1
|
Martinez-Gutierrez A, Sendros J, Noya T, González MC. Novel transethosome coencapsulated combination for acne treatment: in-vitro efficacy and ex-vivo biodistribution studies. Ital J Dermatol Venerol 2025; 160:7-11. [PMID: 40026043 DOI: 10.23736/s2784-8671.24.07982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BACKGROUND Acne vulgaris is a skin condition affecting approximately 85% of young adults. It is influenced by androgens and primarily occurs in the pilosebaceous unit, where inflammation and obstruction happen. Hyperseborrhea and hyperkeratinization lead to increased levels of fatty acids and necrotic keratinocytes, promoting the proliferation of C. acnes phylotype IA1. METHODS Here, the in-vitro efficacy of a novel combination on the main processes involved in acne was studied. Furthermore, the combination was coencapsulated in transethosomes to target the pilosebaceous unit, and the biodistribution was analyzed ex vivo by fluorescence microscopy. RESULTS The combination of compounds reduced inflammatory markers levels, sebum production and 5α-Reductase levels while it induced autophagy and FOXO1 nuclear levels in sebocytes. The compounds coencapsulated in transethosomes reached the pilosebaceous unit as proven by the ex vivo analysis. CONCLUSIONS The proposed combination of compounds is a promising approach to be included in topical products for the treatment of acne vulgaris.
Collapse
Affiliation(s)
| | - Javier Sendros
- Research and Development Department, Mesoestetic Pharma Group, Barcelona, Spain
| | - Teresa Noya
- Research and Development Department, Mesoestetic Pharma Group, Barcelona, Spain
| | - Mari C González
- Research and Development Department, Mesoestetic Pharma Group, Barcelona, Spain
| |
Collapse
|
2
|
Muhaidat J, Qablan A, Gharaibeh F, Albataineh GH, Abdo N, Alshiyab D, Al-Qarqaz F. The Effect of Whey Protein Supplements on Acne Vulgaris among Male Adolescents and Young Adults: A Case-Control Study from North of Jordan. Dermatol Res Pract 2024; 2024:2158229. [PMID: 38633058 PMCID: PMC11022506 DOI: 10.1155/2024/2158229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Background Young people and athletes willing to gain muscle mass and strength are likely to consume whey protein supplements. The effect of milk as a dietary source of whey protein on acne is still controversial. At the same time, a few studies have suggested an acnegenic impact of whey protein supplements. Objectives To examine the association of whey protein supplements on acne risk among male adolescents and young adults. Materials and Methods 201 male teenagers and young adults attending fitness centers in Irbid/Jordan were involved in an observational case-control research; those with acne were deemed cases, and those without acne were considered controls. The primary outcome was a comparison of the proportion of participants in each group who consumed whey protein supplements within the previous three months. Results 100 acne-afflicted participants were compared to 101 healthy controls with similar demographics, including age, body mass index, educational level, and smoking habits, as well as intake of vitamin B12, corticosteroids, and anabolic steroids. However, considerably more participants in the acne group (47%) were taking whey protein supplements than in the control group (27.7%) (p=0.0047). The significance of this difference was maintained after multivariate analysis. Conclusion This case-control study provides evidence of a positive association between whey protein consumption and acne risk.
Collapse
Affiliation(s)
- Jihan Muhaidat
- Department of Dermatology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| | - Almutazballlah Qablan
- Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| | - Faris Gharaibeh
- Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| | - Ghaith H. Albataineh
- Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| | - Nour Abdo
- Department of Public Health and Family Medicine, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| | - Diala Alshiyab
- Department of Dermatology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| | - Firas Al-Qarqaz
- Department of Dermatology, Faculty of Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 2110, Jordan
| |
Collapse
|
3
|
Cruz S, Vecerek N, Elbuluk N. Targeting Inflammation in Acne: Current Treatments and Future Prospects. Am J Clin Dermatol 2023; 24:681-694. [PMID: 37328614 PMCID: PMC10460329 DOI: 10.1007/s40257-023-00789-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/18/2023]
Abstract
Acne is a common, chronic inflammatory condition affecting millions of people worldwide, with significant negative impact on quality of life and mental health. Acne is characterized by comedones, inflammatory papules, pustules, and nodulocystic lesions, with long-lasting sequelae including scarring and dyspigmentation, the latter of which is more common in skin of color. The four main pillars of acne pathophysiology include alteration of sebum production and concentration, hyperkeratinization of the follicular unit, Cutibacterium acnes strains, and an inflammatory immune response. Newer research has provided greater insight into these pathophysiologic categories. This greater understanding of acne pathogenesis has led to numerous new and emerging treatment modalities. These modalities include combinations of existing treatments, repurposing of existing agents historically used for other conditions, new topical treatments, novel antibiotics, topical and oral probiotics, and various procedural devices. This article will provide an overview of emerging treatments of acne and their link to our current and improved understanding of acne pathogenesis.
Collapse
Affiliation(s)
- Sebastian Cruz
- Department of Dermatology, Keck School of Medicine, University of Southern California, 830 S Flower St Ste 100, Los Angeles, CA, 90017, USA
| | - Natalia Vecerek
- Department of Dermatology, Keck School of Medicine, University of Southern California, 830 S Flower St Ste 100, Los Angeles, CA, 90017, USA
| | - Nada Elbuluk
- Department of Dermatology, Keck School of Medicine, University of Southern California, 830 S Flower St Ste 100, Los Angeles, CA, 90017, USA.
| |
Collapse
|
4
|
Xie Q, Hua X, Huang C, Liao X, Tian Z, Xu J, Zhao Y, Jiang G, Huang H, Huang C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int J Mol Sci 2022; 23:ijms232012532. [PMID: 36293387 PMCID: PMC9604292 DOI: 10.3390/ijms232012532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.
Collapse
Affiliation(s)
- Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| |
Collapse
|
5
|
Younis S, Shamim S, Nisar K, Deeba F, Mehmood S, Mumtaz S, Blumenberg M, Javed Q. Association of TNF-α polymorphisms (-857, -863 and -1031), TNF-α serum level and lipid profile with acne vulgaris. Saudi J Biol Sci 2021; 28:6615-6620. [PMID: 34764777 PMCID: PMC8568822 DOI: 10.1016/j.sjbs.2021.07.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022] Open
Abstract
Background Acne is an inflammatory condition principally affected by genetic and dietary factors. Investigation into functional polymorphisms of TNF-α gene and their association with acne vulgaris will be helpful in exploring genetic influence on skin immune mediated inflammatory events. In the present study, we analyzed association of TNF-α gene polymorphisms, its expression levels and lipid profiles in a large cohort of acne patients and controls. Methods We used PCR-RFLP to study association of TNF-α polymorphisms at −857C/T, −863C/A and −1031 T/C sites with acne vulgaris. Lipid profiles were measured using enzymatic end-point method. The serum levels of TNF-α and apolipoprotein a were measured using ELISA. NIH, LDlink was used to investigate patterns of linkage disequilibrium across south Asian reference genome (Punjabi from Lahore Pakistan). Results We found that TNF-α −863 polymorphism is strongly associated with acne in overall population as well as in gender and severity based groups of acne patients. Polymorphisms at −863 and −1031 position were in linkage disequilibrium. Importantly, TNF-α serum level was significantly increased in acne patients with severe disease symptoms. Furthermore, levels of total cholesterol (TC) and triglycerides (TG) were significantly increased, whereas high density lipoprotein cholesterol (HDL-C) level was significantly decreased in acne patients. The levels of apolipoprotein a varied widely in studied populations and no significant difference was found in the analyzed groups. Conclusion In conclusion, we found that TNF-α expression increases in acne patients affected by TNF-α polymorphisms, and that the lipid profile is specifically disrupted in acne patients.
Collapse
Affiliation(s)
- Sidra Younis
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, Rawalpindi Pakistan.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,The R. O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, USA
| | - Sana Shamim
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Kanwal Nisar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, Rawalpindi Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, Rawalpindi Pakistan
| | - Miroslav Blumenberg
- The R. O. Perelman Department of Dermatology, NYU Langone Medical Center, New York, USA
| | - Qamar Javed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,School of Life Sciences, University of Bedfordshire, United Kingdom
| |
Collapse
|
6
|
Bharti S, Vadlamudi HC. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. J Recept Signal Transduct Res 2020; 41:105-116. [PMID: 32787477 DOI: 10.1080/10799893.2020.1805626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a very common pilosebaceous inflammatory disease occurring primarily on the face and also rare on the upper arms, trunk, and back, which is caused by Propionibacterium, Staphylococcus, Corynebacterium, and other species. Pathophysiology of acne comprises of irregular keratinocyte proliferation, differentiation, increased sebum output, bacterial antigens and cytokines induced inflammatory response. Treatment of acne requires proper knowledge on the pathophysiology then only the clinician can come out with a proper therapeutic dosage regimen. Understanding the pathophysiology not only includes the mechanism but also involvement of receptors. Thus, this review is framed in such a way that the authors have focused on the disease acne vulgaris, pathophysiology, transcription factors viz. the Forkhead Box O1 (FoxO1) Transcription Factor, hormones like androgens and receptors such as Histamine receptors, Retinoic receptor, Fibroblast growth factor receptors, Toll like receptor, Androgen receptor, Liver X-receptor, Melanocortin receptor, Peroxisome proliferator-activated receptor and epidermal growth factor receptors involvement in the progression of acne vulgaris.
Collapse
Affiliation(s)
- Sneha Bharti
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bangalore, India
| | | |
Collapse
|
7
|
Kruglikov IL, Scherer PE. Caveolin as a Universal Target in Dermatology. Int J Mol Sci 2019; 21:E80. [PMID: 31877626 PMCID: PMC6981867 DOI: 10.3390/ijms21010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 is strongly expressed in different dermal and subdermal cells and physically interacts with signaling molecules and receptors, among them with transforming growth factor beta (TGF-β), matrix metalloproteinases, heat shock proteins, toll-like and glucocorticoid receptors. It should therefore be heavily involved in the regulation of cellular signaling in various hyperproliferative and inflammatory skin conditions. We provide an overview of the role of the caveolin-1 expression in different hyperproliferative and inflammatory skin diseases and discuss its possible active involvement in the therapeutic effects of different well-known drugs widely applied in dermatology. We also discuss the possible role of caveolin expression in development of the drug resistance in dermatology. Caveolin-1 is not only an important pathophysiological factor in different hyperproliferative and inflammatory dermatological conditions, but can also serve as a target for their treatment. Targeted regulation of caveolin is likely to serve as a new treatment strategy in dermatology.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| |
Collapse
|
8
|
Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of Civilization - Cancer, Diabetes, Obesity and Acne - the Implication of Milk, IGF-1 and mTORC1. MAEDICA 2018; 13:273-281. [PMID: 30774725 PMCID: PMC6362881 DOI: 10.26574/maedica.2018.13.4.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutrition and food are one of the most complex aspects of human lives, being influenced by biochemical, psychological, social and cultural factors. The Western diet is the prototype of modern dietary pattern and is mainly characterized by the intake of large amounts of red meat, dairy products, refined grains and sugar. Large amounts of scientific evidence positively correlate Western diet to acne, obesity, diabetes, heart disease and cancer, the so-called "diseases of civilization". The pathophysiological common ground of all these pathologies is the IGF-1 and mTORC pathways, which will be disscussed further in this paper.
Collapse
Affiliation(s)
| | | | | | - Anca Roseanu
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Madalina Icriverzi
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | |
Collapse
|
9
|
Agamia NF, Hussein OM, Abdelmaksoud RE, Abdalla DM, Talaat IM, Zaki EI, El Tawdy A, Melnik BC. Effect of oral isotretinoin on the nucleo-cytoplasmic distribution of FoxO1 and FoxO3 proteins in sebaceous glands of patients with acne vulgaris. Exp Dermatol 2018; 27:1344-1351. [PMID: 30240097 DOI: 10.1111/exd.13787] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/22/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Oral isotretinoin is the most effective anti-acne drug with the strongest sebum-suppressive effect caused by sebocyte apoptosis. It has been hypothesized that upregulation of nuclear FoxO transcription factors and p53 mediate isotretinoin-induced sebocyte apoptosis in vivo. It is the aim of our study to analyse the distribution of the pro-apoptotic transcription factors FoxO1 and FoxO3 in the nuclear and cytoplasmic compartments of human sebocytes in vivo before and during isotretinoin treatment of acne patients. Immunohistochemical analysis of skin biopsies with antibodies distinguishing phosphorylated and non-phosphorylated human FoxO1 and FoxO3 proteins was performed before isotretinoin treatment, six weeks after initiation of isotretinoin therapy, and in acne-free control patients not treated with isotretinoin. Our in vivo study demonstrates a significant increase in the nucleo-cytoplasmic ratio of non-phosphorylated FoxO1 and FoxO3 during isotretinoin treatment of acne patients. Translational and presented experimental evidence indicates that upregulation of nuclear FoxO1 and FoxO3 proteins is involved in isotretinoin-induced pro-apoptotic signalling in sebocytes confirming the scientific hypothesis of isotretinoin-mediated upregulation of FoxO expression.
Collapse
Affiliation(s)
- Naglaa Fathi Agamia
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Osama Mohamed Hussein
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania ElSaied Abdelmaksoud
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dina Mohamed Abdalla
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Iman Mamdouh Talaat
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, UAE
| | - Eiman Ibrahim Zaki
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira El Tawdy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
10
|
Zhong C, Pu L, Fang M, Rao J, Wang X. ATRA Regulates Innate Immunity in Liver Ischemia/Reperfusion Injury via RARα/Akt/Foxo1 Signaling. Biol Pharm Bull 2018; 41:530-535. [PMID: 29607925 DOI: 10.1248/bpb.b17-00832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All-trans retinoic acid (ATRA) has been proved to protect liver from ischemia/reperfusion (IR) injury, however, its mechanism is still unclear. This study is to investigate the mechanism of effect of ATRA on innate immunity in mice liver IR injury. Before operation, mice were gavaged by ATRA at 15 mg/kg/d for two weeks, and then the liver was underwent 70% ischemia (90 min) and reperfusion (6 h). Liver function was assessed by serum alanine aminotransferase (sALT), serum aspartate aminotransferase (sAST). Real-time PCR and Western blot were to detect the level of mRNA and protein. In vitro, RAW264.7 macrophages were treatment with ATRA (1 µM) or LE540 (5 µM, a retinoic acid receptor α (RARα) receptor antagonist) before lipopolysaccharide (100 ng/mL) stimulation. In vivo, ATRA protected the liver from IR injury by improving hepatocellular function (sALT and sAST), decreasing cell apoptosis and inhibiting inflammatory response (i.e., the level of toll-like receptor 4, transcription factor nuclear factor-κBp65, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α). When RARα was blocked by LE540 in RAW264.7 macrophages, the inflammatory cytokines were enhancing, along with a decline of Akt phosphorylation but Forkhead box o (Foxo) 1, compared with the ATRA group. In summary, ATRA regulates in part the innate immunity to protect liver from IR injury by RARα/Akt/Foxo1 pathway.
Collapse
Affiliation(s)
- Chen Zhong
- Key Laboratory on Living Donor Liver Transplantation, National Health and Family Planning Commision.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University
| | - Liyong Pu
- Key Laboratory on Living Donor Liver Transplantation, National Health and Family Planning Commision.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University
| | - Mingming Fang
- Department of Neurology, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine
| | - Jianhua Rao
- Key Laboratory on Living Donor Liver Transplantation, National Health and Family Planning Commision.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University
| | - Xuehao Wang
- Key Laboratory on Living Donor Liver Transplantation, National Health and Family Planning Commision.,Department of Liver Surgery, First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
11
|
Differentiation Model Establishment and Differentiation-Related Protein Screening in Primary Cultured Human Sebocytes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7174561. [PMID: 29850553 PMCID: PMC5907408 DOI: 10.1155/2018/7174561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Sebocyte differentiation is a continuous process, but its potential molecular mechanism remains unclear. We aimed to establish a novel sebocyte differentiation model using human primary sebocytes and to identify the expression profiles of differentiation-associated proteins. Primary human sebocytes were cultured on Sebomed medium supplemented with 2% serum for 7 days. Flow cytometry showed that S phase cells were decreased time-dependently, while G1 and subG1 (apoptosis) phase cells increased under serum starvation. Transmission electron microscopy and Oil Red O staining revealed a gradual increase of intracellular lipid accumulation. Expression of proliferation marker was diminished, while expression of differentiation, apoptosis, and lipogenic markers elevated gradually during 7-day culture. iTRAQ analysis identified 3582 expressed proteins in this differentiation model. Compared with day 0, number of differentially expressed proteins was 132, 54, 321, and 96 at days 1, 3, 5, and 7, respectively. Two overexpressed proteins (S100 calcium binding protein P and ferredoxin reductase) and 2 downexpressed proteins (adenosine deaminase and keratin 10) were further confirmed by Western blot and immunohistochemistry.
Collapse
|
12
|
Mirdamadi Y, Bommhardt U, Goihl A, Guttek K, Zouboulis CC, Quist S, Gollnick H. Insulin and Insulin-like growth factor-1 can activate the phosphoinositide-3-kinase /Akt/FoxO1 pathway in T cells in vitro. DERMATO-ENDOCRINOLOGY 2017; 9:e1356518. [PMID: 29484090 PMCID: PMC5821168 DOI: 10.1080/19381980.2017.1356518] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Hyper-glycemic food increases insulin-like growth factor 1 (IGF-1) and insulin signaling and regulates endocrine responses and thereby may modulate the course of acne. Inflammation and adaptive immune responses have a pivotal role in all stages of acne. Recent hypothesis suggests that hyperglycemic food reduces nuclear forkhead box-O1 (FoxO1) transcription factor and may eventually induces acne. The aim of our study was to investigate the role of IGF-1 and insulin on the phosphoinositide-3-kinase (PI3K)/Akt/FoxO1 pathway in human primary T cells and on the molecular functions of T cells in vitro. T cells were stimulated with 0.001 μM IGF-1 or 1 μM insulin +/- 20 μM PI3K inhibitor LY294002. T cells were also exposed to SZ95 sebocyte supernatants which were pre-stimulated with IGF-1 or insulin. We found that 0.001 µM IGF-1 and 1 µM insulin activate the PI3K pathway in T cells leading to up-regulation of p-Akt and p-FoxO1 at 15 and 30 minutes. Nuclear FoxO1 was decreased and FoxO transcriptional activity was reduced. 0.001 µM IGF-1 and 1 µM insulin increased T cell proliferation but have no significant effect on Toll-like receptor2/4 (TLR) expression. Interestingly, supernatants from IGF-1- or insulin-stimulated sebocytes activated the PI3K pathway in T cells but reduced T cell proliferation. Taken together, this study helps to support that high glycemic load diet may contribute to induce activation of the PI3K pathway and increase of proliferation in human primary T cells. Factors secreted by IGF-1- and insulin-stimulated sebocytes induce the PI3K pathway in T cells and reduce T cell proliferation, which probably can reflect a protective mechanism of the sebaceous gland basal cells.
Collapse
Affiliation(s)
- Yasaman Mirdamadi
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexander Goihl
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Sven Quist
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Harald Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
13
|
Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr Metab (Lond) 2017; 14:55. [PMID: 28814964 PMCID: PMC5556685 DOI: 10.1186/s12986-017-0212-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that milk shapes the postnatal metabolic environment of the newborn infant. Based on translational research, this perspective article provides a novel mechanistic link between milk intake and milk miRNA-regulated gene expression of the transcription factor p53 and DNA methyltransferase 1 (DNMT1), two guardians of the human genome, that control transcriptional activity, cell survival, and apoptosis. Major miRNAs of milk, especially miRNA-125b, directly target TP53 and complex p53-dependent gene regulatory networks. TP53 regulates the expression of key genes involved in cell homeostasis such as FOXO1, PTEN, SESN1, SESN2, AR, IGF1R, BAK1, BIRC5, and TNFSF10. Nuclear interaction of p53 with DNMT1 controls gene silencing. The most abundant miRNA of milk and milk fat, miRNA-148a, directly targets DNMT1. Reduced DNMT1 expression further attenuates the activity of histone deacetylase 1 (HDAC1) involved in the regulation of chromatin structure and access to transcription. The presented milk-mediated miRNA-p53-DNMT1 pathway exemplified at the promoter regulation of survivin (BIRC5) provides a novel explanation for the epidemiological association between milk consumption and acne vulgaris and prostate cancer. Notably, p53- and DNMT1-targeting miRNAs of bovine and human milk survive pasteurization and share identical seed sequences, which theoretically allows the interaction of bovine miRNAs with the human genome. Persistent intake of milk-derived miRNAs that attenuate p53- and DNMT1 signaling of the human milk consumer may thus present an overlooked risk factor promoting acne vulgaris, prostate cancer, and other p53/DNMT1-related Western diseases. Therefore, bioactive miRNAs of commercial milk should be eliminated from the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
14
|
Romańska-Gocka K, Woźniak M, Kaczmarek-Skamira E, Zegarska B. The possible role of diet in the pathogenesis of adult female acne. Postepy Dermatol Alergol 2016; 33:416-420. [PMID: 28035217 PMCID: PMC5183780 DOI: 10.5114/ada.2016.63880] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/11/2016] [Indexed: 01/28/2023] Open
Abstract
Acne in adults is a chronic, increasingly common disease, especially among women. It differs in pathogenesis and clinical presentation from adolescent acne. Acne in adults is associated with Western diet, defined as high consumption of milk, high glycemic load and high calorie intake. Metabolic signals of this diet result in a significant increase in insulin/insulin growth factor 1 serum level and consequently in the molecular interplay of mammalian target of rapamycin complex 1 kinase (mTORC1)/forkhead box protein 1 (FoxO1) mediated nutrient signaling, leading to increased proliferation of keratinocytes, increased lipogenesis and sebum production and finally to aggravation of acne.
Collapse
Affiliation(s)
- Krystyna Romańska-Gocka
- Department of Cosmetology and Esthetic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Magdalena Woźniak
- Department of Cosmetology and Esthetic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Elżbieta Kaczmarek-Skamira
- Department of Cosmetology and Esthetic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Barbara Zegarska
- Department of Cosmetology and Esthetic Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
15
|
Assaf HA, Abdel-Maged WM, Elsadek BEM, Hassan MH, Adly MA, Ali SA. Survivin as a Novel Biomarker in the Pathogenesis of Acne Vulgaris and Its Correlation to Insulin-Like Growth Factor-I. DISEASE MARKERS 2016; 2016:7040312. [PMID: 27803511 PMCID: PMC5075610 DOI: 10.1155/2016/7040312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 01/10/2023]
Abstract
Survivin, a member of the inhibitor of apoptosis protein family, has an important role in cell cycle regulation. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone with wide range of biologic effects including stimulation of lipogenesis in sebaceous glands. Their overexpression in some fibrotic disorders suggests a possible implication of both IGF-I and survivin in the pathogenesis of acne and/or acne scars. The current study aimed to assess and correlate serum levels of IGF-I and survivin in patients with active acne vulgaris and postinflammatory acne scars and to evaluate their lesional expressions in comparison to healthy controls. Serum IGF-I and survivin were estimated using commercially available ELISA kits and their tissues expressions were investigated using Western blotting. Our findings suggest that IGF-I and survivin could play potential roles in the pathogenesis of active acne vulgaris and more importantly in postinflammatory acne scars with significant positive correlation coefficient between serum levels of IGF-I and survivin which support IGF-I-/PI3K-/AKT-mediated downregulation of nuclear expression of FoxO transcription factors resulting in enhanced survivin expression.
Collapse
Affiliation(s)
- Hanan A. Assaf
- Department of Dermatology, Faculty of Medicine, Sohag University, P.O. Box 82524, Sohag, Egypt
| | - Wafaa M. Abdel-Maged
- Department of Dermatology, Faculty of Medicine, Sohag University, P.O. Box 82524, Sohag, Egypt
| | - Bakheet E. M. Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, P.O. Box 71524, Assiut, Egypt
| | - Mohammed H. Hassan
- Department of Biochemistry and Molecular Biology, Qena Faculty of Medicine, South Valley University, P.O. Box 83523, Qena, Egypt
| | - Mohamed A. Adly
- Department of Zoology, Faculty of Science, Sohag University, P.O. Box 82524, Sohag, Egypt
| | - Soher A. Ali
- Department of Dermatology, Faculty of Medicine, Sohag University, P.O. Box 82524, Sohag, Egypt
| |
Collapse
|
16
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
17
|
Karadag AS, Takci Z, Ertugrul DT, Bilgili SG, Balahoroglu R, Takir M. The Effect of Different Doses of Isotretinoin on Pituitary Hormones. Dermatology 2015; 230:354-9. [DOI: 10.1159/000375370] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
|
18
|
Rieger S, Zhao H, Martin P, Abe K, Lisse TS. The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochem Funct 2014; 33:1-13. [PMID: 25529612 DOI: 10.1002/cbf.3086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022]
Abstract
The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration.
Collapse
Affiliation(s)
- Sandra Rieger
- Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Salisbury Cove, ME, USA
| | | | | | | | | |
Collapse
|
19
|
Sanlorenzo M, Choudhry A, Vujic I, Posch C, Chong K, Johnston K, Meier M, Osella-Abate S, Quaglino P, Daud A, Algazi A, Rappersberger K, Ortiz-Urda S. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. J Am Acad Dermatol 2014; 71:1102-1109.e1. [PMID: 25440439 DOI: 10.1016/j.jaad.2014.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) frequently cause cutaneous adverse events. OBJECTIVE We sought to investigate the cutaneous safety profile of BRAFi versus BRAFi and MEKi combination regimens. METHODS We performed a retrospective cohort study, collecting data from 44 patients with melanoma treated either with BRAFi (vemurafenib or dabrafenib) or BRAFi and MEKi combination regimens (vemurafenib + cobimetinib or dabrafenib + trametinib). Patient characteristics, and the occurrence and severity of cutaneous adverse events, are described. RESULTS The development of cutaneous adverse events was significantly less frequent (P = .012) and occurred after longer treatment time (P = .025) in patients treated with BRAFi and MEKi combination regimen compared with patients treated with BRAFi monotherapy. Among patients who received both BRAFi and the combination of BRAFi and MEKi at different time points during their treatment course, the development of squamous cell carcinoma or keratoacanthoma was significantly less frequent when they received the combination regimen (P = .008). Patients receiving vemurafenib developed more cutaneous adverse events (P = .001) and in particular more photosensitivity (P = .010) than patients who did not. LIMITATIONS There were a limited number of patients. CONCLUSION Combination regimen with BRAFi and MEKi shows fewer cutaneous adverse events and longer cutaneous adverse event-free interval compared with BRAFi monotherapy.
Collapse
Affiliation(s)
- Martina Sanlorenzo
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California; Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy.
| | - Aditi Choudhry
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| | - Igor Vujic
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California; Department of Dermatology, Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Christian Posch
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California; Department of Dermatology, Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Kim Chong
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| | - Katia Johnston
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| | - Melissa Meier
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| | - Simona Osella-Abate
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Adil Daud
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| | - Alain Algazi
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| | - Klemens Rappersberger
- Department of Dermatology, Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- University of California-San Francisco, Mt Zion Cancer Research Center, San Francisco, California
| |
Collapse
|
20
|
Abstract
Acne vulgaris is worldwide the most common skin disease. Acne is an inflammatory disorder in whose emergence androgens, PPAR ligands, the IGF-1 signaling pathway, regulating neuropeptides and environmental factors are probably involved. These factors interrupt the natural cycling process in the sebaceous gland follicle and support the transition of microcomedones to comedones and inflammatory lesions. Proinflammatory lipids and cytokines are mediators for the development of acne lesions. Bacterial antigens can potentate the inflammatory phenomena. Acne is predominantly treated with combination therapy. Selecting a treatment regimen depends on the exact classification of acne type and severity. The development of scars is the main criterion for the choice of systemic therapy. Retinoids for mild comedonal acne and the combination of retinoids with antibiotics and/or benzoyl peroxide for mild to moderate papulopustular acne are the drugs of first choice for topical treatment. The use of topical antibiotics is not recommended any more because of the development of resistant bacterial strains. Systemic antibiotics, in combination with topical retinoids and/or benzoyl peroxide, for moderate papular/nodular acne and isotretinoin for severe nodular/conglobate acne are the columns of systemic acne treatment. Systemic anti-androgens are used in women against moderate papulopustular acne. Due to advances in the understanding of the underlying inflammatory mechanisms in recent years the development of new therapeutic agents with good efficacy and better side effect profile should be expected in the future.
Collapse
|
21
|
Melnik BC, Schmitz G. Are therapeutic effects of antiacne agents mediated by activation of FoxO1 and inhibition of mTORC1? Exp Dermatol 2013; 22:502-4. [PMID: 23800068 PMCID: PMC3746104 DOI: 10.1111/exd.12172] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/16/2022]
Abstract
Acne pathogenesis has recently been linked to decreased nuclear FoxO1 levels and increased mTORC1 activity. This hypothesis postulates that antiacne agents either enhance nuclear FoxO activity or inhibit mTORC1. Benzoyl peroxide (BPO), by activation of oxidative stress-inducible kinases, increases nuclear FoxO levels promoting Sestrin3-mediated AMPK activation. Furthermore, BPO-derived ROS may activate AMPK via ataxia-telangiectasia mutated. Isotretinoin and all-trans retinoic acid may stimulate FoxO gene expression. Doxycycline may enhance FoxOs nuclear retention by inhibiting the expression of exportin 1. Suppression of TNFα signalling by tetracyclines, erythromycin and other macrolides may attenuate IKKβ-TSC1-mediated mTORC1 activation. Erythromycin attenuates ERK1/2 activity and thereby increases TSC2. Azelaic acid may decrease mTORC1 by inhibiting mitochondrial respiration, increasing cellular ROS and nuclear FoxO levels. Antiandrogens may attenuate mTORC1 by suppressing mTORC2-mediated Akt/TSC2 signalling. This hypothesis unmasks a common mode of action of antiacne agents as either FoxO enhancers or mTORC1 inhibitors and thus provides a rational approach for the development of new antiacne agents.
Collapse
|
22
|
Bergler-Czop B, Brzezińska-Wcisło L. Dermatological problems of the puberty. Postepy Dermatol Alergol 2013; 30:178-87. [PMID: 24278071 PMCID: PMC3834713 DOI: 10.5114/pdia.2013.35621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/29/2012] [Accepted: 02/10/2013] [Indexed: 02/06/2023] Open
Abstract
Puberty is a period of life between childhood and adulthood. It is characterized by many changes in morphology and appearance of the body (biological maturation), in the psyche - development of personality (psychological maturation), and in the attitude towards one's own and the opposite sex (psychosexual maturation), and in the social role (social maturation). Dermatological problems of adolescence are mainly related to fluctuations in hormone levels, mainly androgens. They include acne, hair problems and excessive sweating. Acne vulgaris is the most frequently diagnosed dermatosis in patients aged between 11 and 30 years. It is believed that it affects about 80% of persons in this age group or even, taking into account lesions of low intensity, 100% of young people. Excessive sweating is a condition characterised by excessive production of sweat, resulting from high activity of sweat glands. The sweat glands are localised in almost all areas of the body surface but on the hands, feet, armpits and around the groin they are found at the highest density. Seborrhoeic dermatitis of the scalp is a chronic, relapsing, inflammatory dermatosis, which currently affects about 5% of the population. It affects mostly young people, particularly men.
Collapse
Affiliation(s)
- Beata Bergler-Czop
- Department of Dermatology, Silesian Medical University, Katowice, Poland. Head: Prof. Ligia Brzezińska-Wcisło MD, PhD
| | | |
Collapse
|
23
|
Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol 2013; 22:311-5. [PMID: 23614736 PMCID: PMC3746128 DOI: 10.1111/exd.12142] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/13/2022]
Abstract
Acne in adolescents of developed countries is an epidemic skin disease and has currently been linked to the Western diet (WD). It is the intention of this viewpoint to discuss the possible impact of WD-mediated nutrient signalling in the pathogenesis of acne. High glycaemic load and dairy protein consumption both increase insulin/insulin-like growth factor-1 (IGF-1) signalling (IIS) that is superimposed on elevated IGF-1 signalling of puberty. The cell's nutritional status is primarily sensed by the forkhead box transcription factor O1 (FoxO1) and the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1). Increased IIS extrudes FoxO1 into the cytoplasm, whereas nuclear FoxO1 suppresses hepatic IGF-1 synthesis and thus impairs somatic growth. FoxO1 attenuates androgen signalling, interacts with regulatory proteins important for sebaceous lipogenesis, regulates the activity of innate and adaptive immunity, antagonizes oxidative stress and most importantly functions as a rheostat of mTORC1, the master regulator of cell growth, proliferation and metabolic homoeostasis. Thus, FoxO1 links nutrient availability to mTORC1-driven processes: increased protein and lipid synthesis, cell proliferation, cell differentiation including hyperproliferation of acroinfundibular keratinocytes, sebaceous gland hyperplasia, increased sebaceous lipogenesis, insulin resistance and increased body mass index. Enhanced androgen, TNF-α and IGF-1 signalling due to genetic polymorphisms promoting the risk of acne all converge in mTORC1 activation, which is further enhanced by nutrient signalling of WD. Deeper insights into the molecular interplay of FoxO1/mTORC1-mediated nutrient signalling are thus of critical importance to understand the impact of WD on the promotion of epidemic acne and more serious mTORC1-driven diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| | | |
Collapse
|
24
|
Abstract
Acne is a manifestation of hormonal overstimulation of the pilosebaceous units of genetically susceptible individuals. Endogenous reproductive and growth hormones, exogenous reproductive hormones, insulin and endogenous insulin-like growth hormone-1, sourced from and stimulated by dairy and high glycemic load foods, all appear to contribute to this overstimulation. A postulated molecular mechanism linking food and acne is reported and integrated into the clinical picture.
Collapse
Affiliation(s)
- F William Bill Danby
- Adjunct Assistant Professor of Surgery (Dermatology), Dartmouth Medical School, Hanover, New Hampshire, USA
| |
Collapse
|
25
|
Melnik B. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. DERMATO-ENDOCRINOLOGY 2012; 4:20-32. [PMID: 22870349 PMCID: PMC3408989 DOI: 10.4161/derm.19828] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this paper is to highlight the endocrine signaling of Western diet, a fundamental environmental factor involved in the pathogenesis of epidemic acne. Western nutrition is characterized by high calorie uptake, high glycemic load, high fat and meat intake, as well as increased consumption of insulin- and IGF-1-level elevating dairy proteins. Metabolic signals of Western diet are sensed by the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), which integrates signals of cellular energy, growth factors (insulin, IGF-1) and protein-derived signals, predominantly leucine, provided in high amounts by milk proteins and meat. mTORC1 activates SREBP, the master transcription factor of lipogenesis. Leucine stimulates mTORC1-SREBP signaling and leucine is directly converted by sebocytes into fatty acids and sterols for sebaceous lipid synthesis. Over-activated mTORC1 increases androgen hormone secretion and most likely amplifies androgen-driven mTORC1 signaling of sebaceous follicles. Testosterone directly activates mTORC1. Future research should investigate the effects of isotretinoin on sebocyte mTORC1 activity. It is conceivable that isotretinoin may downregulate mTORC1 in sebocytes by upregulation of nuclear levels of FoxO1. The role of Western diet in acne can only be fully appreciated when all stimulatory inputs for maximal mTORC1 activation, i.e., glucose, insulin, IGF-1 and leucine, are adequately considered. Epidemic acne has to be recognized as an mTORC1-driven disease of civilization like obesity, type 2 diabetes, cancer and neurodegenerative diseases. These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of industrialized food and fast food distribution of Westernized countries. An attenuation of mTORC1 signaling is only possible by increasing the consumption of vegetables and fruit, the major components of vegan or Paleolithic diets. The dermatologist bears a tremendous responsibility for his young acne patients who should be advised to modify their dietary habits in order to reduce activating stimuli of mTORC1, not only to improve acne but to prevent the harmful and expensive march to other mTORC1-related chronic diseases later in life.
Collapse
Affiliation(s)
- Bodo Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
26
|
Lai JJ, Chang P, Lai KP, Chen L, Chang C. The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res 2012; 304:499-510. [PMID: 22829074 DOI: 10.1007/s00403-012-1265-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/15/2012] [Accepted: 07/06/2012] [Indexed: 02/05/2023]
Abstract
Androgen and androgen receptor (AR) may play important roles in several skin-related diseases, such as androgenetic alopecia and acne vulgaris. Current treatments for these androgen/AR-involved diseases, which target the synthesis of androgens or prevent its binding to AR, can cause significant adverse side effects. Based on the recent studies using AR knockout mice, it has been suggested that AR and androgens play distinct roles in the skin pathogenesis, and AR seems to be a better target than androgens for the treatment of these skin diseases. Here, we review recent studies of androgen/AR roles in several skin-related disorders, including acne vulgaris, androgenetic alopecia and hirsutism, as well as cutaneous wound healing.
Collapse
Affiliation(s)
- Jiann-Jyh Lai
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Box 626, URMC, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
27
|
Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. DERMATO-ENDOCRINOLOGY 2011; 3:141-65. [PMID: 22110774 PMCID: PMC3219165 DOI: 10.4161/derm.3.3.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
28
|
Lee J, Yoo K, Park K, Han T, Li K, Seo S, Hong C. Effectiveness of conventional, low-dose and intermittent oral isotretinoin in the treatment of acne: a randomized, controlled comparative study. Br J Dermatol 2011; 164:1369-75. [DOI: 10.1111/j.1365-2133.2010.10152.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
29
|
Chen W, Obermayer-Pietsch B, Hong JB, Melnik BC, Yamasaki O, Dessinioti C, Ju Q, Liakou AI, Al-Khuzaei S, Katsambas A, Ring J, Zouboulis CC. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol 2010; 25:637-46. [DOI: 10.1111/j.1468-3083.2010.03937.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|