1
|
Tharmaraj D, Mulley WR, Dendle C. Current and emerging tools for simultaneous assessment of infection and rejection risk in transplantation. Front Immunol 2024; 15:1490472. [PMID: 39660122 PMCID: PMC11628869 DOI: 10.3389/fimmu.2024.1490472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Infection and rejection are major complications that impact transplant longevity and recipient survival. Balancing their risks is a significant challenge for clinicians. Current strategies aimed at interrogating the degree of immune deficiency or activation and their attendant risks of infection and rejection are imprecise. These include immune (cell counts, function and subsets, immunoglobulin levels) and non-immune (drug levels, viral loads) markers. The shared risk factors between infection and rejection and the bidirectional and intricate relationship between both entities further complicate transplant recipient care and decision-making. Understanding the dynamic changes in the underlying net state of immunity and the overall risk of both complications in parallel is key to optimizing outcomes. The allograft biopsy is the current gold standard for the diagnosis of rejection but is associated with inherent risks that warrant careful consideration. Several biomarkers, in particular, donor derived cell-free-DNA and urinary chemokines (CXCL9 and CXCL10), show significant promise in improving subclinical and clinical rejection risk prediction, which may reduce the need for allograft biopsies in some situations. Integrating conventional and emerging risk assessment tools can help stratify the individual's short- and longer-term infection and rejection risks in parallel. Individuals identified as having a low risk of rejection may tolerate immunosuppression wean to reduce medication-related toxicity. Serial monitoring following immunosuppression reduction or escalation with minimally invasive tools can help mitigate infection and rejection risks and allow for timely diagnosis and treatment of these complications, ultimately improving allograft and patient outcomes.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - William R. Mulley
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - Claire Dendle
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
2
|
Vidal-Correoso D, Mateo SV, Muñoz-Morales AM, Lucas-Ruiz F, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, Sánchez-Redondo S, Santos V, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Peinado H, Baroja-Mazo A. Cell-specific Extracellular Vesicles and Their miRNA Cargo Released Into the Organ Preservation Solution During Cold Ischemia Storage as Biomarkers for Liver Transplant Outcomes. Transplantation 2024; 108:e301-e312. [PMID: 38578699 DOI: 10.1097/tp.0000000000005008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Liver transplantation (LT) is crucial for end-stage liver disease patients, but organ shortages persist. Donation after circulatory death (DCD) aims to broaden the donor pool but presents challenges. Complications like acute rejection, hepatic artery thrombosis, and biliary issues still impact posttransplant prognosis. Biomarkers, including extracellular vesicles (EVs) and microRNAs (miRNAs), show promise in understanding and monitoring posttransplant events. This study explores the role of EVs and their miRNA cargo in LT, including their potential as diagnostic tools. METHODS EVs from intrahepatic end-ischemic organ preservation solution (eiOPS) in 79 donated livers were detected using different techniques (nanosight tracking analysis, transmission electron microscopy, and flow cytometry). EV-derived miRNAs were identified by quantitative real time-polymerase chain reaction. Bioinformatics analysis was performed using the R platform. RESULTS Different-sized and origin-specific EVs were found in eiOPS, with significantly higher concentrations in DCD compared with donation after brain death organs. Additionally, several EV-associated miRNAs, including let-7d-5p , miR-28-5p , miR-200a-3p , miR-200b-3p , miR-200c-3p , and miR-429 , were overexpressed in DCD-derived eiOPS. These miRNAs also exhibited differential expression patterns in liver tissue biopsies. Pathway analysis revealed enrichment in signaling pathways involved in extracellular matrix organization and various cellular processes. Moreover, specific EVs and miRNAs correlated with clinical outcomes, including survival and early allograft dysfunction. A predictive model combining biomarkers and clinical variables showed promise in acute rejection detection after LT. CONCLUSIONS These findings provide new insights into the use of EVs and miRNAs as biomarkers and their possible influence on posttransplantation outcomes, potentially contributing to improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Antonio Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
3
|
Tinel C, Sauvaget V, Aouni L, Lamarthée B, Terzi F, Legendre C, Rabant M, Anglicheau D. Transforming kidney transplant monitoring with urine CXCL9 and CXCL10: practical clinical implementation. Sci Rep 2024; 14:20357. [PMID: 39223175 PMCID: PMC11369285 DOI: 10.1038/s41598-024-70390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In kidney transplant recipients, urine CXCL9 and CXCL10 (uCXCL9/10) chemokines have reached a sufficiently high level of evidence to be recommended by the European Society of Organ Transplantation for the monitoring of immune quiescence. To assess the risk of acute rejection (AR), the advantage of uCXCL9/10 is their cost-effectiveness and their high diagnostic performance. Here, we evaluated the feasibility of a next-generation immunoassay for quantifying uCXCL9/10 levels. It demonstrated high efficiency with minimal workflow and a 90-min time to result. Preanalytical studies indicated stability of uCXCL9/10 levels and analytical studies confirmed excellent linearity and precision. In a cohort of 1048 samples collected at biopsy, the results correlated significantly with ELISA quantification and were integrated into a previously validated 8-parameter urine chemokine model. The next generation immunoassay achieved an accuracy of 0.84 for AR diagnosis. This study validates this technology as a robust, locally available and unexpensive platform and marks a significant step towards the widespread implementation of uCXCL9/10, for immune quiescence monitoring. Therefore, we developed an open-access web application using uCXCL9/10 to calculate AR risk and improve clinical decision-making to perform biopsy, ushering in a new era in kidney transplantation, where personalized, data-driven care becomes the norm.
Collapse
Affiliation(s)
- Claire Tinel
- Necker-Enfants Malades Institute, Inserm U1151, Paris Cité University, Paris, France.
- Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France.
| | - Virginia Sauvaget
- Necker-Enfants Malades Institute, Inserm U1151, Paris Cité University, Paris, France
| | - Laïla Aouni
- Department of Nephrology and Kidney Transplantation, Necker Hospital, APHP, Paris, France
| | - Baptiste Lamarthée
- University of Franche-Comté, UBFC, EFS, Inserm, UMR RIGHT, Besançon, France
| | - Fabiola Terzi
- Necker-Enfants Malades Institute, Inserm U1151, Paris Cité University, Paris, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, APHP, Paris, France
| | - Marion Rabant
- Necker-Enfants Malades Institute, Inserm U1151, Paris Cité University, Paris, France
- Pathology Department, Necker Hospital, APHP, Paris, France
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, Inserm U1151, Paris Cité University, Paris, France
- Department of Nephrology and Kidney Transplantation, Necker Hospital, APHP, Paris, France
| |
Collapse
|
4
|
Vajari MK, Moradinasab S, Yousefi AM, Bashash D. Noncoding RNAs in diagnosis and prognosis of graft-versus-host disease (GVHD). J Cell Physiol 2022; 237:3480-3495. [PMID: 35842836 DOI: 10.1002/jcp.30830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a functional therapy for a plethora of hematologic malignancies and immune disorders. Graft-versus-host disease (GVHD), on the other hand, is one of the major complications ahead of a successful HSCT, contributing to transplant-associated morbidity and mortality. Notably, little is known about the underlying mechanism of this event; therefore, exploring precise biomarkers and uncovering the molecular pathogenesis of GVHD is valuable for early diagnosis and treatment optimization. Thanks to the advances in sequencing techniques, the noncoding sequences of the human genome-formerly considered "junk"-are now identified as functional molecules. Noncoding RNAs (ncRNA) control cellular responses by regulating gene expression, and previous studies have shown that these tiny molecules, especially microRNAs (miRNAs), can affect allogeneic T cell responses in both animal models and clinical experiments. The present study gives an overview of the functions of various miRNAs in regulating T cell responses in GVHD. We also provide an outlook on miRNAs and long noncoding RNAs (lncRNAs) potential role in GVHD with the hope of providing a future research direction for expanding their application as the sensitive and noninvasive diagnostic or prognostic biomarkers and also the promising therapeutic targets for improving outcomes after allogeneic HSCT.
Collapse
Affiliation(s)
- Mahdi K Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Moradinasab
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Inhibition of miR-let-7i Induces DC Immature Cells and Improves Skin Graft Tolerance. DISEASE MARKERS 2022; 2022:8605621. [PMID: 35756489 PMCID: PMC9217530 DOI: 10.1155/2022/8605621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DC) initiate the immune response in the body. They can stimulate T cell activation, proliferation, and differentiation and ultimately participate in the immune response and the immune tolerance response. The purpose of this study was to coculture DCs and T cells and subcutaneously inject DCs transfected with miR-let-7i into rhesus monkey transplantations to verify the role of miR-let-7i in allograft immune tolerance. In vitro studies found that the expression of miR-let-7i was upregulated after inducing the maturation of DCs. The low expression of miR-let-7i inhibited the maturation of DCs, promoted the differentiation of T cells into T helper T cells 2 (Th2), and inhibited T helper T cell 1- (Th1-) driven rejection. In vivo studies also obtained similar results, and subcutaneous injection of DCs transfected with miR-let-7i inhibitor prolonged the survival time of allogeneic skin transplantation. Therefore, we conclude that inhibition of miR-let-7i inhibits DC maturation and improves the tolerance of grafted skin.
Collapse
|
6
|
Clément AA, Lamarche D, Masse MH, Légaré C, Tai LH, Fleury Deland L, Battista MC, Bouchard L, D’Aragon F. Time-course full profiling of circulating miRNAs in neurologically deceased organ donors: a proof of concept study to understand the onset of the cytokine storm. Epigenetics 2022; 17:1546-1561. [DOI: 10.1080/15592294.2022.2076048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Andrée-Anne Clément
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daphnée Lamarche
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Cécilia Légaré
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Laurence Fleury Deland
- Department of Immunology and Cellular Biology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean-Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Frédérick D’Aragon
- Department of Anesthesiology, FMHS,Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Bozzini S, Del Fante C, Morosini M, Berezhinskiy HO, Auner S, Cattaneo E, Della Zoppa M, Pandolfi L, Cacciatore R, Perotti C, Hoetzenecker K, Jaksch P, Benazzo A, Meloni F. Mechanisms of Action of Extracorporeal Photopheresis in the Control of Bronchiolitis Obliterans Syndrome (BOS): Involvement of Circulating miRNAs. Cells 2022; 11:cells11071117. [PMID: 35406680 PMCID: PMC8997705 DOI: 10.3390/cells11071117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence suggests an improvement or stabilization of lung function in a fraction of patients with bronchiolitis obliterans syndrome (BOS) treated by extracorporeal photopheresis (ECP); however, few studies have explored the epigenetic and molecular regulation of this therapy. The aim of present study was to evaluate whether a specific set of miRNAs were significantly regulated by ECP. Total RNA was isolated from serum of patients with established BOS grade 1–2 prior to the start and after 6 months of ECP treatment. We observed a significant downregulation of circulating hsa-miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p in BOS patients at the start of ECP when compared to healthy subjects. In responders, increased miR-155-5p and decreased miR-23b-3p expression levels at 6 months were found. SMAD4 mRNA was found to be a common target of these two miRNAs in prediction pathways analysis, and a significant downregulation was found at 6 months in PBMCs of a subgroup of ECP-treated patients. According to previous evidence, the upregulation of miR-155 might be correlated with a pro-tolerogenic modulation of the immune system. Our analysis also suggests that SMAD4 might be a possible target for miR-155-5p. Further longitudinal studies are needed to address the possible role of miR-155 and its downstream targets.
Collapse
Affiliation(s)
- Sara Bozzini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
- Correspondence: ; Tel.: +39-0382-501-001
| | - Claudia Del Fante
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Monica Morosini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Hatice Oya Berezhinskiy
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Sophia Auner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Elena Cattaneo
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Matteo Della Zoppa
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Laura Pandolfi
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Rosalia Cacciatore
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Cesare Perotti
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Alberto Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Federica Meloni
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
8
|
Novel Role of miR-18a-5p and Galanin in Rat Lung Ischemia Reperfusion-Mediated Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621921. [PMID: 34497682 PMCID: PMC8420977 DOI: 10.1155/2021/6621921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/05/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Lung ischemia reperfusion (IR) is known to occur after lung transplantation or cardiac bypass. IR leads to tissue inflammation and damage and is also associated with increased morbidity and mortality. Various receptors are known to partake in activation of the innate immune system, but the downstream mechanism of tissue damage and inflammation is yet unknown. MicroRNAs (miRNAs) are in the forefront in regulating ischemia reperfusion injury and are involved in inflammatory response. Here, we have identified by high-throughput approach and evaluated a distinct set of miRNAs that may play a role in response to IR in rat lung tissue. The top three differentially expressed miRNAs were validated through quantitative PCRs in the IR rat lung model and an in vitro model of IR of hypoxia and reoxygenation exposed type II alveolar cells. Among the miRNAs, miR-18a-5p showed consistent downregulation in both the model systems on IR. Cellular and molecular analysis brought to light a crucial role of this miRNA in ischemia reperfusion. miR-18a-5p plays a role in IR-mediated apoptosis and ROS production and regulates the expression of neuropeptide Galanin. It also influences the nuclear localization of transcription factor: nuclear factor-erythroid 2-related factor (Nrf2) which in turn may regulate the expression of the miR-18a gene. Thus, we have not only established a rat model for lung IR and enumerated the important miRNAs involved in IR but have also extensively characterized the role of miR-18a-5p. This study will have important clinical and therapeutic implications for and during transplantation procedures.
Collapse
|
9
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Yildirim D, Bender O, Karagoz ZF, Helvacioglu F, Bilgic MA, Akcay A, Ruzgaresen NB. Role of autophagy and evaluation the effects of microRNAs 214, 132, 34c and prorenin receptor in a rat model of focal segmental glomerulosclerosis. Life Sci 2021; 280:119671. [PMID: 34087284 DOI: 10.1016/j.lfs.2021.119671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
AIMS Focal segmental glomerulosclerosis (FSGS) is the common cause of chronic renal disease worldwide. Although there are many etiologic factors which have common theme of podocyte injury conclusive etiology is not clearly understood. In this study, we aimed to explore the role of autophagy in the pathogenesis of podocyte injury, which is the key point in disease progression, and the roles of intrarenal microRNAs and the prorenin receptor (PRR) in the 5/6 nephrectomy and adriamycin nephropathy models of FSGS. MAIN METHODS For experimental FSGS model, 5/6 nephrectomy and adriamycin nephropathy models were created and characterized in adult Sprague Dawley rats. Microarray analysis was performed on FSGS and control groups that was confirmed by q-RT-PCR. Beclin1, LC3B, PRR, ATG7 and ATG5 expression were evaluated by western blotting and immunohistochemistry. Also, Beclin1 and PRR expression were measured by ELISA. Glomerular podocyte isolation was performed and autophagic activity was evaluated in podocytes before and after transfection with miRNA mimic and antagonists. KEY FINDINGS Glomerular expression of Beclin1, LC3B, PRR, ATG7 and ATG5 were significantly lower in the 5/6 nephrectomy than adriamycin nephropathy group and in both groups lower when compared to control groups. Western blot results were consistent with immunohistochemical data. Electron microscopy revealed signs of impaired autophagy in FSGS. Autophagic activity decreased significantly after miR-214, miR-132 and miR-34c mimics and increased after transfection with antagonists. SIGNIFICANCE These results showed that the role of autophagic activity and decreased expression of PRR in FSGS pathogenesis and miR-34c, miR-132 and miR-214 could be a potential treatment strategy by regulating autophagy.
Collapse
Affiliation(s)
- Derya Yildirim
- Department of Internal Medicine, Ankara Education and Research Hospital, Ankara, Turkey.
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Zehra Firat Karagoz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | | | - Ali Akcay
- Department of Nephrology, Koru Hospital, Ankara, Turkey
| | | |
Collapse
|
11
|
Roest HP, IJzermans JNM, van der Laan LJW. Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol 2021; 21:48. [PMID: 34362351 PMCID: PMC8344161 DOI: 10.1186/s12896-021-00706-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Extracellular microRNAs (miRNAs), released from cells into biofluids, have emerged as promising biomarkers for diagnostic and prognostic purposes. Several RNA isolation methods are available for the analysis of these cell-free miRNAs by RT-qPCR. Not all methods, however, are equally suitable for different biofluids. Here, we extracted total RNA from four very diverse biofluids: serum, urine, bile, and graft preservation fluid (perfusate). Four different protocols were used: a phenol-chloroform extraction and alcohol precipitation in combination with a precipitation carrier (QP) and three different column-based isolation methods, one with phenol-chloroform extraction (RN) and two without (NG and CU). For this range of clinical biofluid samples, we evaluated the potential of these different RNA isolation methods assessing recovery efficiency and the co-purification of RT-qPCR inhibiting compounds. RESULTS Differences were observed between each of the RNA isolation methods in the recovery of cel-miR-39, a synthetic miRNA spiked in during the workup procedure, and for endogenous miRNAs. Co-purification of heparin, a known RT-qPCR inhibitor, was assessed using heparinase I during cDNA synthesis. RT-qPCR detection of synthetic miRNAs cel-miR-39, spiked in during RNA workup, cel-miR-54, spiked in during cDNA synthesis, and endogenous miRNAs was strongly improved in the presence of heparinase I for some, but not all, isolation methods. Other, co-isolated RT-qPCR inhibitors were not identified, except for biliverdin, which co-isolated from some bile samples with one of the methods. In addition, we observed that serum and urine contain compounds that enhance the binding of heparin to certain solid-phase columns. CONCLUSIONS For reliable measurements of miRNA-based biomarkers in biofluids, optimization of RNA isolation procedures is recommended as methods can differ in miRNA detection and in co-purification of RT-qPCR inhibitory compounds. Heparinase I treatment confirmed that heparin appeared to be the major RT-qPCR inhibiting compound, but also biliverdin, co-isolated from bile, could interfere with detection.
Collapse
Affiliation(s)
- Henk P Roest
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus MC - University Medical Center, P.O. Box 2040, Room Na-1005, 3000, CA, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW In kidney transplantation, microRNAs (miRNAs) have been extensively studied over the past decade, and panels of differentially expressed miRNAs have been identified from various body fluids/tissues, including blood, plasma, urine, or allograft biopsies, and in various conditions, such as acute T-cell-mediated and antibody-mediated rejections, chronic allograft rejection, interstitial fibrosis and tubular atrophy, acute tubular necrosis or BKV nephropathy. RECENT FINDINGS This review outlines our current knowledge regarding the complexity of miRNA regulation in fine-tuning expression of two-thirds of the human genome and the potential of miRNAs as biomarkers, based on an increasing number of case--control studies with, however, no evidence of short-term clinical development. Instead, a progressive change in study objectives is reported, with the most recent literature using miRNA-targeted genes as entry points for studying disease pathways. SUMMARY Our nascent understanding of their presumed roles in alloimmunity suggests that miRNAs are key regulators in many allograft injuries. Future directions should investigate how the integration of miRNAs with other layers of molecular data, such as genomic, transcriptomic, or proteomic data, could help to characterize the cellular interactions involved in allograft rejection and whether miRNA-based therapy could be of relevance for transplant medicine.
Collapse
|
13
|
Kennel PJ, Yahi A, Naka Y, Mancini DM, Marboe CC, Max K, Akat K, Tuschl T, Vasilescu EM, Zorn E, Tatonetti NP, Schulze PC. Longitudinal profiling of circulating miRNA during cardiac allograft rejection: a proof-of-concept study. ESC Heart Fail 2021; 8:1840-1849. [PMID: 33713567 PMCID: PMC8120386 DOI: 10.1002/ehf2.13238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
AIMS Allograft rejection following heart transplantation (HTx) is a serious complication even in the era of modern immunosuppressive regimens and causes up to a third of early deaths after HTx. Allograft rejection is mediated by a cascade of immune mechanisms leading to acute cellular rejection (ACR) and/or antibody-mediated rejection (AMR). The gold standard for monitoring allograft rejection is invasive endomyocardial biopsy that exposes patients to complications. Little is known about the potential of circulating miRNAs as biomarkers to detect cardiac allograft rejection. We here present a systematic analysis of circulating miRNAs as biomarkers and predictors for allograft rejection after HTx using next-generation small RNA sequencing. METHODS AND RESULTS We used next-generation small RNA sequencing to investigate circulating miRNAs among HTx recipients (10 healthy controls, 10 heart failure patients, 13 ACR, and 10 AMR). MiRNA profiling was performed at different time points before, during, and after resolution of the rejection episode. We found three miRNAs with significantly increased serum levels in patients with biopsy-proven cardiac rejection when compared with patients without rejection: hsa-miR-139-5p, hsa-miR-151a-5p, and hsa-miR-186-5p. We identified miRNAs that may serve as potential predictors for the subsequent development of ACR: hsa-miR-29c-3p (ACR) and hsa-miR-486-5p (AMR). Overall, hsa-miR-486-5p was most strongly associated with acute rejection episodes. CONCLUSIONS Monitoring cardiac allograft rejection using circulating miRNAs might represent an alternative strategy to invasive endomyocardial biopsy.
Collapse
Affiliation(s)
- Peter J. Kennel
- Division of Cardiology, Department of MedicineColumbia UniversityNew YorkNYUSA
- Department of Medicine I, Division of CardiologyUniversity Hospital of Friedrich Schiller University JenaAm Klinikum 1Jena07747Germany
| | - Alexandre Yahi
- Department of Biomedical InformaticsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of MedicineColumbia UniversityNew YorkNYUSA
| | | | | | - Charles C. Marboe
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| | - Klaas Max
- Laboratory of RNA Molecular BiologyRockefeller UniversityNew YorkNYUSA
| | - Kemal Akat
- Laboratory of RNA Molecular BiologyRockefeller UniversityNew YorkNYUSA
| | - Thomas Tuschl
- Laboratory of RNA Molecular BiologyRockefeller UniversityNew YorkNYUSA
| | | | - Emmanuel Zorn
- Columbia Center for Translational ImmunologyColumbia UniversityNew YorkNYUSA
| | - Nicholas P. Tatonetti
- Department of Biomedical InformaticsColumbia UniversityNew YorkNYUSA
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of MedicineColumbia UniversityNew YorkNYUSA
| | - Paul Christian Schulze
- Department of Medicine I, Division of CardiologyUniversity Hospital of Friedrich Schiller University JenaAm Klinikum 1Jena07747Germany
| |
Collapse
|
14
|
Determination of a microRNA signature of protective kidney ischemic preconditioning originating from proximal tubules. Sci Rep 2021; 11:9862. [PMID: 33972622 PMCID: PMC8110756 DOI: 10.1038/s41598-021-89195-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic preconditioning (IPC) is effective in limiting subsequent ischemic acute kidney injury in experimental models. MicroRNAs are an important class of post-transcriptional regulator and show promise as biomarkers of kidney injury. We evaluated the time- and dose-dependence of benefit from IPC in a rat model of functional (bilateral) ischemia–reperfusion injury (IRI). We found optimal protection from subsequent injury following short, repetitive sequences of preconditioning insult. We subsequently used hybridization array and microRNA sequencing to characterize microRNA signatures of protective IPC and of IRI. These approaches identified a profile of microRNA changes consequent on IRI, that were limited by prior IPC. To localize these signals within the kidney, we used laser capture microdissection and RT-qPCR to measure microRNA abundance in nephron segments, pinpointing microRNA changes principally to glomeruli and proximal tubules. Our data describe a unique microRNA signature for IRI in the rat kidney. Pulsatile IPC reduces kidney damage following IRI and diminishes this microRNA signal. We have also identified candidate microRNAs that may act as biomarkers of injury and therapeutic targets in this context.
Collapse
|
15
|
Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline. Transplantation 2021; 106:289-298. [PMID: 33859149 DOI: 10.1097/tp.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs (DEMs) in the heart and computational and functional analysis were performed to compare the DEMs and find their putative targets and their related enriched canonical pathways. RESULTS An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with two miRNAs, miR-30a-3p and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD induced miRNA's on early and late cardiac allograft function must be investigated.Supplemental Visual Abstract; http://links.lww.com/TP/C210.
Collapse
|
16
|
Honeyman C, Stark H, Wang HC, Hester J, Issa F, Giele H. Biomarker and surrogate development in vascularised composite allograft transplantation: Current progress and future challenges. J Plast Reconstr Aesthet Surg 2020; 74:711-717. [PMID: 33436335 DOI: 10.1016/j.bjps.2020.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/22/2020] [Indexed: 12/23/2022]
Abstract
Vascularised composite allograft (VCA) transplantation is now a feasible reconstructive option for patients who have suffered significant soft tissue injuries. However, despite numerous technical advances in the field over two decades, a number of challenges remain, not least the management of transplant rejection. Part of the difficulty faced by clinicians is the early recognition and prevention of acute rejection episodes. Whilst this is potentially easier in VCAs than solid organ transplants, due to their visible skin component, at present the only validated method for the diagnosis of acute rejection is histological examination of a tissue biopsy. The aim of this review article is to provide an evidence-based overview of progress in the field of VCA biomarker discovery, including immune cell subsets, immune cell effector pathways, and circulating markers of allograft damage, and to discuss future challenges in the field.
Collapse
Affiliation(s)
- Calum Honeyman
- Canniesburn Plastic Surgery and Burns Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Helen Stark
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Department of Plastic, Reconstructive and Hand Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, Oxford, United Kingdom
| | - Hayson Chenyu Wang
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Department of Plastic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Joanna Hester
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Fadi Issa
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Department of Plastic, Reconstructive and Burns Surgery, Stoke Mandeville Hospital, Aylesbury, United Kingdom
| | - Henk Giele
- Department of Plastic, Reconstructive and Hand Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, Oxford, United Kingdom.
| |
Collapse
|
17
|
MicroRNA-142-5p is Up-regulated on Allogeneic Immune Responses and Up-regulates MHC Class II Expression in Human Umbilical Vein Endothelial Cells. Transplant Proc 2020; 53:408-416. [PMID: 32616346 DOI: 10.1016/j.transproceed.2020.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE MicroRNA could be biomarker and therapeutic target for rejection. The aim of this study was to investigate the role of miR-142-5p in allogeneic immune responses using in vitro and in vivo models. MATERIALS AND METHODS Primary and immortalized human umbilical vein endothelial cells (HUVECs) were cultured with unrelated blood mononuclear cells to induce allogeneic immune responses. Syngeneic and allogeneic skin graft was performed in mice. Flow cytometry, quantitative reverse transcription-polymerase chain reaction, and Western blotting was performed to understand the underlying mechanisms. RESULTS miR-142-5p was up-regulated in primary HUVEC and a HUVEC line when allogeneic immune responses were elicited. miR-142-5p was also up-regulated in the murine allogeneic skin graft. Overexpression of miR-142-5p in HUVEC increased the expression of HLA-ABC and HLA-DR additively to allogeneic immune responses, suggesting a possible increase in alloantigen presentation. Inhibition of miR-142-5p reduced the expression of HLA-DR. ZEB1, a putative target gene of miR-142-5p, was down-regulated in HUVEC on allogeneic immune response as well as in murine allogeneic skin graft. CONCLUSION These results suggest that the up-regulation of miR-142-5p on allogeneic immune response might facilitate endothelial activation to exacerbate rejection.
Collapse
|
18
|
Hu ZQ, Lu Y, Cui D, Ma CY, Shao S, Chen P, Tao R, Wang JJ. MicroRNAs and long non-coding RNAs in liver surgery: Diagnostic and therapeutic merits. Hepatobiliary Pancreat Dis Int 2020; 19:218-228. [PMID: 32414577 DOI: 10.1016/j.hbpd.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatectomy and liver transplantation (LT) are the two most commonly performed surgical procedures for various hepatic lesions. microRNA (miRNA) and long non-coding RNA (lncRNA) have been gradually unveiled their roles as either biomarkers for early diagnosis or potentially therapeutic tools to manipulate gene expression in many disease entities. This review aimed to discuss the effects of miRNA or lncRNA in the hepatectomy and LT fields. DATA SOURCES We did a literature search from 1990 through January 2018 to summarize the currently available evidence with respect to the effects of miRNA and lncRNA in liver regeneration after partial hepatectomy, as well as their involvement in several key issues related to LT, including ischemia-reperfusion injury, allograft rejection, tolerance, recurrence of original hepatic malignancies, etc. RESULTS: Certain miRNAs and lncRNAs are actively involved in the regulation of various aspects of liver resection and transplantation. During the process of liver regeneration after hepatectomy, the expression of miRNAs and lncRNAs shows dynamic changes. CONCLUSIONS It is now clear that miRNAs and lncRNAs orchestrate in various aspects of the pathophysiological process of LT and hepatectomy. Better understanding of the underlying mechanism and future clinical trials may strengthen their positions as either biomarkers or potential therapeutic targets in the management of complications after liver surgery.
Collapse
Affiliation(s)
- Zhi-Qiu Hu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201199, China; Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Yi Lu
- Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China; Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Di Cui
- Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Chen-Yang Ma
- Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Su Shao
- Department of General Surgery, Chun'an 1st People's Hospital, Hangzhou 311700, China
| | - Ping Chen
- Department of Obstetrics and Gynecology, Shaoxing 2nd Hospital, Shaoxing 312000, China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic & Minimally Invasive Surgery, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China; Center for Clinical Medical Research, Affiliated Zhejiang Provincial People's Hospital, Hangzhou Medical School, Hangzhou 310014, China
| | - Jian-Jun Wang
- Department of General Surgery, Chun'an 1st People's Hospital, Hangzhou 311700, China.
| |
Collapse
|
19
|
Abstract
Early detection of graft injury after kidney transplantation is key to maintaining long-term good graft function. Graft injury could be due to a multitude of factors including ischaemia reperfusion injury, cell or antibody-mediated rejection, progressive interstitial fibrosis and tubular atrophy, infections and toxicity from the immunosuppressive drugs themselves. The current gold standard for assessing renal graft dysfunction is renal biopsy. However, biopsy is usually late when triggered by a change in serum creatinine and of limited utility in diagnosis of early injury when histological changes are equivocal. Therefore, there is a need for timely, objective and non-invasive diagnostic techniques with good early predictive value to determine graft injury and provide precision in titrating immunosuppression. We review potential novel plasma and urine biomarkers that offer sensitive new strategies for early detection and provide major insights into mechanisms of graft injury. This is a rapidly expanding field, but it is likely that a combination of biomarkers will be required to provide adequate sensitivity and specificity for detecting graft injury.
Collapse
|
20
|
Regulation of Endothelial-to-Mesenchymal Transition by MicroRNAs in Chronic Allograft Dysfunction. Transplantation 2019; 103:e64-e73. [PMID: 30907855 DOI: 10.1097/tp.0000000000002589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fibrosis is a universal finding in chronic allograft dysfunction, and it is characterized by an accumulation of extracellular matrix. The precise source of the myofibroblasts responsible for matrix deposition is not understood, and pharmacological strategies for prevention or treatment of fibrosis remain limited. One source of myofibroblasts in fibrosis is an endothelial-to-mesenchymal transition (EndMT), a process first described in heart development and involving endothelial cells undergoing a phenotypic change to become more like mesenchymal cells. Recently, lineage tracing of endothelial cells in mouse models allowed studies of EndMT in vivo and reported 27% to 35% of myofibroblasts involved in cardiac fibrosis and 16% of isolated fibroblasts in bleomycin-induced pulmonary fibrosis to be of endothelial origin. Over the past decade, mature microRNAs (miRNAs) have increasingly been described as key regulators of biological processes through repression or degradation of targeted mRNA. The stability and abundance of miRNAs in body fluids make them attractive as potential biomarkers, and progress is being made in developing miRNA targeted therapeutics. In this review, we will discuss the evidence of miRNA regulation of EndMT from in vitro and in vivo studies and the potential relevance of this to heart, lung, and kidney allograft dysfunction.
Collapse
|
21
|
Hassan MG, Morise F, Osman NA, Salam LA, Yehia H, Hamdi M, El Husseiny NM, NasrAllah MM. Micro RNA-192 Is Negatively Associated With Cardiovascular Events Among Wait-Listed Potential Kidney Transplant Recipients on Hemodialysis Over a 5-year Follow-up Period. Transplant Proc 2019; 51:2237-2240. [PMID: 31399202 DOI: 10.1016/j.transproceed.2019.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Patients with chronic renal disease are susceptible to accelerated vascular calcification and cardiovascular morbidity and mortality. Micro RNAs (miRNAs) have been linked to the pathogenesis of cardiovascular diseases in the general population. AIM This study was carried out to evaluate the link between miRNA 192 and vascular calcification, pre-existing as well as newly occurring major adverse cardiovascular events, and mortality among hemodialysis patients who are also considered to be potential kidney transplant recipients. METHODS We screened 64 potential transplant recipients on hemodialysis at our university hospital. Pre-existing overt cardiovascular disease was recorded; new adverse cardiovascular events and all causes of death over an observational period of 5 years were prospectively followed. Vascular calcification was measured in the aorta using computerized tomography scans, and micro RNA 192 was measured. RESULTS The final study population included 55 patients followed for 63 months. Micro RNA 192 was significantly lower in patients who had preexisting cardiovascular disease (P = .015) as well and in all patients who had experienced any event by the end of the observational period (P = .012). A multiregression analysis model including micro RNA, age, dialysis vintage, intradialytic hypotension, vascular calcification, diabetes, systolic blood pressure, and smoking found the only independently correlating factor to cardiovascular events in this model to be micro RNA (β = -0.286, P = .05). CONCLUSIONS MiRNA 192 levels are significantly lower among patients experiencing cardiovascular events while on hemodialysis awaiting kidney transplantation.
Collapse
Affiliation(s)
- Mona G Hassan
- Department of Nephrology & Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Fadia Morise
- Department of Nephrology & Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha A Osman
- Department of Nephrology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Lobna Abdel Salam
- Genome Unit, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Hesham Yehia
- Department of Cardiology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hamdi
- Department of Critical Care, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Noha M El Husseiny
- Department of Internal Medicine, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - M M NasrAllah
- Department of Nephrology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
22
|
Paladini SV, Pinto GH, Bueno RH, Calloni R, Recamonde-Mendoza M. Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: A Systematic Review. Mol Diagn Ther 2019; 23:439-458. [PMID: 31054051 DOI: 10.1007/s40291-019-00397-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Traditional methods for rejection control in transplanted patients are considered invasive, risky, and prone to sampling errors. Using molecular biomarkers as an alternative protocol to biopsies, for monitoring rejection may help to mitigate some of these problems, increasing the survival rates and well-being of patients. Recent advances in omics technologies provide an opportunity for screening new molecular biomarkers to identify those with clinical utility. OBJECTIVE This systematic literature review (SLR) aimed to summarize existing evidence derived from large-scale expression profiling regarding differentially expressed mRNA and miRNA in graft rejection, highlighting potential molecular biomarkers in transplantation. METHODS The study was conducted following PRISMA methodology and the BiSLR guide for performing SLR in bioinformatics. PubMed, ScienceDirect, and EMBASE were searched for publications from January 2001 to January 2018, and studies (i) aiming at the identification of transplant rejection biomarkers, (ii) including human subjects, and (iii) applying methodologies for differential expression analysis from large-scale expression profiling were considered eligible. Differential expression patterns reported for genes and miRNAs in rejection were summarized from both cross-organ and organ-specific perspectives, and pathways enrichment analysis was performed for candidate biomarkers to interrogate their functional role in transplant rejection. RESULTS A total of 821 references were collected, resulting in 604 studies after removal of duplicates. After application of inclusion and exclusion criteria, 33 studies were included in our analysis. Among the 1517 genes and 174 miRNAs identifed, CXCL9, CXCL10, STAT1, hsa-miR-142-3p, and hsa-miR-155 appeared to be particularly promising as biomarkers in transplantation, with an increased expression associated with transplant rejection in multiple organs. In addition, hsa-miR-28-5p was consistently decreased in samples taken from rejected organs. CONCLUSION Despite the need for further research to fill existing knowledge gaps, transcriptomic technologies have a relevant role in the discovery of accurate biomarkers for transplant rejection diagnostics. Studies have reported consistent evidence of differential expression associated with transplant rejection, although issues such as experimental heterogeneity hinder a more systematic characterization of observed molecular changes. Special attention has been giving to large-scale mRNA expression profiling in rejection, whereas there is still room for improvements in the characterization of miRnome in this condition. PROSPERO REGISTRATION NUMBER CRD42018083321.
Collapse
Affiliation(s)
- Sheyla Velasques Paladini
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Graziela Hünning Pinto
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Post-Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Raquel Calloni
- Instituto Federal de Educação, Ciência e Tecnologia Sul-Rio Grandense-Campus Gravataí, Gravataí, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Post-Graduate Program in Cardiology and Cardiovascular Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Setor IV, Building 43424, Office 225, Porto Alegre, RS, 91501-970, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Sci Rep 2019; 9:3584. [PMID: 30837502 PMCID: PMC6401030 DOI: 10.1038/s41598-019-38642-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
Predicting immediate and subsequent graft function is important in clinical decision-making around kidney transplantation, but is difficult using available approaches. Here we have evaluated urinary microRNAs as biomarkers in this context. Profiling of 377 microRNAs in the first urine passed post-transplantation identified 6 microRNAs, confirmed to be upregulated by RT-qPCR in an expanded cohort (miR-9, -10a, -21, -29a, -221, and -429, n = 33, P < 0.05 for each). Receiver operating characteristic analysis showed Area Under the Curve 0.94 for this panel. To establish whether this early signal was sustained, miR-21 was measured daily for 5 days post-transplant, and was consistently elevated in those developing Delayed Graft Function (n = 165 samples from 33 patients, p < 0.05). The biomarker panel was then evaluated in an independent cohort, sampled at varying times in the first week post-transplantation in a separate transplant center. When considered individually, all miRs in the panel showed a trend to increase or a significant increase in those developing delayed Graft Function (miR-9: P = 0.068, mIR-10a: P = 0.397, miR-21: P = 0.003, miR-29a: P = 0.019, miR-221: P = 0.1, and miR-429: P = 0.013, n = 47) with Area Under the Curve 0.75 for the panel. In conclusion, combined measurement of six microRNAs had predictive value for delayed graft function following kidney transplantation.
Collapse
|
24
|
Marx D, Metzger J, Olagne J, Belczacka I, Faguer S, Colombat M, Husi H, Mullen W, Gwinner W, Caillard S. Proteomics in Kidney Allograft Transplantation—Application of Molecular Pathway Analysis for Kidney Allograft Disease Phenotypic Biomarker Selection. Proteomics Clin Appl 2019; 13:e1800091. [DOI: 10.1002/prca.201800091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/10/2019] [Indexed: 02/06/2023]
Affiliation(s)
- David Marx
- Nephrology – Transplantation DepartmentUMR_S. INSERM UMR_S 1109ImmunoRhumatologie MoléculaireFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de StrasbourgInstitut d'Immunologie et d'Hématologie 67085 Strasbourg France
- Laboratoire de Spectrométrie de Masse BioOrganiqueUniversity of StrasbourgCentre National de la Recherche ScientifiqueInstitut Pluridisciplinaire Hubert Curien UMR 7178 67037 Strasbourg France
| | | | - Jérôme Olagne
- Nephrology – Transplantation DepartmentUMR_S. INSERM UMR_S 1109ImmunoRhumatologie MoléculaireFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de StrasbourgInstitut d'Immunologie et d'Hématologie 67085 Strasbourg France
- Department of PathologyUniversity Hospital of Strasbourg 67091 Strasbourg France
| | | | - Stanislas Faguer
- Department of Nephrology and Organ TransplantationUniversity Hospital of Toulouse 31059 Toulouse France
- Institut National de la Santé et de la Recherche Médicale (INSERM)Institut of Cardiovascular and Metabolic Disease U1048 31432 Toulouse France
- Université Toulouse III Paul‐Sabatier 31330 Toulouse France
| | - Magali Colombat
- Department of PathologyCancer University Institute of Toulouse 31100 Toulouse France
| | - Holger Husi
- Division of Biomedical SciencesCentre for Health ScienceUniversity of the Highlands and Islands Inverness IV2 3JH UK
| | - William Mullen
- Institute of Cardiovascular and Medical SciencesUniversity of Glasgow Glasgow G12 8TA United Kingdom
| | - Wilfried Gwinner
- Department of NephrologyHannover Medical School 30625 Hannover Germany
| | - Sophie Caillard
- Nephrology – Transplantation DepartmentUMR_S. INSERM UMR_S 1109ImmunoRhumatologie MoléculaireFédération Hospitalo‐Universitaire OMICAREFédération de Médecine Translationnelle de StrasbourgInstitut d'Immunologie et d'Hématologie 67085 Strasbourg France
| |
Collapse
|
25
|
Abstract
miRNAs, ∼20 to 22 nucleotide single-stranded RNA species that play a pivotal role in the regulation of protein-coding genes, are emerging as robust biomarkers for assessing allograft status. Herein, the authors briefly review the biogenesis and function of the miRNAs and provide an overview of the tools to quantify miRNAs in tissues and body fluids. They then review their studies of discovery and validation of alterations in miRNA expression within kidney allografts with or without acute rejection, as well as with or without fibrosis, and summarize published data on miRNA expression patterns in kidney transplant recipients.
Collapse
Affiliation(s)
- Zahraa Khan
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA; Division of Nephrology and Hypertension, Department of Transplantation Medicine, New York-Presbyterian-Weill Cornell Medicine, 525 East 68th Street, Box 3, New York, NY 10065, USA.
| |
Collapse
|
26
|
Roat R, Hossain MM, Christopherson J, Free C, Guay C, Regazzi R, Guo Z. Circulating miRNA-150-5p is associated with immune-mediated early β-cell loss in a humanized mouse model. Xenotransplantation 2018; 26:e12474. [PMID: 30461074 DOI: 10.1111/xen.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression levels are associated with various graft rejections. We used our humanized mouse model with transplanted human islets to identify miRNAs in islet grafts related to xenograft rejection and circulating miRNAs associated with xenograft rejection-mediated β-cell loss. METHODS Diabetic immunodeficient NOD.scid mice were transplanted with human islets and subsequently achieved stable normoglycemia. Lymphocytes from NOD mice were then adoptively transferred to the humanized mice to induce human β-cell destruction. Islet graft and plasma were collected immediately once blood glucose reached >200 mg/dL. miRNAs in the islet grafts and in the plasma with or without adoptive lymphocyte transfer (ALT) were measured using NanoString nCounter® miRNA Expression Assay and qPCR. RESULTS A set of immune-related miRNAs was significantly increased in human islet grafts of ALT-treated mice compared to control mice. Of these miRNAs, miR-150-5p was significantly increased in the circulation of ALT-treated mice at tissue collection and the increase was a result of immune activation rather than simply the presence of lymphocytes in circulation. Furthermore, miR-150-5p was significantly increased in human islet graft and circulation prior to the development of hyperglycemia in the ALT-treated mice. CONCLUSIONS Our data demonstrated that immune-related miRNAs are associated with human islet xenograft rejection in mice. miR-150-5p is increased in human islet graft and in the circulation during islet xenograft rejection and β-cell destruction prior to hyperglycemia and may be an early biomarker for islet xenograft rejection.
Collapse
Affiliation(s)
- Regan Roat
- Sanford Research, Sioux Falls, South Dakota
| | | | | | | | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Zhiguang Guo
- Sanford Research, Sioux Falls, South Dakota.,Departments of Pediatrics and Surgery, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
27
|
Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol 2018. [PMID: 29540068 DOI: 10.1080/17474124.2018.1453356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoimmune hepatitis lacks a quantifiable biomarker that is close to its pathogenic mechanisms and that accurately reflects inflammatory activity, correlates with treatment response, and ensures inactive disease before treatment withdrawal. Areas covered: Micro-ribonucleic acids, programmed death-1 protein and its ligands, macrophage migration inhibitory factor, soluble CD163, B cell activating factor, and metabolite patterns in blood were considered the leading candidates as therapeutic biomarkers after search of PubMed from August 1981 to August 2017 using the search words 'biomarkers of autoimmune hepatitis'. Expert commentary: Each of the candidate biomarkers is close to the putative pathogenic mechanisms of autoimmune hepatitis, and each has attributes that support its potential role as a surrogate marker of inflammatory activity that can be monitored during treatment. Future studies must demonstrate the superiority of each biomarker to conventional indices of inflammatory activity and validate their correlation with treatment response and outcome. A reliable therapeutic biomarker would facilitate the individualization of current management algorithms, ensure that pathogenic mechanisms were disrupted or eliminated prior to treatment withdrawal, and reduce the frequency of relapse or unnecessary protracted therapy. The biomarker might also prove to be a target of next-generation therapies.
Collapse
Affiliation(s)
- Albert J Czaja
- a Division of Gastroenterology and Hepatology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
28
|
Plasma microRNA panel is a novel biomarker for focal segmental glomerulosclerosis and associated with podocyte apoptosis. Cell Death Dis 2018; 9:533. [PMID: 29748623 PMCID: PMC5945632 DOI: 10.1038/s41419-018-0569-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a frequent glomerular disease, and is the common cause of nephrotic syndrome. However, there is no validated diagnostic blood biomarker for FSGS. Here, we performed a real-time PCR-based high-throughput miRNA profiling to identify the plasma signature for FSGS. We found four miRNAs (miR-17, miR-451, miR-106a, and miR-19b) were significantly downregulated in the plasma of FSGS patients (n = 97) compared with healthy controls (n = 124) in the training, validation, and blinded-test phases. The miRNA panel produced an AUC value of 0.82, and was associated with FSGS severity and histologic classification. A three-miRNA panel, including miR-17, miR-451, and miR-106a was related to FSGS remission. Furthermore, the downregulation of plasma-miRNA signature was not detected in disease controls (n = 119) such as IgA nephropathy (IgAN), mesangial proliferative glomerulonephritis (MSPGN), and membranous nephropathy (MN), and the miRNA panel discriminated between FSGS and disease controls. Pathway analysis showed that the four-miRNA panel may cooperatively regulate the pathways involved in the development of FSGS, such as apoptosis. We identified that phosphatase and tensin homolog (PTEN), Bcl-2-like protein 11 (BCL2L11), and chemokine (C-X-C motif) ligand 14 (CXCL14) were targets of miR-106a in human podocyte. Additionally, miR-106a overexpression suppressed podocyte apoptosis in vitro and the downregulation of four-miRNA panel probably resulted in the enhanced apoptosis in podocyte during FSGS development. Taken together, our data show that the plasma-miRNA panel is a potential independent diagnostic and prognostic factor for FSGS. Above miRNAs are involved in FSGS pathogenesis through regulating podocyte apoptosis.
Collapse
|
29
|
Halloran PF, Venner JM, Madill-Thomsen KS, Einecke G, Parkes MD, Hidalgo LG, Famulski KS. Review: The transcripts associated with organ allograft rejection. Am J Transplant 2018; 18:785-795. [PMID: 29178397 DOI: 10.1111/ajt.14600] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023]
Abstract
The molecular mechanisms operating in human organ transplant rejection are best inferred from the mRNAs expressed in biopsies because the corresponding proteins often have low expression and short half-lives, while small non-coding RNAs lack specificity. Associations should be characterized in a population that rigorously identifies T cell-mediated (TCMR) and antibody-mediated rejection (ABMR). This is best achieved in kidney transplant biopsies, but the results are generalizable to heart, lung, or liver transplants. Associations can be universal (all rejection), TCMR-selective, or ABMR-selective, with universal being strongest and ABMR-selective weakest. Top universal transcripts are IFNG-inducible (eg, CXCL11 IDO1, WARS) or shared by effector T cells (ETCs) and NK cells (eg, KLRD1, CCL4). TCMR-selective transcripts are expressed in activated ETCs (eg, CTLA4, IFNG), activated (eg, ADAMDEC1), or IFNG-induced macrophages (eg, ANKRD22). ABMR-selective transcripts are expressed in NK cells (eg, FGFBP2, GNLY) and endothelial cells (eg, ROBO4, DARC). Transcript associations are highly reproducible between biopsy sets when the same rejection definitions, case mix, algorithm, and technology are applied, but exact ranks will vary. Previously published rejection-associated transcripts resemble universal and TCMR-selective transcripts due to incomplete representation of ABMR. Rejection-associated transcripts are never completely rejection-specific because they are shared with the stereotyped response-to-injury and innate immunity.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | - Jeffery M Venner
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - Katelynn S Madill-Thomsen
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Michael D Parkes
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - Luis G Hidalgo
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Konrad S Famulski
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Expression and Regulation Profile of Mature MicroRNA in the Pig: Relevance to Xenotransplantation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2983908. [PMID: 29750148 PMCID: PMC5884403 DOI: 10.1155/2018/2983908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
The pig is an important source of meat production and provides a valuable model for certain human diseases. MicroRNA (miRNA), which is noncoding RNA and regulates gene expression at the posttranscriptional level, plays a critical role in various biological processes. Studies on identification and function of mature miRNAs in multiple pig tissues are increasing, yet the literature is limited. Therefore, we reviewed current research to determine the miRNAs expressed in specific pig tissues that are involved in carcass values (including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated.
Collapse
|
31
|
Huang L, Li F, Fu Q, Yang X, Deng S, Wei L. Role of miR-449a in the Activation and Metabolism of CD4 + T Cells. Transplant Proc 2018; 50:1519-1524. [PMID: 29880381 DOI: 10.1016/j.transproceed.2018.02.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute rejection is a significant challenge after organ transplantation. The CD4+ T-cell‒mediated immune response plays an important role in acute transplant rejection. It was also found that miR-449a microRNA regulates the alloimmune response in a model of heart transplantation in mice. Our goal was to determine the role of miR-449a in the regulation of CD4+ T cells. METHODS We examined miR-449a expression in peripheral blood mononuclear cells (PBMCs) and graft-infiltrating lymphocytes (GILs) between syngeneic transplant and allogeneic transplant groups on day 7 post‒heart transplantation. We also examined miR-449a expression in CD4+ T-cell activation and mixed-lymphocyte reactions (MLRs) in vitro. To evaluate the effect of miR-449a on CD4+ T-cell metabolism, we analyzed key metabolic parameters using XFp extracellular flux analyses. RESULTS Our in vivo heart transplant models showed that the expression of miR-449a in PBMCs and in GILs significantly increased in the allogeneic groups in comparison to the syngeneic groups (P < .01). Furthermore, in vitro analysis confirmed that the expression of miR-449a was significantly elevated in activated CD4+ T cells. Reduction of miR-449a expression in CD4+ T cells decreased the mitochondrial respiration in the same CD4+ T cells. CONCLUSION Our results reveal that miR-449a microRNA was elevated in allogeneic heart allografts. This correlated with an increased miR-449a expression in activated CD4+ T cells. Inhibition of miR-449a in activated CD4+ T cells coincided with reduced mitochondrial respiration, suggesting that miR-449a influences CD4+ T-cell activation during the alloimmune response by regulating metabolic status.
Collapse
Affiliation(s)
- L Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - F Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Q Fu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - X Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - S Deng
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - L Wei
- Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Organ Transplantation Translational Medicine Key Laboratory of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Role of biobanks in transplantation. Ann Med Surg (Lond) 2018; 28:30-33. [PMID: 29744049 PMCID: PMC5938524 DOI: 10.1016/j.amsu.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
The establishment of bio-banks together with high throughput technologies, such as genomics, transcriptomics and proteomics has opened new frontiers in biomarker discovery and the development of systems biology approaches to identifying key pathways that could be exploited to improve outcomes of solid organ transplantation. One of the major challenges in organ donation has been the lack of access to large scale well characterised material to facilitate projects that aim to characterise injury to donor organs and identify biomarkers. This may have hampered research in the field of organ donation by not allowing researchers to materials of high quality and lower pre-analytical variability. We describe in this manuscript the need for bio-banks in organ donation, research opportunities and the particular challenges in establishing such an initiative. We address: The main challenges in transplantation. Underpinning cellular processes of injury and repair. The role of biobanks can be used in transplantation.
Collapse
|
33
|
Li C, Zhao Q, Zhang W, Chen M, Ju W, Wu L, Han M, Ma Y, Zhu X, Wang D, Guo Z, He X. MicroRNA-146b-5p Identified in Porcine Liver Donation Model is Associated with Early Allograft Dysfunction in Human Liver Transplantation. Med Sci Monit 2017; 23:5876-5884. [PMID: 29227984 PMCID: PMC5736328 DOI: 10.12659/msm.907542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Poor transplant outcome was observed in donation after brain death followed by circulatory death (DBCD), since the donor organs suffered both cytokine storm of brain death and warm ischemia injury. MicroRNAs (miRNAs) have emerged as promising disease biomarkers, so we sought to establish a miRNA signature of porcine DBCD and verify the findings in human liver transplantation. MATERIAL AND METHODS MiRNA expression was determined with miRNA sequencing in 3 types of the porcine model of organ donation, including donation after brain death (DBD) group, donation after circulatory death (DCD) group, and DBCD group. Bioinformatics analysis was performed to reveal the potential regulatory behavior of target miRNA. Human liver graft biopsy samples after reperfusion detected by fluorescence in situ hybridization were used to verify the expression of target miRNA. RESULTS We compared miRNA expression profiles of the 3 donation types. The porcine liver graft miR-146b was significantly increased and selected in the DBCD group versus in the DBD and DCD groups. The donor liver expression of human miR-146b-5p, which is homologous to porcine miR-146b, was further examined in 42 cases of human liver transplantations. High expression of miR-146b-5p successfully predicted the post-transplant early allograft dysfunction (EAD) with the area under the ROC curve (AUC) 0.759 (P=0.004). CONCLUSIONS Our results revealed the miRNA signature of DBCD liver grafts for the first time. The miR-146b-5p may have important clinical implications for monitoring liver graft function and predicating transplant outcomes.
Collapse
Affiliation(s)
- Cheukfai Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Wei Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland)
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong, China (mainland).,Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
34
|
Ng KTP, Lo CM, Wong N, Li CX, Qi X, Liu XB, Geng W, Yeung OWH, Ma YY, Chan SC, Man K. Early-phase circulating miRNAs predict tumor recurrence and survival of hepatocellular carcinoma patients after liver transplantation. Oncotarget 2017; 7:19824-39. [PMID: 26918346 PMCID: PMC4991421 DOI: 10.18632/oncotarget.7627] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022] Open
Abstract
Post-liver transplantation tumor recurrence is a major challenge for hepatocellular carcinoma (HCC) recipients. We aimed to identify early-phase circulating microRNAs after liver transplantation for predicting tumor recurrence and survival of HCC recipients. Circulating microRNA profiles at early-phase (2-hour after portal vein reperfusion) after liver transplantation were compared between HCC recipients with (n=4) and without tumor recurrence (n=8) by microarray analyses. Candidate microRNAs were validated in 62 HCC recipients by quantitative RT-PCR. The prognostic values of microRNAs for tumor recurrence and survival were examined. Simulated in vitro ischemia-reperfusion injury models were employed to characterize the possible mechanism of up-regulation of circulating microRNAs. Our results showed that up-regulation of circulating miR-148a, miR-1246 or miR-1290 at early-phase was significantly associated with HCC recurrence after liver transplantation. Among them, miR-148a (p=0.030) and miR-1246 (p=0.009) were significant predictors of HCC recurrence. MiR-1246 was an independent predictor of overall (p=0.023) and disease-free survival (p=0.020) of HCC recipients. The level of early-phase circulating miR-1246 was positively correlated with serum AST and ALT levels in HCC recipients after liver transplantation. The expression of hepatic miR-1246 was positively correlated with TNFα mRNA. In vitro experiments indicated that injury-induced activation and differentiation of macrophages significantly elevated the expression and secretion of miR-1246. In conclusion, early-phase circulating miR-1246 is an indicator of hepatic injury and a novel prognostic biomarker for tumor recurrence and survival of HCC recipients after liver transplantation.
Collapse
Affiliation(s)
- Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Chang Xian Li
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiang Qi
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao Bing Liu
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wei Geng
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Oscar Wai-Ho Yeung
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuen Yuen Ma
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - See Ching Chan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
35
|
Oda H, Ikeguchi R, Aoyama T, Ohta S, Noguchi T, Kaizawa Y, Yurie H, Takeuchi H, Yamamoto K, Matsuda S. MicroRNAs are potential objective and early biomarkers for acute rejection of transplanted limbs in a rat model. Microsurgery 2017; 37:930-936. [DOI: 10.1002/micr.30236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroki Oda
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Tomoki Aoyama
- Department of Physical TherapyHuman Health Sciences, Graduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Souichi Ohta
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Takashi Noguchi
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Yukitoshi Kaizawa
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Hirofumi Yurie
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Hisataka Takeuchi
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| | - Koji Yamamoto
- Department of Biomedical Engineering, Faculty of Life and Medical SciencesDoshisha UniversityKyotanabe, Kyoto Japan
| | - Shuichi Matsuda
- Department of Orthopaedic SurgeryGraduate School of Medicine, Kyoto UniversityKyoto Japan
| |
Collapse
|
36
|
Guo S, Guo X, Wang S, Nie Q, Ni G, Wang C. Role of miR-29 as marker of risk of acute rejection after heart transplant. Br J Biomed Sci 2017; 74:187-192. [PMID: 28745139 DOI: 10.1080/09674845.2017.1333265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circulating miRNAs are potential biomarkers of the pathogenesis of certain diseases and in monitoring therapeutic responses. We hypothesized that serum miR-29 can determine risk of acute cardiac allograft rejection. METHODS Peripheral vein blood was collected from 50 healthy volunteers and 506 patients during post-transplant surveillance. Serum cardiac troponin I (cTnI) and miR-29 was detected by ELISA and qRT-PCR assay respectively. Rejection risk was defined as International Society of Heart and Lung Transplant score from leukocyte infiltration of an endomyocardial biopsy. No evidence of rejection was defined as grade R0, mild as R1, moderate as 2R and severe as 3R. Specificity and sensitivity of miR-29 to discriminate rejection was determined by the area under the curve (AUC) of receiver operating characteristic curve analysis. Correlations between miR29 and rejection grade were compared. RESULTS Serum miR-29 was 100.8 ± 42.4 copies/μl in R0 groups (P = 0.164 versus controls), 537.5 ± 84.3 copies/μl in R1 groups (P = 0.024) and 1478.4 ± 198.7 copies/μl in the joint R2/R3 groups (P = 0.001). MiR-29 was 1963.5 ± 214.7 six months after transplantation, 1242.5 ± 103.8 after a year, 825.6 ± 58.2 after 2 years, 413.8 ± 61.9 after 3 years and 270.6 ± 34.6 ng/mL after 4 years (P < 0.001). The level of miR-29 correlated positively with cTnI, NT-proBNP, white blood cell counts, and negatively with lymphocyte counts (all P < 0.001). The AUC values (95% CI) for discriminating R0 and R1 was 0.81 (0.75-0.89), and was 0.79 (0.72-0.86) for R0 and R2/R3 (both P < 0.01). CONCLUSION miR-29 is a promising predictor of the risk of heart transplant rejection.
Collapse
Affiliation(s)
- S Guo
- a Department of Clinical Medicine , Harbin Medical University , Harbin , China
| | - X Guo
- b Departmentment of Anesthesia , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Science , Guangzhou , China
| | - S Wang
- b Departmentment of Anesthesia , Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangdong Academy of Medical Science , Guangzhou , China
| | - Q Nie
- c State Key Laboratory of Cardiovascular Disease , Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - G Ni
- d Department of Heart Transplantation , The Affiliated Hospital of Xiamen University , Xiamen , China
| | - C Wang
- e Department of Heart Transplantation , Wuhan Union Hospital , Wuhan , China
| |
Collapse
|
37
|
Rancan L, Simón C, Marchal-Duval E, Casanova J, Paredes SD, Calvo A, García C, Rincón D, Turrero A, Garutti I, Vara E. Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia-Reperfusion Injury. Anesth Analg 2017; 123:1437-1447. [PMID: 27870736 DOI: 10.1213/ane.0000000000001633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. METHODS Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. RESULTS The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001). CONCLUSIONS Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.
Collapse
Affiliation(s)
- Lisa Rancan
- From the *Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Spain; Departments of †Thoracic Surgery and ‡Anesthesiology, Hospital Gregorio Marañón, Madrid, Spain; and Departments of §Physiology and ‖Biostatistics and Operational Investigation, Faculty of Medicine, Complutense University of Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Selten JW, Verhoeven CJ, Heedfeld V, Roest HP, de Jonge J, Pirenne J, van Pelt J, Ijzermans JNM, Monbaliu D, van der Laan LJW. The release of microRNA-122 during liver preservation is associated with early allograft dysfunction and graft survival after transplantation. Liver Transpl 2017; 23:946-956. [PMID: 28388830 DOI: 10.1002/lt.24766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
Early allograft dysfunction (EAD) after liver transplantation (LT) is associated with inferior graft survival. EAD is more prevalent in grafts from donation after circulatory death (DCD). However, accurate prediction of liver function remains difficult because of the lack of specific biomarkers. Recent experimental and clinical studies highlight the potential of hepatocyte-derived microRNAs (miRNAs) as sensitive, stable, and specific biomarkers of liver injury. The aim of this study was to determine whether miRNAs in graft preservation fluid are predictive for EAD after clinical LT and in an experimental DCD model. Graft preservation solutions of 83 liver grafts at the end of cold ischemia were analyzed for miRNAs by reverse transcription polymerase chain reaction. Of these grafts, 42% developed EAD after transplantation. Results were verified in pig livers (n = 36) exposed to different lengths of warm ischemia time (WIT). The absolute miR-122 levels and miR-122/miR-222 ratios in preservation fluids were significantly higher in DCD grafts (P = 0.001) and grafts developing EAD (P = 0.004). In concordance, the miR-122/miR-222 ratios in perfusion fluid correlate with serum transaminase levels within the first 24 hours after transplantation. Longterm graft survival was significantly diminished in grafts with high miR-122/miR-222 ratios (P = 0.02). In the porcine DCD model, increased WIT lead to higher absolute miR-122 levels and relative miR-122/miR-222 ratios in graft perfusion fluid (P = 0.01 and P = 0.02, respectively). High miR-122/miR-222 ratios in pig livers were also associated with high aspartate aminotransferase levels after warm oxygenated reperfusion. In conclusion, both absolute and relative miR-122 levels in graft preservation solution are associated with DCD, EAD, and early graft loss after LT. As shown in a porcine DCD model, miRNA release correlated with the length of WITs. Liver Transplantation 23 946-956 2017 AASLD.
Collapse
Affiliation(s)
- Jasmijn W Selten
- Department of Surgery, Erasmus Medical Center-University Medical Center, Rotterdam, the Netherlands
| | - Cornelia J Verhoeven
- Department of Surgery, Erasmus Medical Center-University Medical Center, Rotterdam, the Netherlands
| | - Veerle Heedfeld
- Abdominal Transplant Surgery, Department of Surgery, Catholic University of Leuven, Leuven, Belgium
| | - Henk P Roest
- Department of Surgery, Erasmus Medical Center-University Medical Center, Rotterdam, the Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus Medical Center-University Medical Center, Rotterdam, the Netherlands
| | - Jacques Pirenne
- Abdominal Transplant Surgery, Department of Surgery, Catholic University of Leuven, Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, Liver Research Facility, Catholic University of Leuven, Leuven, Belgium
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus Medical Center-University Medical Center, Rotterdam, the Netherlands
| | - Diethard Monbaliu
- Abdominal Transplant Surgery, Department of Surgery, Catholic University of Leuven, Leuven, Belgium
| | - Luc J W van der Laan
- Department of Surgery, Erasmus Medical Center-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
39
|
Revilla-Nuin B, de Bejar Á, Martínez-Alarcón L, Herrero JI, Martínez-Cáceres CM, Ramírez P, Baroja-Mazo A, Pons JA. Differential profile of activated regulatory T cell subsets and microRNAs in tolerant liver transplant recipients. Liver Transpl 2017; 23:933-945. [PMID: 28006867 DOI: 10.1002/lt.24691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) play a potential role in operational tolerance in liver transplantation (LT) patients, and microRNAs (miRNAs) are known to be involved in immunological responses and tolerance. Thus, we analyzed the implication of different peripheral blood Treg subsets and miRNAs on LT tolerance in 24 tolerant (Tol) and 23 non-tolerant (non-Tol) LT recipients by cellular, genetic, and epigenetic approximation. Non-Tol patients had a lower demethylation rate of the forkhead box P3 (FOXP3) regulatory T cell-specific demethylated region (TSDR) than Tol patients that correlated with the frequency of circulating Tregs. Tol patients presented a different signature of Treg subset markers compared with non-Tol patients with increased expression of HELIOS and FOXP3 and a higher proportion of latency-associated peptide (LAP)+ Tregs and CD45RA- human leukocyte antigen D related (HLA-DR)+ activated effector-memory Tregs. The expression of miR95, miR24, miR31, miR146a, and miR155 was higher in Tol than in non-Tol patients and was positively correlated with activated Treg markers. In conclusion, these data suggest that activated effector-memory Tregs and a TSDR-demethylation state of Tregs may play a role in the complex system of regulation of LT tolerance. In addition, we describe a set of miRNAs differentially expressed in human LT Tol patients providing suggestive evidence that miRNAs are implied in the preservation of self-tolerance as mediated by Tregs. Liver Transplantation 23 933-945 2017 AASLD.
Collapse
Affiliation(s)
- Beatriz Revilla-Nuin
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - África de Bejar
- Clinical Laboratory Unit, Hospital General Universitario Santa Lucía, Cartagena, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - José Ignacio Herrero
- Liver Unit, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Carlos Manuel Martínez-Cáceres
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - Pablo Ramírez
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain.,Division of Gastroenterology and Hepatology and Liver Transplant Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain
| | - José Antonio Pons
- Biomedical Research Institute of Murcia, University Clinical Hospital "Virgen de la Arrixaca," University of Murcia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Murcia, Spain.,Division of Gastroenterology and Hepatology and Liver Transplant Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
40
|
The Use of Genomics and Pathway Analysis in Our Understanding and Prediction of Clinical Renal Transplant Injury. Transplantation 2017; 100:1405-14. [PMID: 26447506 DOI: 10.1097/tp.0000000000000943] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development and application of high-throughput molecular profiling have transformed the study of human diseases. The problem of handling large, complex data sets has been facilitated by advances in complex computational analysis. In this review, the recent literature regarding the application of transcriptional genomic information to renal transplantation, with specific reference to acute rejection, acute kidney injury in allografts, chronic allograft injury, and tolerance is discussed, as is the current published data regarding other "omics" strategies-proteomics, metabolomics, and the microRNA transcriptome. These data have shed new light on our understanding of the pathogenesis of specific disease conditions after renal transplantation, but their utility as a biomarker of disease has been hampered by study design and sample size. This review aims to highlight the opportunities and obstacles that exist with genomics and other related technologies to better understand and predict renal allograft outcome.
Collapse
|
41
|
Celen E, Ertosun MG, Kocak H, Dinckan A, Yoldas B. Expression Profile of MicroRNA Biogenesis Components in Renal Transplant Patients. Transplant Proc 2017; 49:472-476. [PMID: 28340815 DOI: 10.1016/j.transproceed.2017.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) and the miRNA biogenesis components are potential biomarkers of some prevalent diseases, such as cancer and diabetes. In light of this information, we aimed to investigate the expression profiles of miRNA biogenesis components in renal transplant patients before and after transplantation and how these profiles are related to immunosuppressive treatment and clinical outcomes of these patients. METHODS In this study, gene and protein expression profiles of Dicer, Drosha, Pasha (DGCR8), Exportin5 (XPO5), and Argonaute2 (AGO2) in peripheral blood mononuclear cells (PBMCs) of renal transplant patients were evaluated by means of real-time quantitative polymerase chain reaction and Western blot methods before and 3 months after transplantation. Patients who had transplant procedures for the first time were included in the study. RESULTS Gene expressions were significantly reduced after transplantation. The reduction rate of expressions in 1 patient undergoing chronic rejection was higher. In addition, in patients under everolimus treatment, gene expression of Dicer did not change and gene expression of AGO2 increased. Dicer, Drosha, DGCR8, and AGO2 protein expressions were reduced in all patients, but no change was observed in XPO5 protein expression in nonrejecting patients. Interestingly, in the patient undergoing chronic rejection, protein expression profiles other than Dicer were distinctive from nonrejecting patients. However, XPO5 protein expression was higher in that patient. CONCLUSIONS Our study shows the importance of the global effect of immunosuppressive treatment on the miRNA biogenesis pathway. miRNA biogenesis components are potential biomarkers indicative of graft outcome and pharmacologic target molecules.
Collapse
Affiliation(s)
- E Celen
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - M G Ertosun
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - H Kocak
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - A Dinckan
- Department of General Surgery, Faculty of Medicine, İstanbul Yeni Yüzyıl University, İstanbul, Turkey
| | - B Yoldas
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
42
|
Precision monitoring of immunotherapies in solid organ and hematopoietic stem cell transplantation. Adv Drug Deliv Rev 2017. [PMID: 28625828 DOI: 10.1016/j.addr.2017.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharmacological immunotherapies are a key component of post-transplant therapy in solid-organ and hematopoietic stem cell transplantation. In current clinical practice, immunotherapies largely follow a one-size fits all approach, leaving a large portion of transplant recipients either over- or under-immunosuppressed, and consequently at risk of infections or immune-mediated complications. Our goal here is to review recent and rapid advances in precision and genomic medicine approaches to monitoring of post-transplant immunotherapies. We will discuss recent advances in precision measurements of pharmacological immunosuppression, measurements of the plasma and gut microbiome, strategies to monitor for allograft injury and post-transplant malignancies via circulating cell-free DNA, and comprehensive measurements of the B and T cell immune cell repertoire.
Collapse
|
43
|
van de Vrie M, Deegens JK, Eikmans M, van der Vlag J, Hilbrands LB. Urinary MicroRNA as Biomarker in Renal Transplantation. Am J Transplant 2017; 17:1160-1166. [PMID: 27743494 PMCID: PMC5434819 DOI: 10.1111/ajt.14082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 01/25/2023]
Abstract
Urine represents a noninvasive source in which proteins and nucleic acids can be assessed. Such analytes may function as biomarkers to monitor kidney graft pathology at every desired frequency, thereby providing a time window to prevent graft damage by therapeutic intervention. Recently, several proteins have been measured in urine as markers of graft injury. However, the specificity is limited, and measuring urinary proteins generally lacks the potential to predict early kidney graft damage. Currently, urinary mRNA and microRNA are being investigated to evaluate the prognostic value of changes in gene expression during the initial stages of graft damage. At such time point, a change in treatment regimen and dosage is expected to have maximum potency to minimize future decline in graft function. Both mRNA and microRNAs have shown promising results in both detection and prediction of graft injury. An advantage of microRNAs compared to mRNA molecules is their stability, a characteristic that is beneficial when working with urine samples. In this review, we provide the current state of urinary biomarkers in renal transplantation, with a focus on urinary microRNA. In addition, we discuss the methods used to study urinary microRNA expression.
Collapse
Affiliation(s)
- M. van de Vrie
- Department of NephrologyRadboud University Medical CenterNijmegenthe Netherlands
| | - J. K. Deegens
- Department of NephrologyRadboud University Medical CenterNijmegenthe Netherlands
| | - M. Eikmans
- Department of ImmunohematologyLeiden University Medical CenterLeidenthe Netherlands
| | - J. van der Vlag
- Department of NephrologyRadboud University Medical CenterNijmegenthe Netherlands
| | - L. B. Hilbrands
- Department of NephrologyRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
44
|
Sukma Dewi I, Hollander Z, Lam KK, McManus JW, Tebbutt SJ, Ng RT, Keown PA, McMaster RW, McManus BM, Gidlöf O, Öhman J. Association of Serum MiR-142-3p and MiR-101-3p Levels with Acute Cellular Rejection after Heart Transplantation. PLoS One 2017; 12:e0170842. [PMID: 28125729 PMCID: PMC5268768 DOI: 10.1371/journal.pone.0170842] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 11/28/2022] Open
Abstract
Background Identifying non-invasive and reliable blood-derived biomarkers for early detection of acute cellular rejection in heart transplant recipients is of great importance in clinical practice. MicroRNAs are small molecules found to be stable in serum and their expression patterns reflect both physiological and underlying pathological conditions in human. Methods We compared a group of heart transplant recipients with histologically-verified acute cellular rejection (ACR, n = 26) with a control group of heart transplant recipients without allograft rejection (NR, n = 37) by assessing the levels of a select set of microRNAs in serum specimens. Results The levels of seven microRNAs, miR-142-3p, miR-101-3p, miR-424-5p, miR-27a-3p, miR-144-3p, miR-339-3p and miR-326 were significantly higher in ACR group compared to the control group and could discriminate between patients with and without allograft rejection. MiR-142-3p and miR-101-3p had the best diagnostic test performance among the microRNAs tested. Serum levels of miR-142-3p and miR-101-3p were independent of calcineurin inhibitor levels, as measured by tacrolimus and cyclosporin; kidney function, as measured by creatinine level, and general inflammation state, as measured by CRP level. Conclusion This study demonstrated two microRNAs, miR-142-3p and miR-101-3p, that could be relevant as non-invasive diagnostic tools for identifying heart transplant patients with acute cellular rejection.
Collapse
Affiliation(s)
- Ihdina Sukma Dewi
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
- * E-mail:
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- UBC James Hogg Research Centre, Vancouver, Canada
| | - Karen K. Lam
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
| | | | - Scott J. Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- UBC James Hogg Research Centre, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Raymond T. Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- Department of Computer Science, University of British Columbia, Vancouver, Canada
| | | | | | - Bruce M. McManus
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
- UBC James Hogg Research Centre, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Olof Gidlöf
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jenny Öhman
- Department of Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Jaswani P, Prakash S, Dhar A, Sharma RK, Prasad N, Agrawal S. MicroRNAs Involvement in Renal Pathophysiology: A Bird's Eye View. Indian J Nephrol 2017; 27:337-341. [PMID: 28904427 PMCID: PMC5590408 DOI: 10.4103/ijn.ijn_264_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are known to suppress gene expression by binding to messenger RNAs and in turn regulate different pathophysiological processes. Transforming growth factor-β, mitogen-activated protein kinase signaling, and Wnt signaling-like major pathways associated with miRNAs are involved with kidney diseases. The discovery of miRNAs has provided new insights into kidney pathologies and may provide effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including diabetic nephropathy, lupus nephritis, hypertension, nephritic syndrome, acute kidney injury, renal cell carcinoma, and renal fibrosis. miRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation, and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease diagnosis and prognosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- P Jaswani
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Prakash
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - A Dhar
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - R K Sharma
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - N Prasad
- Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S Agrawal
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
46
|
Picascia A, Grimaldi V, Napoli C. From HLA typing to anti-HLA antibody detection and beyond: The road ahead. Transplant Rev (Orlando) 2016; 30:187-94. [DOI: 10.1016/j.trre.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/07/2016] [Accepted: 07/22/2016] [Indexed: 01/27/2023]
|
47
|
Sá H, Leal R, Rosa MS. Renal transplant immunology in the last 20 years: A revolution towards graft and patient survival improvement. Int Rev Immunol 2016; 36:182-203. [PMID: 27682364 DOI: 10.1080/08830185.2016.1225300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To deride the hope of progress is the ultimate fatuity, the last word in poverty of spirit and meanness of mind. There is no need to be dismayed by the fact that we cannot yet envisage a definitive solution of our problems, a resting-place beyond which we need not try to go. -P.B. Medawar, 1969 * Thomas E. Starlz, also known as the Father of Clinical Transplantation, once said that organ transplantation was the supreme exception to the rule that most major advances in medicine spring from discoveries in basic science [Starzl T. The mystique of organ transplantation. J Am Coll Surg 2005 Aug;201(2):160-170]. In fact, the first successful identical-twin kidney transplantation performed by Murray's team in December 1954 (Murray J et al. Renal homotransplantations in identical twins. Surg Forum 1955;6:432-436) was the example of an upside down translation medicine: Human clinical transplantation began and researchers tried to understand the underlying immune response and how to control the powerful rejection pathways through experimental models. In the last 20 years, we have witnessed an amazing progress in the knowledge of immunological mechanisms regarding alloimmune response and an outstanding evolution on the identification and characterization of major and minor histocompatibility antigens. This review presents an historical and clinical perspective of those important advances in kidney transplantation immunology in the last 20 years, which contributed to the improvement in patients' quality of life and the survival of end-stage renal patients. In spite of these significant progresses, some areas still need substantial progress, such as the definition of non-invasive biomarkers for acute rejection; the continuous reduction of immunosuppression; the extension of graft survival, and finally the achievement of real graft tolerance extended to HLA mismatch donor: recipient pairs.
Collapse
Affiliation(s)
- Helena Sá
- a Department of Nephrology , Centro Hospitalar e Universitário de Coimbra , Coimbra , Portugal.,b Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,c Immunology Center, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rita Leal
- a Department of Nephrology , Centro Hospitalar e Universitário de Coimbra , Coimbra , Portugal
| | | |
Collapse
|
48
|
Zhou M, Hara H, Dai Y, Mou L, Cooper DKC, Wu C, Cai Z. Circulating Organ-Specific MicroRNAs Serve as Biomarkers in Organ-Specific Diseases: Implications for Organ Allo- and Xeno-Transplantation. Int J Mol Sci 2016; 17:ijms17081232. [PMID: 27490531 PMCID: PMC5000630 DOI: 10.3390/ijms17081232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Different cell types possess different miRNA expression profiles, and cell/tissue/organ-specific miRNAs (or profiles) indicate different diseases. Circulating miRNA is either actively secreted by living cells or passively released during cell death. Circulating cell/tissue/organ-specific miRNA may serve as a non-invasive biomarker for allo- or xeno-transplantation to monitor organ survival and immune rejection. In this review, we summarize the proof of concept that circulating organ-specific miRNAs serve as non-invasive biomarkers for a wide spectrum of clinical organ-specific manifestations such as liver-related disease, heart-related disease, kidney-related disease, and lung-related disease. Furthermore, we summarize how circulating organ-specific miRNAs may have advantages over conventional methods for monitoring immune rejection in organ transplantation. Finally, we discuss the implications and challenges of applying miRNA to monitor organ survival and immune rejection in allo- or xeno-transplantation.
Collapse
Affiliation(s)
- Ming Zhou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518039, China.
| |
Collapse
|
49
|
The Role of Biomarkers in the Diagnosis and Risk Stratification of Acute Graft-versus-Host Disease: A Systematic Review. Biol Blood Marrow Transplant 2016; 22:1552-1564. [PMID: 27158050 DOI: 10.1016/j.bbmt.2016.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is an increasingly used curative modality for hematologic malignancies and other benign conditions. Attempts to reduce morbidity and mortality and improve survival in patients undergoing HCT are crucial. The ability to diagnose acute graft-versus-host disease (aGVHD) in a timely manner, or to even predict aGVHD before clinical manifestations, along with the accurate stratification of these patients, are critical steps to improve the treatment and outcomes of these patients. Many novel biomarkers that may help achieve these goals have been studied recently. This overview is intended to assist clinicians and investigators by providing a comprehensive review and analytical interpretation of the current knowledge concerning aGVHD and biomarkers likely to prove useful in diagnosis and risk stratification of this condition, along with the difficulties that hamper this approach.
Collapse
|
50
|
Ladak SS, Ward C, Ali S. The potential role of microRNAs in lung allograft rejection. J Heart Lung Transplant 2016; 35:550-9. [DOI: 10.1016/j.healun.2016.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/18/2016] [Accepted: 03/21/2016] [Indexed: 01/13/2023] Open
|