymic acid B. Therefore, these natural products could be considered as novel Wnt/β-catenin signaling inhibitors and anti-fibrotic agents.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Fang Dou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA 92897, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
31
|
Fischereder M, Michalke B, Schmöckel E, Habicht A, Kunisch R, Pavelic I, Szabados B, Schönermarck U, Nelson PJ, Stangl M. Sodium storage in human tissues is mediated by glycosaminoglycan expression. Am J Physiol Renal Physiol 2017; 313:F319-F325. [PMID: 28446462 DOI: 10.1152/ajprenal.00703.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022] Open
Abstract
The current paradigm regarding sodium handling in animals and humans postulates that total body sodium is regulated predominately via regulation of extracellular volume. Active sodium storage independent of volume retention is thought to be negligible. However, studies in animals, hypertensive patients, and healthy humans suggest water-free storage of sodium in skin. We hypothesized that tissue sodium concentrations ([Na]T) found in humans vary and reflect regulation due to variable glycosaminoglycan content due to variable expression of XYLT-1. Twenty seven patients on dialysis and 21 living kidney transplant donors free of clinically detectable edema were studied. During surgery, abdominal skin, muscle, and arteries were biopsied. [Na]T was determined by inductively coupled plasma-optical emission spectrometry, semiquantitative glycosaminoglycan content with Alcian stain, and XYLT-1 expression by real-time PCR. [Na]T of arteries were ranging between 0.86 and 9.83 g/kg wet wt and were significantly higher in arteries (4.52 ± 1.82 g/kg) than in muscle (2.03 ± 1.41 g/kg; P < 0.001) or skin (3.24 ± 2.26 g/kg wet wt; P = 0.038). For individual patients [Na]T correlated for skin and arterial tissue (r = 0.440, P = 0.012). [Na]T also correlated significantly with blinded semiquantitative analysis of glycosaminoglycans staining (r = 0.588, P = 0.004). In arteries XYLT-1 expression was also correlated with [Na]T (r = 0.392, P = 0.003). Our data confirm highly variable [Na]T in human skin and muscle and extend this observation to [Na]T in human arteries. These data support the hypothesis of water-independent sodium storage via regulated glycosaminoglycan synthesis in human tissues, including arteries.
Collapse
Affiliation(s)
- Michael Fischereder
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany;
| | - Bernhard Michalke
- Research Unit Analytical Biochemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Elisa Schmöckel
- Institut für Pathologie, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| | - Antje Habicht
- Transplantationszentrum, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| | - Raphael Kunisch
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| | - Ivana Pavelic
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| | - Bernadette Szabados
- Urologische Klinik, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany; and
| | - Ulf Schönermarck
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Renal Division, Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| | - Manfred Stangl
- Chirurgische Klinik-Klinikum der Ludwig Maximilians Universitaet, Munich, Germany
| |
Collapse
|
32
|
Chen DQ, Cao G, Chen H, Liu D, Su W, Yu XY, Vaziri ND, Liu XH, Bai X, Zhang L, Zhao YY. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol 2017; 12:505-521. [PMID: 28343144 PMCID: PMC5369369 DOI: 10.1016/j.redox.2017.03.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022] Open
Abstract
Changes in plasma concentration of small organic metabolites could be due to their altered production or urinary excretion and changes in their urine concentration may be due to the changes in their filtered load, tubular reabsorption, and/or altered urine volume. Therefore, these factors should be considered in interpretation of the changes observed in plasma or urine of the target metabolite(s). Fasting plasma and urine samples from 180 CKD patients and 120 age-matched healthy controls were determined by UPLC-HDMS-metabolomics and quantitative real-time RT-PCR techniques. Compared with healthy controls, patients with CKD showed activation of NF-κB and up-regulation of pro-inflammatory and pro-oxidant mRNA and protein expression as well as down-regulation of Nrf2-associated anti-oxidant gene mRNA and protein expression, accompanied by activated canonical Wnt/β-catenin signaling. 124 plasma and 128 urine metabolites were identified and 40 metabolites were significantly altered in both plasma and urine. Plasma concentration and urine excretion of 25 metabolites were distinctly different between CKD and controls. They were related to amino acid, methylamine, purine and lipid metabolisms. Logistic regression identified four plasma and five urine metabolites. Parts of them were good correlated with eGFR or serum creatinine. 5-Methoxytryptophan and homocystine and citrulline were good correlated with both eGFR and creatinine. Clinical factors were incorporated to establish predictive models. The enhanced metabolite model showed 5-methoxytryptophan, homocystine and citrulline have satisfactory accuracy, sensitivity and specificity for predictive CKD. The dysregulation of CKD was related to amino acid, methylamine, purine and lipid metabolisms. 5-methoxytryptophan, homocystine and citrulline could be considered as additional GFR-associated biomarker candidates and for indicating advanced renal injury. CKD caused dysregulation of the plasma and urine metabolome, activation of inflammatory/oxidative pathway and Wnt/β-catenin signaling and suppression of antioxidant pathway.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Xiao-Yong Yu
- Department of Nephrology, Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine, No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, MedSci 1 C352, Irvine, CA 92897, USA
| | - Xiu-Hua Liu
- School of Pharmacy, Henan University, Kaifeng, No. 85 Minglun Road, Henan 475004, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, No. 21 Jiefang Road, Xi'an 710004, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
33
|
Defective CFTR leads to aberrant β-catenin activation and kidney fibrosis. Sci Rep 2017; 7:5233. [PMID: 28701694 PMCID: PMC5507915 DOI: 10.1038/s41598-017-05435-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), known as a cAMP-activated Cl− channel, is widely expressed at the apical membrane of epithelial cells in a wide variety of tissues. Of note, despite the abundant expression of CFTR in mammalian kidney, the role of CFTR in kidney disease development is unclear. Here, we report that CFTR expression is downregulated in the UUO (unilateral ureteral obstruction)-induced kidney fibrosis mouse model and human fibrotic kidneys. Dysfunction or downregulation of CFTR in renal epithelial cells leads to alteration of genes involved in Epithelial-Mesenchymal Transition (EMT) and kidney fibrosis. In addition, dysregulation of CFTR activates canonical Wnt/β-catenin signaling pathways, whereas the β-catenin inhibitor reverses the effects of CFTR downregulation on EMT marker. More interestingly, CFTR interacts with Dishevelled 2 (Dvl2), a key component of Wnt signaling, thereby suppressing the activation of β-catenin. Compared to wild type, deltaF508 mice with UUO treatment exhibit significantly higher β-catenin activity with aggregated kidney fibrogenesis, which is reduced by forced overexpression of CFTR. Taken together, our study reveals a novel mechanism by which CFTR regulates Wnt/β-catenin signaling pertinent to progression of kidney fibrosis and indicates a potential treatment target.
Collapse
|
34
|
Wnt Signaling as Master Regulator of T-Lymphocyte Responses: Implications for Transplant Therapy. Transplantation 2017; 100:2584-2592. [PMID: 27861287 DOI: 10.1097/tp.0000000000001393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell-mediated immune responses to the grafted tissues are the major reason for failed organ transplantation. The regulation of T cell responses is complex and involves major histocompatibility complex molecules on transplanted organs, cytokines, regulatory cells, and antigen-presenting cells. The evolutionary conserved Wnt signal transduction pathway has long been known for its importance in development of stem cells and immature T cells in the thymus. Recent evidence indicates the Wnt pathway as a master regulator of T cell immune responses via governing the balance between T helper 17/regulatory T cells and by regulating the formation of effector and memory cytotoxic CD8 T cell responses. In doing so, Wnt signals influence the outcome of immune responses in transplantation settings.
Collapse
|
35
|
Lin X, Zha Y, Zeng XZ, Dong R, Wang QH, Wang DT. Role of the Wnt/β-catenin signaling pathway in inducing apoptosis and renal fibrosis in 5/6-nephrectomized rats. Mol Med Rep 2017; 15:3575-3582. [PMID: 28440442 PMCID: PMC5436235 DOI: 10.3892/mmr.2017.6461] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
Abstract
Renal fibrosis is the final common pathway of all progressive renal disease. Excessive and chronic activation of the Wnt/β-catenin signaling pathway results in chronic kidney disease (CKD) progression. To mimic CKD, the present study used 5/6-nephrectomized rats, and alterations in kidney histology, expression of β-catenin and renal cell apoptosis were assessed. In addition, mesangial cells were cultured in vitro and transfected with β-catenin siRNA to evaluate the effect of blocking Wnt/β-catenin signaling on cell apoptosis and the expression of markers of renal fibrosis. The results demonstrated that CKD rat kidney tissues exhibited moderate renal fibrosis and significantly increased expression levels of β-catenin and apoptosis associated proteins compared with sham-operated rats. In vitro, silencing of β-catenin by siRNA attenuated tumor necrosis factor-α-induced apoptosis and decreased mRNA expression levels of various markers of fibrosis, including fibronectin, transforming growth factor-β, and collagen I, III and IV. In conclusion, inhibition of Wnt/β-catenin signaling by β-catenin silencing attenuated apoptosis and expression of fibrosis-associated markers in renal cells. The present study suggested that the Wnt/β-catenin signaling pathway may serve as a potential treatment strategy for renal fibrotic disorders.
Collapse
Affiliation(s)
- Xin Lin
- Department of Nephrology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Yan Zha
- Department of Nephrology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Xiang-Zhen Zeng
- Department of Nephrology, Loudi Central Hospital, Loudi, Hunan 417000, P.R. China
| | - Rong Dong
- Department of Nephrology, People's Hospital of Guizhou Province, Guiyang, Guizhou 550002, P.R. China
| | - Qing-Hua Wang
- Department of Nephrology, Loudi Central Hospital, Loudi, Hunan 417000, P.R. China
| | - Dong-Tao Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
36
|
Jardim DP, Poço PCE, Campos AH. Dact1, a Wnt-Pathway Inhibitor, Mediates Human Mesangial Cell TGF-β1-Induced Apoptosis. J Cell Physiol 2017; 232:2104-2111. [PMID: 27714812 DOI: 10.1002/jcp.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/05/2016] [Indexed: 01/16/2023]
Abstract
Chronic kidney disease (CKD) is a worldwide public health problem that affects millions of men and women of all ages and racial groups. Loss of mesangial cells (MC) represents an early common feature in the pathogenesis of CKD. Transforming growth factor-β1 (TGF-β1) is a key inducer of kidney damage and triggers several pathological changes in renal cells, notably MC apoptosis. However, the mechanism of MC apoptosis induced by TGF-β1 remains elusive. Here, we demonstrate for the first time a novel regulatory pathway in which the disheveled-binding antagonist of β-catenin 1 (Dact1) gene is upregulated by TGF-β1, inducing MC apoptosis. We also show that the inhibitory effect of Dact1 and TGF-β1 on the transcriptional activation of the pro-survival Wnt pathway is the mechanism of death induction. In addition, Dact1 mRNA/protein levels are increased in kidney remnants from 5/6 nephrectomized rats and strongly correlate with TGF-β1 expression. Together, our results point to Dact1 as a novel element controlling MC survival that is causally related to CKD progression. J. Cell. Physiol. 232: 2104-2111, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniele Pereira Jardim
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil.,Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Cristina Eiras Poço
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Alexandre Holthausen Campos
- Centro de Pesquisa Experimental, Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Zhao SL, Wei SY, Wang YX, Diao TT, Li JS, He YX, Yu J, Jiang XY, Cao Y, Mao XY, Wei QJ, Wang Y, Li B. Wnt4 is a novel biomarker for the early detection of kidney tubular injury after ischemia/reperfusion injury. Sci Rep 2016; 6:32610. [PMID: 27600466 PMCID: PMC5013493 DOI: 10.1038/srep32610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/11/2016] [Indexed: 01/22/2023] Open
Abstract
Earlier intervention after acute kidney injury would promote better outcomes. Our previous study found that Wnt proteins are promptly upregulated after ischemic kidney injury. Thus, we assessed whether Wnt4 could be an early and sensitive biomarker of tubular injury. We subjected mice to bilateral ischemia/reperfusion injury (IRI). Kidney and urinary Wnt4 expression showed an early increase at 3 hours and increased further at 24 hours post-IRI and was closely correlated with histopathological alterations. Serum creatinine slightly increased at 6 hours, indicating that it was less sensitive than Wnt4 expression. These data were further confirmed by clinical study. Both kidney and urinary Wnt4 expression were significantly increased in patients diagnosed with biopsy-proven minimal change disease (MCD) with tubular injury, all of whom nevertheless had normal estimated glomerular filtration rate (eGFR) and serum creatinine. The increased Wnt4 expression also strongly correlated with histopathological alterations in these MCD patients. In conclusion, this is the first demonstration that increases in both kidney and urinary Wnt4 expression can be detected more sensitively and earlier than serum creatinine after kidney injury. In particular, urinary Wnt4 could be a potential noninvasive biomarker for the early detection of tubular injury.
Collapse
Affiliation(s)
- Shi-Lei Zhao
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China.,Department of Nephrology, 1st Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Shi-Yao Wei
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yu-Xiao Wang
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Tian-Tian Diao
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Jian-Si Li
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yi-Xin He
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Jing Yu
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Xi-Yue Jiang
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yang Cao
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Xin-Yue Mao
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Qiu-Ju Wei
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Yu Wang
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Bing Li
- Department of Nephrology, 2nd Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
38
|
Abstract
The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.
Collapse
|
39
|
Zhang L, Zhu Y, Zhang D, Zhang J, Tian Y. Platelet factor 4 protects kidney allograft in a rat kidney transplantation model. Inflammation 2015; 38:520-6. [PMID: 24986443 DOI: 10.1007/s10753-014-9958-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platelets are the cellular mediator of thrombosis, but it is becoming increasingly evident that platelets actively participate in inflammation and immune responses. A recent paper indicated that platelet factor 4 (PF4) alleviated cardiac allograft rejection in mice. But the role of PF4 on kidney transplantation has never been investigated. In our current experiment, PF4 administration alleviates immune responses to kidney transplantation. PF4 significantly alleviates vascular and glomerular changes, as well as interstitial inflammation, fibrosis, and tubular atrophy at day 56 after transplantation. PF4 decreases interleukin (IL)-17 production in vivo and also limits Th17 differentiation in vitro. Furthermore, the alleviated chronic vasculopathy and tubulointerstitial inflammation induced by PF4 were abolished with additional IL-17 administration. Meanwhile, decreased serum creatinine and urea induced by PF4 were also reversed by recombinant mouse IL-17 (rmIL-17). In conclusion, PF4 plays a protective role in chronic kidney allograft and this was associated with inhibition of IL-17 production.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, Capital Medical University of Beijing Friendship Hospital, Yongan Road 95# of Xicheng District, 100050, Beijing, China
| | | | | | | | | |
Collapse
|
40
|
Singh SP, Tao S, Fields TA, Webb S, Harris RC, Rao R. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice. Dis Model Mech 2015; 8:931-40. [PMID: 26092126 PMCID: PMC4527294 DOI: 10.1242/dmm.020511] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA) expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury. Summary: GSK3 promotes renal fibrosis by activation of TGF-β signaling, and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.
Collapse
Affiliation(s)
- Shailendra P Singh
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Shixin Tao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Timothy A Fields
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Sydney Webb
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Reena Rao
- The Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160-3018, USA
| |
Collapse
|
41
|
Borrell‐Pages M, Carolina Romero J, Badimon L. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes. Immunol Cell Biol 2015; 93:653-61. [DOI: 10.1038/icb.2015.41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/05/2015] [Accepted: 01/28/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Maria Borrell‐Pages
- Cardiovascular Research Center, CSIC‐ICCC, Hospital de la Santa Creu i Sant Pau, IIB‐Sant Pau Barcelona Spain
- Cardiovascular Research Chair, UAB Barcelona Spain
| | - July Carolina Romero
- Cardiovascular Research Center, CSIC‐ICCC, Hospital de la Santa Creu i Sant Pau, IIB‐Sant Pau Barcelona Spain
- Cardiovascular Research Chair, UAB Barcelona Spain
| | - Lina Badimon
- Cardiovascular Research Center, CSIC‐ICCC, Hospital de la Santa Creu i Sant Pau, IIB‐Sant Pau Barcelona Spain
- Cardiovascular Research Chair, UAB Barcelona Spain
| |
Collapse
|
42
|
Borrell-Pagès M, Romero JC, Badimon L. LRP5 deficiency down-regulates Wnt signalling and promotes aortic lipid infiltration in hypercholesterolaemic mice. J Cell Mol Med 2015; 19:770-7. [PMID: 25656427 PMCID: PMC4395191 DOI: 10.1111/jcmm.12396] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 5 (LRP5) is a member of the LDLR family that orchestrates cholesterol homoeostasis. The role of LRP5 and the canonical Wnt pathway in the vascular wall of dyslipidaemic animals remains unknown. In this study, we analysed the role of LRP5 and the Wnt signalling pathway in mice fed a hypercholesterolaemic diet (HC) to trigger dyslipidaemia. We show that Lrp5−/− mice had larger aortic lipid infiltrations than wild-type mice, indicating a protective role for LRP5 in the vascular wall. Three members of the LDLR family, Lrp1, Vldlr and Lrp6, showed up-regulated gene expression levels in aortas of Lrp5−/− mice fed a hypercholesterolaemic diet. HC feeding in Lrp5−/− mice induced higher macrophage infiltration in the aortas and accumulation of inflammatory cytokines in blood. Wnt/β-CATENIN signalling proteins were down-regulated in HC Lrp5−/− mice indicating that LRP5 regulates the activation of Wnt signalling in the vascular wall. In conclusion, our findings show that LRP5 and the canonical Wnt pathway down-regulation regulate the dyslipidaemic profile by promoting lipid and macrophage retention in the vessel wall and increasing leucocyte-driven systemic inflammation.
Collapse
Affiliation(s)
- Maria Borrell-Pagès
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | | | | |
Collapse
|
43
|
Cui R, Chen X, Peng L, Ma J, Zhu D, Li T, Wei Q, Li B. Multiple Mechanisms in Renal Artery Stenosis-Induced Renal Interstitial Fibrosis. ACTA ACUST UNITED AC 2014; 128:57-66. [DOI: 10.1159/000366481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/06/2014] [Indexed: 11/19/2022]
|
44
|
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin-angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.
Collapse
|
45
|
Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, Hou FF, Kahn M, Liu Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 2014; 26:107-20. [PMID: 25012166 DOI: 10.1681/asn.2014010085] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of the renin-angiotensin system (RAS) plays an essential role in the pathogenesis of CKD and cardiovascular disease. However, current anti-RAS therapy only has limited efficacy, partly because of compensatory upregulation of renin expression. Therefore, a treatment strategy to simultaneously target multiple RAS genes is necessary to achieve greater efficacy. By bioinformatics analyses, we discovered that the promoter regions of all RAS genes contained putative T-cell factor (TCF)/lymphoid enhancer factor (LEF)-binding sites, and β-catenin induced the binding of LEF-1 to these sites in kidney tubular cells. Overexpression of either β-catenin or different Wnt ligands induced the expression of all RAS genes. Conversely, a small-molecule β-catenin inhibitor ICG-001 abolished RAS induction. In a mouse model of nephropathy induced by adriamycin, either transient therapy or late administration of ICG-001 abolished established proteinuria and kidney lesions. ICG-001 inhibited renal expression of multiple RAS genes in vivo and abolished the expression of other Wnt/β-catenin target genes. Moreover, ICG-001 therapy restored expression of nephrin, podocin, and Wilms' tumor 1, attenuated interstitial myofibroblast activation, repressed matrix expression, and inhibited renal inflammation and fibrosis. Collectively, these studies identify all RAS genes as novel downstream targets of Wnt/β-catenin. Our results indicate that blockade of Wnt/β-catenin signaling can simultaneously repress multiple RAS genes, thereby leading to the reversal of established proteinuria and kidney injury.
Collapse
Affiliation(s)
- Lili Zhou
- Departments of Pathology and State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | | | - Sha Hao
- Departments of Pathology and
| | | | - Roderick J Tan
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Youhua Liu
- Departments of Pathology and State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
46
|
Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep 2014; 3:1878. [PMID: 23698793 PMCID: PMC3662012 DOI: 10.1038/srep01878] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Activation of β-catenin, the principal mediator of canonical Wnt signaling, is a common pathologic finding in a wide variety of chronic kidney diseases (CKD). While β-catenin is induced predominantly in renal tubular epithelium in CKD, surprisingly, depletion of tubular β-catenin had little effect on the severity of renal fibrosis. Interestingly, less apoptosis was detected in interstitial fibroblasts in knockout mice, which was accompanied by a decreased expression of Bax and Fas ligand (FasL). Tubule-specific knockout of β-catenin diminished renal induction of matrix metalloproteinase (MMP-7), which induced FasL expression in interstitial fibroblasts and potentiated fibroblast apoptosis in vitro. These results demonstrate that loss of tubular β-catenin resulted in enhanced interstitial fibroblast survival due to decreased MMP-7 expression. Our studies uncover a novel role of the tubular β-catenin/MMP-7 axis in controlling the fate of interstitial fibroblasts via epithelial-mesenchymal communication.
Collapse
|
47
|
Wnt pathway activation in long term remnant rat model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324713. [PMID: 24995284 PMCID: PMC4066683 DOI: 10.1155/2014/324713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/29/2014] [Indexed: 01/31/2023]
Abstract
Progression of chronic kidney disease (CKD) is characterized by deposition of extracellular matrix. This is an irreversible process that leads to tubulointerstitial fibrosis and finally loss of kidney function. Wnt/ β-catenin pathway was reported to be aberrantly activated in the progressive damage associated with chronic organ failure. Extensive renal ablation is an experimental model widely used to gain insight into the mechanisms responsible for the development of CKD, but it was not evaluated for Wnt/ β-catenin pathway. This study aimed to elucidate if the rat 5/6 renal mass reduction model (RMR) is a good model for the Wnt/ β-catenin activation and possible next modulation. RMR model was evaluated at 12 and 18 weeks after the surgery, when CKD is close to end-stage kidney disease demonstrated by molecular and histological studies. Wnt pathway components were analyzed at mRNA and protein level. Our results demonstrate that Wnt pathway is active by increase of β-catenin at mRNA level and nuclear translocation in tubular epithelium as well as some target genes. These results validate the RMR model for future modulation of Wnt pathway, starting at shorter time after the surgery.
Collapse
|
48
|
Tran DDH, Koch A, Tamura T. THOC5, a member of the mRNA export complex: a novel link between mRNA export machinery and signal transduction pathways in cell proliferation and differentiation. Cell Commun Signal 2014; 12:3. [PMID: 24410813 PMCID: PMC3899923 DOI: 10.1186/1478-811x-12-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 11/10/2022] Open
Abstract
Cell growth, differentiation, and commitment to a restricted lineage are guided by a timely expressed set of growth factor/cytokine receptors and their down-stream transcription factor genes. Transcriptional control mechanisms of gene expression during differentiation have been mainly studied by focusing on the cis- and trans-elements in promoters however, the role of mRNA export machinery during differentiation has not been adequately examined. THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5) is a member of THO complex which is a subcomplex of the transcription/export complex (TREX). THOC5 is evolutionarily conserved in higher eukaryotes, however the exact roles of THOC5 in transcription and mRNA export are still unclear. In this review, we focus on recently uncovered aspects of the role of THOC5 in signal transduction induced by extracellular stimuli. THOC5 is phosphorylated by several protein kinases at multiple residues upon extracellular stimuli. These include stimulation with growth factors/cytokines/chemokines, or DNA damage reagents. Furthermore, THOC5 is a substrate for several oncogenic tyrosine kinases, suggesting that THOC5 may be involved in cancer development. Recent THOC5 knockout mouse data reveal that THOC5 is an essential element in the maintenance of stem cells and growth factor/cytokine-mediated differentiation/proliferation. Furthermore, depletion of THOC5 influences less than 1% of total mRNA export in the steady state, however it influences more than 90% of growth factor/cytokine induced genes. THOC5, thereby contributes to the 3' processing and/or export of immediate-early genes induced by extracellular stimuli. These studies bring new insight into the link between the mRNA export complex and immediate-early gene response. The data from these studies also suggest that THOC5 may be a useful tool for studying stem cell biology, for modifying the differentiation processes and for cancer therapy.
Collapse
Affiliation(s)
| | | | - Teruko Tamura
- Institut fuer Biochemie, OE4310, Medizinische Hochschule Hannover, Carl-Neuberg-Str, 1, D-30623, Hannover, Germany.
| |
Collapse
|
49
|
Saran S, Tran DDH, Klebba-Färber S, Moran-Losada P, Wiehlmann L, Koch A, Chopra H, Pabst O, Hoffmann A, Klopfleisch R, Tamura T. THOC5, a member of the mRNA export complex, contributes to processing of a subset of wingless/integrated (Wnt) target mRNAs and integrity of the gut epithelial barrier. BMC Cell Biol 2013; 14:51. [PMID: 24267292 PMCID: PMC4222586 DOI: 10.1186/1471-2121-14-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 11/26/2022] Open
Abstract
Background THO (Suppressors of the transcriptional defects of hpr1 delta by overexpression) complex 5 (THOC5), an mRNA export protein, is involved in the expression of only 1% of all genes. Using an interferon inducible knockout mouse system, we have previously shown that THOC5 is an essential element in the maintenance of hematopoietic stem cells and cytokine-mediated hematopoiesis in adult mice. Here we interrogate THOC5 function in cell differentiation beyond the hematopoietic system and study pathological changes caused by THOC5 deficiency. Results To examine whether THOC5 plays a role in general differentiation processes, we generated tamoxifen inducible THOC5 knockout mice. We show here that the depletion of THOC5 impaired not only hematopoietic differentiation, but also differentiation and self renewal of the gut epithelium. Depletion of the THOC5 gene did not cause pathological alterations in liver or kidney. We further show that THOC5 is indispensable for processing of mRNAs induced by Wnt (wingless/integrated) signaling which play key roles in epithelial cell differentiation/proliferation. A subset of Wnt target mRNAs, SRY-box containing gene 9 (Sox9), and achaete-scute complex homolog 2 (Ascl2), but not Fibronectin 1 (Fn1), were down-regulated in THOC5 knockout intestinal cells. The down-regulated Wnt target mRNAs were able to bind to THOC5. Furthermore, pathological alterations in the gastrointestinal tract induced translocation of intestinal bacteria and caused sepsis in mice. The bacteria translocation may cause Toll-like receptor activation. We identified one of the Toll-like receptor inducible genes, prostaglandin-endoperoxidase synthase 2 (Ptgs2 or COX2) transcript as THOC5 target mRNA. Conclusion THOC5 is indispensable for processing of only a subset of mRNAs, but plays a key role in processing of mRNAs inducible by Wnt signals. Furthermore, THOC5 is dispensable for general mRNA export in terminally differentiated organs, indicating that multiple mRNA export pathways exist. These data imply that THOC5 may be a useful tool for studying intestinal stem cells, for modifying the differentiation processes and for cancer therapy.
Collapse
Affiliation(s)
- Shashank Saran
- Institut fuer Biochemie, Medizinische Hochschule Hannover, OE4310 Carl-Neuberg-Str, 1, Hannover D-30623, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schaale K, Brandenburg J, Kispert A, Leitges M, Ehlers S, Reiling N. Wnt6 Is Expressed in Granulomatous Lesions ofMycobacterium tuberculosis–Infected Mice and Is Involved in Macrophage Differentiation and Proliferation. THE JOURNAL OF IMMUNOLOGY 2013; 191:5182-95. [DOI: 10.4049/jimmunol.1201819] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|