1
|
Cai Y, Ma J, Wang S, Li H. Identification of YBX2 and TSKS As STK33 Interacting Proteins in Testicular Germ Cells. Reprod Sci 2025; 32:769-782. [PMID: 39909973 DOI: 10.1007/s43032-025-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Spermiogenesis is a unique process, in which round spermatids undergo morphological changes to form spermatozoa. Serine/Threonine Kinase 33 (STK33), a member of the serine/threonine protein kinase family, plays a pivotal role in spermiogenesis, manifested by the infertile phenotype of Stk33 knockout mice and patients carrying STK33 mutations. To date, the mechanism by which STK33 promotes spermiogenesis is not fully understood. Here we aimed to identify germ cell-specific proteins that interact with STK33. Using immunoprecipitation and mass spectrometry, 13 proteins were identified that potentially interact with STK33 in testicular germ cells. By comparing the expression patterns of the candidate genes in testicular germ cells, we selected Y-Box Binding Protein 2 (YBX2) and Testis Specific Serine Kinase Substrate (TSKS) for validation. When co-expressed in cultured cells, TSKS was immunoprecipitated by STK33, and vice versa. Furthermore, STK33 was recruited to the TSKS foci, likely through interaction with TSKS. Although proximity ligation assay demonstrated that STK33 and YBX2 form the complex in germ cells, their interaction was not recapitulated in cultured cells. Phosphorylation assays showed that STK33 was unable to phosphorylate both YBX2 and TSKS in vitro. Overall, these results suggest that STK33 regulates spermiogenesis through TSKS and YBX2, which warrants further investigation in vivo.
Collapse
Affiliation(s)
- Ying Cai
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Ma
- NHC Key Laboratory of Family Planning and Health, Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, China
| | - Shusong Wang
- NHC Key Laboratory of Family Planning and Health, Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang, 050071, China.
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Ku AF, Sharma KL, Ta HM, Sutton CM, Bohren KM, Wang Y, Chamakuri S, Chen R, Hakenjos JM, Jimmidi R, Kent K, Li F, Li JY, Ma L, Madasu C, Palaniappan M, Palmer SS, Qin X, Robers MB, Sankaran B, Tan Z, Vasquez YM, Wang J, Wilkinson J, Yu Z, Ye Q, Young DW, Teng M, Kim C, Matzuk MM. Reversible male contraception by targeted inhibition of serine/threonine kinase 33. Science 2024; 384:885-890. [PMID: 38781365 PMCID: PMC11842024 DOI: 10.1126/science.adl2688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.
Collapse
Affiliation(s)
- Angela F. Ku
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kiran L. Sharma
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Minh Ta
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney M. Sutton
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kurt M. Bohren
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Wang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruihong Chen
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M. Hakenjos
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ravikumar Jimmidi
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Kent
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian-Yuan Li
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lang Ma
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandrashekhar Madasu
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen S. Palmer
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yasmin M. Vasquez
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Zhifeng Yu
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Damian W. Young
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mingxing Teng
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choel Kim
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Jiang H, Li L, Ma T, Wang R, Chen X, Xu K, Chen C, Liu Z, Wang H, Huang L. Serine/Threonine Kinase (STK) 33 promotes the proliferation and metastasis of human esophageal squamous cell carcinoma via inflammation-related pathway. Pathol Res Pract 2024; 254:155154. [PMID: 38286054 DOI: 10.1016/j.prp.2024.155154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The serine/threonine kinase (STK) 33 plays a key role in cancer cell proliferation and metastasis. Abnormal STK33 expression is closely related to malignancy of numerous cancers. This study suggests the important role of STK33 in the pathogenesis and metastatic progression of esophageal squamous cell carcinoma (ESCC). STK33 expression in human ESCC tissues was detected by immunohistochemical technique. Further, we analyzed the relationship between STK33 and clinical and pathological factors as well as the prognosis of patients. ECa109 cell line was cultured and transfected with STK33-RNAi lentiviral vector to perform Hochest33342 & PI and metastasis experiments. The TCGA database was used to analyze the STK33 expression level in ESCC. All statistical analyses were performed in SPSS 23.0 software. Differences with P < 0.05 were considered statistically significant. In human ESCC specimens, STK33 was overexpressed and associated with poor prognosis. Silencing STK33 expression suppressed ESCC proliferation, migration, invasion, and tumor growth. STK33 also mediated angiogenesis, TGFβ, and inflammatory response in ESCC. Mechanistic investigations revealed that STK33 regulates ESCC through multiple complex pathways. Dysregulated STK33 signaling promotes ESCC growth and progression. Thus, our findings identified STK33 as a candidate treatment target that improves ESCC therapy.
Collapse
Affiliation(s)
- Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Liping Li
- Public Health and Management College in Ningxia Medical University, Yinchuan 750004, China
| | - Tao Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ruixiao Wang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaozhen Chen
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ke Xu
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia Armed Police Corps, Yinchuan 750004, China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China; Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan 250012, China
| | - Zijin Liu
- Clinical Medical College in Ningxia Medical University, Yinchuan 750004, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; School of Medicine, Shanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Lingyan Huang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Seabury CM, Smith JL, Wilson ML, Bhattarai E, Santos JEP, Chebel RC, Galvão KN, Schuenemann GM, Bicalho RC, Gilbert RO, Rodriguez-Zas SL, Rosa G, Thatcher WW, Pinedo PJ. Genome-wide association and genomic prediction for a reproductive index summarizing fertility outcomes in U.S. Holsteins. G3 (BETHESDA, MD.) 2023; 13:jkad043. [PMID: 36848195 PMCID: PMC10468724 DOI: 10.1093/g3journal/jkad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/18/2022] [Accepted: 12/20/2022] [Indexed: 03/01/2023]
Abstract
Subfertility represents one major challenge to enhancing dairy production and efficiency. Herein, we use a reproductive index (RI) expressing the predicted probability of pregnancy following artificial insemination (AI) with Illumina 778K genotypes to perform single and multi-locus genome-wide association analyses (GWAA) on 2,448 geographically diverse U.S. Holstein cows and produce genomic heritability estimates. Moreover, we use genomic best linear unbiased prediction (GBLUP) to investigate the potential utility of the RI by performing genomic predictions with cross validation. Notably, genomic heritability estimates for the U.S. Holstein RI were moderate (h2 = 0.1654 ± 0.0317-0.2550 ± 0.0348), while single and multi-locus GWAA revealed overlapping quantitative trait loci (QTL) on BTA6 and BTA29, including the known QTL for the daughter pregnancy rate (DPR) and cow conception rate (CCR). Multi-locus GWAA revealed seven additional QTL, including one on BTA7 (60 Mb) which is adjacent to a known heifer conception rate (HCR) QTL (59 Mb). Positional candidate genes for the detected QTL included male and female fertility loci (i.e. spermatogenesis and oogenesis), meiotic and mitotic regulators, and genes associated with immune response, milk yield, enhanced pregnancy rates, and the reproductive longevity pathway. Based on the proportion of the phenotypic variance explained (PVE), all detected QTL (n = 13; P ≤ 5e - 05) were estimated to have moderate (1.0% < PVE ≤ 2.0%) or small effects (PVE ≤ 1.0%) on the predicted probability of pregnancy. Genomic prediction using GBLUP with cross validation (k = 3) produced mean predictive abilities (0.1692-0.2301) and mean genomic prediction accuracies (0.4119-0.4557) that were similar to bovine health and production traits previously investigated.
Collapse
Affiliation(s)
- Christopher M Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Johanna L Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Miranda L Wilson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Eric Bhattarai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Jose E P Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Ricardo C Chebel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Gustavo M Schuenemann
- Department of Veterinary Preventative Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rodrigo C Bicalho
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Rob O Gilbert
- Department of Clinical Sciences, School of Veterinary Medicine, Ross University, St. Kitts, West Indies, KN
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA
| | - Guilherme Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - William W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Pablo J Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
5
|
Ma H, Zhang B, Khan A, Zhao D, Ma A, Jianteng Z, Khan I, Khan K, Zhang H, Zhang Y, Xiaohua J, Dil S, Zeb A, Rahim F, Shi Q. Novel frameshift mutation in STK33 is associated with asthenozoospermia and multiple morphological abnormality of the flagella. Hum Mol Genet 2021; 30:1977-1984. [PMID: 34155512 DOI: 10.1093/hmg/ddab165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Serine/threonine kinases domain-containing proteins are known to play important functions in sperm flagella and male fertility. However, the roles of these proteins in human reproduction remain poorly understood and whether their variants are associated with human asthenozoospermia have not been reported. Here, we recruited a Pakistani family having four infertile patients diagnosed with idiopathic asthenozoospermia without any ciliary-related symptoms. Whole-exome sequencing identified a novel homozygous frameshift mutation (c.1235del, p.T412Kfs*14) in STK33, encoding a serine/threonine kinase which displays a highly conserved and predominant expression in testis in humans. This variant led to a dramatic reduction of STK33 mRNA in the patients. Patients homozygous for the STK33 variant presented reduced sperm motility, frequent morphological abnormalities of sperm flagella, and completely disorganized flagellar ultrastructures, which are typical for multiple morphological abnormalities of the flagella (MMAF) phenotypes. Overall, these findings present evidence establishing that STK33 is a MMAF-related gene and provide new insights for understanding the role of serine/threonine kinases domain-containing proteins in human male reproduction.
Collapse
Affiliation(s)
- Hui Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Beibei Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Asad Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Daren Zhao
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ao Ma
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Zhou Jianteng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ihsan Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Khalid Khan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yuanwei Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Jiang Xiaohua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Sobia Dil
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Aurang Zeb
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Fazal Rahim
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- The First Affiliated Hospital of University of Science and Technology of China, Hefei National Laboratory for Physical Sciences at Microscale, Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Diseases, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
6
|
Jebelli A, Baradaran B, Mosafer J, Baghbanzadeh A, Mokhtarzadeh A, Tayebi L. Recent developments in targeting genes and pathways by RNAi-based approaches in colorectal cancer. Med Res Rev 2020; 41:395-434. [PMID: 32990372 DOI: 10.1002/med.21735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/16/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
A wide spectrum of genetic and epigenetic variations together with environmental factors has made colorectal cancer (CRC), which involves the colon and rectum, a challenging and heterogeneous cancer. CRC cannot be effectively overcomed by common conventional therapies including surgery, chemotherapy, targeted therapy, and hormone replacement which highlights the need for a rational design of novel anticancer therapy. Accumulating evidence indicates that RNA interference (RNAi) could be an important avenue to generate great therapeutic efficacy for CRC by targeting genes that are responsible for the viability, cell cycle, proliferation, apoptosis, differentiation, metastasis, and invasion of CRC cells. In this review, we underline the documented benefits of small interfering RNAs and short hairpin RNAs to target genes and signaling pathways related to CRC tumorigenesis. We address the synergistic effects of RNAi-mediated gene knockdown and inhibitors/chemotherapy agents to increase the sensitivity of CRC cells to common therapies. Finally, this review points new delivery systems/materials for improving the cellular uptake efficiency and reducing off-target effects of RNAi.
Collapse
Affiliation(s)
- Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
8
|
Zhou B, Xiang J, Zhan C, Liu J, Yan S. STK33 Promotes the Growth and Progression of Human Pancreatic Neuroendocrine Tumour via Activation of the PI3K/AKT/mTOR Pathway. Neuroendocrinology 2020; 110:307-320. [PMID: 31261148 DOI: 10.1159/000501829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Serine/threonine kinase 33 (STK33) has been reported to play an important role in cancer cell proliferation. We investigated the role of STK33 in pancreatic neuroendocrine tumour (PNET) and the underlying mechanisms. METHODS PNET specimens and adjacent non-tumorous pancreatic tissues from 84 patients who underwent curative surgery for PNET were stained by immunochemistry for STK33. The relationships among STK33 expression, clinicopathological parameters and clinical prognosis were statistically analysed. MTT, scratching, Transwell and apoptosis assays were employed to detect the effects of STK33 knockdown (siSTK33) or STK33 overexpression (pSTK33) on major oncogenic properties of cells of 2 PNET cell lines (BON and QGP-1), and real-time PCR and western blot were used to examine the expression of relevant genes. RESULTS Relative to its expression in normal pancreatic tissue, STK33 was overexpressed in PNET specimens. Furthermore, STK33 expression was significantly associated with World Health Organization classification (p < 0.001), American Joint Committee on Cancer stage (p < 0.001), lymph node metastasis (p < 0.001), tumour size (p = 0.022), sex (p = 0.003), perineural invasion (p < 0.001) and shorter disease-free survival of patients with PNET (p < 0.001). Enforced STK33 expression promoted PNET cell proliferation, migration and invasion and tumour growth and inhibited cell apoptosis, whereas STK33 depletion exerted the opposite effects. Mechanistic studies revealed that STK33 promoted growth and progression of PNET via activation of the phosphotidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS STK33 plays important roles in the tumour growth and progression of PNET via activation of the PI3K/AKT/mTOR pathway and has potential as a therapeutic target to improve PNET treatment.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,
| | - Jie Xiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Canyang Zhan
- Department of Neonatology, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianhua Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
STK33/ERK2 signal pathway contribute the tumorigenesis of colorectal cancer HCT15 cells. Biosci Rep 2019; 39:BSR20182351. [PMID: 30760631 PMCID: PMC6395305 DOI: 10.1042/bsr20182351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
Serine/threonine kinase 33 (STK33) is a serine/threonine kinase and participates in many apoptotic process. Herein, we found that the extracellular signal-regulated kinase 2 (ERK2) was a substrate of STK33. STK33 phosphorylated ERK2 and increased the activity of ERK2 and promote the tumorigenesis of colorectal cancer HCT15 cells. Clinical simple showed that STK33 was highly expression in colorectal cells and tissues. Ex vivo and in vivo studies demonstrated that STK33 accelerate tumorigenic properties in NCM460 cells and athymic nude rats. In vitro kinase assay results indicated that STK33 can phosphorylate ERK2. Ex vivo studies further showed that STK33 can bind with ERK2 and take part in the regulation of ERKs signaling pathway. In short, our results showed that STK33 is a novel upstream kinase of ERK2. It may provide a better prospect for STK33 based prevention and treatment for colorectal cancer patients.
Collapse
|
10
|
Zhou M, Sun G, Zhang L, Zhang G, Yang Q, Yin H, Li H, Liu W, Bai X, Li J, Wang H. STK33 alleviates gentamicin-induced ototoxicity in cochlear hair cells and House Ear Institute-Organ of Corti 1 cells. J Cell Mol Med 2018; 22:5286-5299. [PMID: 30256516 PMCID: PMC6201369 DOI: 10.1111/jcmm.13792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
Abstract
Serine/threonine kinase 33 (STK33), a member of the calcium/calmodulin‐dependent kinase (CAMK), plays vital roles in a wide spectrum of cell processes. The present study was designed to investigate whether STK33 expressed in the mammalian cochlea and, if so, what effect STK33 exerted on aminoglycoside‐induced ototoxicity in House Ear Institute‐Organ of Corti 1 (HEI‐OC1) cells. Immunofluorescence staining and western blotting were performed to investigate STK33 expression in cochlear hair cells (HCs) and HEI‐OC1 cells with or without gentamicin treatment. CCK8, flow cytometry, immunofluorescence staining and western blotting were employed to detect the effects of STK33 knockdown, and/or U0126, and/or N‐acetyl‐L‐cysteine (NAC) on the sensitivity to gentamicin‐induced ototoxicity in HEI‐OC1 cells. We found that STK33 was expressed in both mice cochlear HCs and HEI‐OC1 cells, and the expression of STK33 was significantly decreased in cochlear HCs and HEI‐OC1 cells after gentamicin exposure. STK33 knockdown resulted in an increase in the cleaved caspase‐3 and Bax expressions as well as cell apoptosis after gentamicin damage in HEI‐OC1 cells. Mechanistic studies revealed that knockdown of STK33 led to activated mitochondrial apoptosis pathway as well as augmented reactive oxygen species (ROS) accumulation after gentamicin damage. Moreover, STK33 was involved in extracellular signal‐regulated kinase 1/2 pathway in primary culture of HCs and HEI‐OC1 cells in response to gentamicin insult. The findings from this work indicate that STK33 decreases the sensitivity to the apoptosis dependent on mitochondrial apoptotic pathway by regulating ROS generation after gentamicin treatment, which provides a new potential target for protection from the aminoglycoside‐induced ototoxicity.
Collapse
Affiliation(s)
- Meijuan Zhou
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Gaoying Sun
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Lili Zhang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Guodong Zhang
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Qianqian Yang
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Haiyan Yin
- Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Hongrui Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Xiaohui Bai
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Jianfeng Li
- Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China.,Shandong Institute of Otolaryngology, Jinan, China
| |
Collapse
|
11
|
Coan M, Rampioni Vinciguerra GL, Cesaratto L, Gardenal E, Bianchet R, Dassi E, Vecchione A, Baldassarre G, Spizzo R, Nicoloso MS. Exploring the Role of Fallopian Ciliated Cells in the Pathogenesis of High-Grade Serous Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19092512. [PMID: 30149579 PMCID: PMC6163198 DOI: 10.3390/ijms19092512] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
High-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology. Tumor characteristics (e.g., risk factors and epidemiology) are valuable clues to accomplish this task. The two most frequent risk factors for HGSOC are the lifetime number of ovulations, which is associated with increased oxidative stress in the pelvic area caused by ovulation fluid, and a positive family history due to genetic factors. In the attempt to identify novel genetic factors (i.e., genes) associated with HGSOC, we observed that several genes in linkage with HGSOC are expressed in the ciliated cells of the fallopian tube. This finding made us hypothesize that ciliated cells, despite not being the cell of origin for HGSOC, may take part in HGSOC tumor initiation. Specifically, malfunction of the ciliary beat impairs the laminar fluid flow above the fallopian tube epithelia, thus likely reducing the clearance of oxidative stress caused by follicular fluid. Herein, we review the up-to-date findings dealing with HGSOC predisposition with the hypothesis that fallopian ciliated cells take part in HGSOC onset. Finally, we review the up-to-date literature concerning genes that are located in genomic loci associated with epithelial ovarian cancer (EOC) predisposition that are expressed by the fallopian ciliated cells.
Collapse
Affiliation(s)
- Michela Coan
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Laura Cesaratto
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Emanuela Gardenal
- Azienda Ospedaliera Universitaria Integrata, University of Verona, 37129 Verona, Italy.
| | - Riccardo Bianchet
- Scientific Direction, CRO Aviano Italy, Via Franco Gallini, 2 33081 Aviano, Italy.
| | - Erik Dassi
- Centre for Integrative Biology, University of Trento, 38122 Trento, Italy.
| | - Andrea Vecchione
- Department of clinical and molecular medicine, university of Rome "Sapienza", c/o sant andrea hospital, Via di Grottarossa 1035, 00189 Rome, Italy.
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Riccardo Spizzo
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| | - Milena Sabrina Nicoloso
- Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Aviano-National Cancer Institute, Via Franco Gallini, 2 33081 Aviano PN, Italy.
| |
Collapse
|
12
|
Maiorano AM, Lourenco DL, Tsuruta S, Ospina AMT, Stafuzza NB, Masuda Y, Filho AEV, Cyrillo JNDSG, Curi RA, Silva JAIIDV. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS One 2018; 13:e0200694. [PMID: 30071036 PMCID: PMC6071998 DOI: 10.1371/journal.pone.0200694] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Gir is one of the main cattle breeds raised in tropical South American countries. Strong artificial selection through its domestication resulted in increased genetic differentiation among the countries in recent years. Over the years, genomic studies in Gir have become more common. However, studies of population structure and signatures of selection in divergent Gir populations are scarce and need more attention to better understand genetic differentiation, gene flow, and genetic distance. Genotypes of 173 animals selected for growth traits and 273 animals selected for milk production were used in this study. Clear genetic differentiation between beef and dairy populations was observed. Different criteria led to genetic divergence and genetic differences in allele frequencies between the two populations. Gene segregation in each population was forced by artificial selection, promoting isolation, and increasing genetic variation between them. Results showed evidence of selective forces in different regions of the genome. A total of 282 genes were detected under selection in the test population based on the fixation index (Fst), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches. The QTL mapping identified 35 genes associated with reproduction, milk composition, growth, meat and carcass, health, or body conformation traits. The investigation of genes and pathways showed that quantitative traits associated to fertility, milk production, beef quality, and growth were involved in the process of differentiation of these populations. These results would support further investigations of population structure and differentiation in the Gir breed.
Collapse
Affiliation(s)
- Amanda Marchi Maiorano
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
- * E-mail:
| | - Daniela Lino Lourenco
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Shogo Tsuruta
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Alejandra Maria Toro Ospina
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
| | - Nedenia Bonvino Stafuzza
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
| | - Yutaka Masuda
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | | | | | - Rogério Abdallah Curi
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, Sao Paulo, Brazil
| | | |
Collapse
|
13
|
Kong F, Sun T, Kong X, Xie D, Li Z, Xie K. Krüppel-like Factor 4 Suppresses Serine/Threonine Kinase 33 Activation and Metastasis of Gastric Cancer through Reversing Epithelial-Mesenchymal Transition. Clin Cancer Res 2018; 24:2440-2451. [PMID: 29367428 DOI: 10.1158/1078-0432.ccr-17-3346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Background: Cancers with aberrant expression of Serine/threonine kinase 33 (STK33) has been reported to be particularly aggressive. However, its expression, clinical significance, and biological functions in gastric cancer remain largely unknown. In the present study, we determined the expression and function of STK33 in gastric cancer and delineated the clinical significance of the Krüppel-like factor 4 (KLF4)/STK33 signaling pathway.Methods: STK33 expression and its association with multiple clinicopathologic characteristics were analyzed immunohistochemically in human gastric cancer specimens. STK33 knockdown and overexpression were used to dissect the underlying mechanism of its functions in gastric cancer cells. Regulation and underlying mechanisms of STK33 expression by KLF4 in gastric cancer cells were studied using cell and molecular biological methods.Results: Drastically higher expression of STK33 was observed in gastric cancer and gastric intraepithelial neoplasia tissues compared with adjacent normal gastric tissues. Increased STK33 expression correlated directly with tumor size, lymph node, and distant metastasis; and patients with low STK33 expression gastric cancer were predicted to have a favorable prognosis. Enforced expression of STK33 promoted gastric cancer cell proliferation, migration, and invasion in vitro and in vivo, whereas reduced STK33 did the opposite. Moreover, STK33 promoted epithelial-mesenchymal transition (EMT) in vitro Mechanistically, KLF4 transcriptionally inhibited STK33 expression in gastric cancer cells. KLF4-mediated inhibition of gastric cancer cell invasion was reversed by upregulation of STK33 expression.Conclusions: STK33 has pro-tumor function and is a critical downstream mediator of KLF4 in gastric cancer. STK33 may serve as a potential prognostic marker and therapeutic target for gastric cancer. Clin Cancer Res; 24(10); 2440-51. ©2018 AACR.
Collapse
Affiliation(s)
- Fanyang Kong
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Tao Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.,Department of Gastroenterology, PLA Air Force General Hospital, Beijing, People's Republic of China
| | - Xiangyu Kong
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Dacheng Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
14
|
Martins LR, Bung RK, Koch S, Richter K, Schwarzmüller L, Terhardt D, Kurtulmus B, Niehrs C, Rouhi A, Lohmann I, Pereira G, Fröhling S, Glimm H, Scholl C. Stk33 is required for spermatid differentiation and male fertility in mice. Dev Biol 2018; 433:84-93. [DOI: 10.1016/j.ydbio.2017.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022]
|
15
|
Kong F, Kong X, Du Y, Chen Y, Deng X, Zhu J, Du J, Li L, Jia Z, Xie D, Li Z, Xie K. STK33 Promotes Growth and Progression of Pancreatic Cancer as a Critical Downstream Mediator of HIF1α. Cancer Res 2017; 77:6851-6862. [PMID: 29038348 DOI: 10.1158/0008-5472.can-17-0067] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/06/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022]
Abstract
The serine/threonine kinase STK33 has been implicated in cancer cell proliferation. Here, we provide evidence of a critical role for STK33 in the pathogenesis and metastatic progression of pancreatic ductal adenocarcinoma (PDAC). STK33 expression in PDAC was regulated by the hypoxia-inducible transcription factor HIF1α. In human PDAC specimens, STK33 was overexpressed and associated with poor prognosis. Enforced STK33 expression promoted PDAC proliferation, migration, invasion, and tumor growth, whereas STK33 depletion exerted opposing effects. Mechanistic investigations showed that HIF1α regulated STK33 via direct binding to a hypoxia response element in its promoter. In showing that dysregulated HIF1α/STK33 signaling promotes PDAC growth and progression, our results suggest STK33 as a candidate therapeutic target to improve PDAC treatment. Cancer Res; 77(24); 6851-62. ©2017 AACR.
Collapse
Affiliation(s)
- Fanyang Kong
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Gastroenterology, Changhai Hospital, Shanghai, P.R. China
| | - Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Shanghai, P.R. China
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Shanghai, P.R. China
| | - Ying Chen
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, Changhai Hospital, Shanghai, P.R. China
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jianwei Zhu
- Department of Gastroenterology, Changhai Hospital, Shanghai, P.R. China
| | - Jiawei Du
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Lei Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, P.R. China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dacheng Xie
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Shanghai Tongji University, Shanghai, P.R. China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Shanghai, P.R. China.
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
16
|
Yin MD, Ma SP, Liu F, Chen YZ. Role of serine/threonine kinase 33 methylation in colorectal cancer and its clinical significance. Oncol Lett 2017; 15:2153-2160. [PMID: 29434919 PMCID: PMC5776884 DOI: 10.3892/ol.2017.7614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Serine/threonine kinase 33 (STK33) is a novel protein that has been the focus of an increasing number of studies in recent years; however, the role of STK33 in tumorigenesis remains controversial. Previous studies have demonstrated that STK33 is overexpressed in several human cancers and exerts a pro-tumorigenic effect through the promotion of cell proliferation. However, the role of STK33 in colorectal cancer (CRC), which is one of the most aggressive human malignancies, remains unclear. The aim of the current study was to investigate the methylation status of STK33 in CRC and to determine its clinical significance. The results demonstrated that STK33 was hypermethylated in CRC cell lines and promoted the proliferation of CRC cells. In addition, the methylation status and expression of STK33 in 94 pairs of cancer and noncancerous tissues obtained from patients with CRC was investigated. STK33 methylation was significantly increased in cancer tissues when compared with adjacent noncancerous tissues (P<0.001). STK33 methylation was associated with lymph node metastasis (P<0.05), tumor invasion (P<0.05), distant metastases (P<0.01) and tumor stage (P<0.01). Reduced STK33 mRNA and protein expression in CRC was associated with STK33 hypermethylation (P<0.001). In addition, patients with hypermethylated STK33 exhibited shorter overall survival rates when compared with those with unmethylated STK33 (P<0.01). In conclusion, the results of the current study suggest that STK33 hypermethylation may be a promising novel biomarker for the diagnosis, prognosis and suitable treatment of CRC.
Collapse
Affiliation(s)
- Ming-Di Yin
- Department of Colon and Rectum Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Si-Ping Ma
- Department of Colon and Rectum Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Fang Liu
- Department of Colon and Rectum Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yu-Ze Chen
- Department of Colon and Rectum Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
17
|
STK33 participates to HSP90-supported angiogenic program in hypoxic tumors by regulating HIF-1α/VEGF signaling pathway. Oncotarget 2017; 8:77474-77488. [PMID: 29100402 PMCID: PMC5652794 DOI: 10.18632/oncotarget.20535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022] Open
Abstract
Lately, the HSP90 client serine/threonine kinase STK33 emerged to be required by cancer cells for their viability and proliferation. However, its mechanistic contribution to carcinogenesis is not clearly understood. Here we report that elevated STK33 expression correlates with advanced stages of human pancreatic and colorectal carcinomas. Impaired proliferation and augmented apoptosis associated with genetic abrogation of STK33 were paralleled by decreased vascularization in tumor xenografts. In line with this, ectopic STK33 not only promoted tumor growth after pharmacologic inhibition of HSP90 using structurally divergent small molecules currently in clinical development, but also restored blood vessel formation in vivo. Mechanistic studies demonstrated that HSP90-stabilized STK33 interacts with and regulates hypoxia-driven accumulation and activation of HIF-1α as well as secretion of VEGF-A in hypoxic cancer cells. In addition, our study reveals a putative cooperation between STK33 and other HSP90 client protein kinases involved in molecular and cellular events through which cancer cells ensure their survival by securing the oxygen and nutrient supply. Altogether, our findings indicate that STK33 interferes with signals from hypoxia and HSP90 to promote tumor angiogenesis and tumor growth.
Collapse
|
18
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
19
|
Reuss S, Brauksiepe B, Disque-Kaiser U, Olivier T. Serine/threonine-kinase 33 (Stk33) – Component of the neuroendocrine network? Brain Res 2017; 1655:152-160. [DOI: 10.1016/j.brainres.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/09/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
|
20
|
Chen C, Huang L, Zhang G, Li Y, Li L, Bai X, Liu W, Wang H, Li J. STK33 potentiates the malignancy of hypopharyngeal squamous carcinoma: Possible relation to calcium. Cancer Biol Ther 2016; 17:976-84. [PMID: 27414193 DOI: 10.1080/15384047.2016.1210739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND The present study aims to further explore the role of STK33 in hypopharyngeal squamous cell carcinoma (HSCC), with special attention given to the possible relationship between STK33 alteration and calcium. METHODS An in vivo experiment and microarray analysis were performed to investigate the impact of STK33 knockdown (STK33-RNAi) on the biological behaviors and the gene profile alterations of a HSCC cell line (Fadu). Cell viability and morphological change of Fadu cells in response to Ionomycin were measured by MTT assay and acridine orange staining. The concentration of intracellular calcium ([Ca(2+)]i) was detected by laser scanning confocal microscope with fluo-3/AM. The mRNA and protein expressions of relevant genes were examined by real-time PCR and Western blot. RESULTS STK33-RNAi retarded the Fadu cell proliferation and the metastasis in nude mice and led to up- and down-regulation of the expressions of abundance of genes, especially, the downregulation of the CAPN1 gene. Ionomycin increased the [Ca(2+)]i and decreased the survival rates of Fadu cells in a time-dependent manner. Moreover, Ionomycin resulted in the elevation of CAPN1 mRNA expression in normal Fadu cells and, conversely, had almost no effect on CAPN1 expression in STK33-RNAi cells. CONCLUSIONS Findings from this work further validate that STK33 is a potential oncogene and plays an important role in tumorigenesis of HSCC via regulation of numerous genes. In addition, there exists the reciprocal influence between STK33 and [Ca(2+)]i in Fadu cells.
Collapse
Affiliation(s)
- Chen Chen
- a Department of Otorhinolaryngology-Head and Neck Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong Province , P.R. China.,b Department of Pathology, Medical College , Shandong University , Jinan , P.R. China
| | - Lingyan Huang
- b Department of Pathology, Medical College , Shandong University , Jinan , P.R. China.,c Department of Pathology , General Hospital of Ningxia Medical University , Yinchuan , P.R. China
| | - Guodong Zhang
- d Shandong Institute of Otorhinolaryngology , Jinan , P.R. China
| | - Yang Li
- e Department of Obstetrics and Gynecology , Shandong Provincial Hospital affiliated to Shandong University , Jinan , P.R. China
| | - Li Li
- a Department of Otorhinolaryngology-Head and Neck Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong Province , P.R. China
| | - Xiaohui Bai
- d Shandong Institute of Otorhinolaryngology , Jinan , P.R. China
| | - Wenwen Liu
- d Shandong Institute of Otorhinolaryngology , Jinan , P.R. China
| | - Haibo Wang
- a Department of Otorhinolaryngology-Head and Neck Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong Province , P.R. China.,d Shandong Institute of Otorhinolaryngology , Jinan , P.R. China
| | - Jianfeng Li
- a Department of Otorhinolaryngology-Head and Neck Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , Shandong Province , P.R. China.,b Department of Pathology, Medical College , Shandong University , Jinan , P.R. China.,d Shandong Institute of Otorhinolaryngology , Jinan , P.R. China
| |
Collapse
|
21
|
Yang T, Song B, Zhang J, Yang GS, Zhang H, Yu WF, Wu MC, Lu JH, Shen F. STK33 promotes hepatocellular carcinoma through binding to c-Myc. Gut 2016; 65:124-133. [PMID: 25398772 PMCID: PMC4717356 DOI: 10.1136/gutjnl-2014-307545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVE STK33 has been reported to play an important role in cancer cell proliferation. We investigated the role of STK33 in hepatocellular carcinoma (HCC) and its underlying mechanisms. DESIGN 251 patients with HCC were analysed for association between STK33 expression and clinical stage and survival rate. Tamoxifen (TAM)-inducible, hepatocyte-specific STK33 transgenic and knockout mice models were used to study the role of STK33 in liver tumorigenesis. HCC cell lines were used to study the role of STK33 in cell proliferation in vitro and in vivo. RESULTS STK33 expression was found to be frequently upregulated in patients with HCC. Significant associations were found between increased expression of STK33 and advanced HCC staging and shorter disease-free survival of patients. Overexpression of STK33 increased HCC cell proliferation both in vitro and in vivo, whereas suppression of STK33 inhibited this effect. Using a TAM-inducible, hepatocyte-specific STK33 transgenic mouse model, we found that overexpression of STK33 resulted in increased hepatocyte proliferation, leading to tumour cell burst. Using a TAM-inducible, hepatocyte-specific STK33 knockout mouse model, we found that, when subjected to the diethylnitrosamine (DEN) liver cancer bioassay, STK33KO(flox/flox, Alb-ERT2-Cre) mice exhibited a markedly lower incidence of tumour formation compared with control mice. The underlying mechanism may be that STK33 binds directly to c-Myc and increases its transcriptional activity. In particular, the C-terminus of STK33 blocks STK33/c-Myc association, downregulates HCC cell proliferation, and reduces DEN-induced liver tumour cell number and tumour size. CONCLUSIONS STK33 plays an essential role in hepatocellular proliferation and liver tumorigenesis. The C-terminus of STK33 could be a potential therapeutic target in the treatment of patients with STK33-overexpressed HCC.
Collapse
Affiliation(s)
- Tian Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bin Song
- The 3rd Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang-Shun Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Han Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Feng Yu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun-Hua Lu
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Lautwein T, Lerch S, Schäfer D, Schmidt ER. The serine/threonine kinase 33 is present and expressed in palaeognath birds but has become a unitary pseudogene in neognaths about 100 million years ago. BMC Genomics 2015. [PMID: 26199010 PMCID: PMC4509753 DOI: 10.1186/s12864-015-1769-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Serine/threonine kinase 33 (STK33) has been shown to be conserved across all major vertebrate classes including reptiles, mammals, amphibians and fish, suggesting its importance within vertebrates. It has been shown to phosphorylate vimentin and might play a role in spermatogenesis and organ ontogenesis. In this study we analyzed the genomic locus and expression of stk33 in the class Aves, using a combination of large scale next generation sequencing data analysis and traditional PCR. Results Within the subclass Palaeognathae we analyzed the white-throated tinamou (Tinamus guttatus), the African ostrich (Struthio camelus) and the emu (Dromaius novaehollandiae). For the African ostrich we were able to generate a 62,778 bp long genomic contig and an mRNA sequence that encodes a protein showing highly significant similarity to STK33 proteins from other vertebrates. The emu has been shown to encode and transcribe a functional STK33 as well. For the white-throated tinamou we were able to identify 13 exons by sequence comparison encoding a protein similar to STK33 as well. In contrast, in all 28 neognath birds analyzed, we could not find evidence for the existence of a functional copy of stk33 or its expression. In the genomes of these 28 bird species, we found only remnants of the stk33 locus carrying several large genomic deletions, leading to the loss of multiple exons. The remaining exons have acquired various indels and premature stop codons. Conclusions We were able to elucidate and describe the genomic structure and the transcription of a functional stk33 gene within the subclass Palaeognathae, but we could only find degenerate remnants of stk33 in all neognath birds analyzed. This led us to the conclusion that stk33 became a unitary pseudogene in the evolutionary history of the class Aves at the paleognath-neognath branch point during the late cretaceous period about 100 million years ago. We hypothesize that the pseudogenization of stk33 might have become fixed in neognaths due to either genetic redundancy or a non-orthologous gene displacement and present potential candidate genes for such an incident. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1769-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Lautwein
- Institute for Molecular Genetics, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 32, 55128, Mainz, Germany.
| | - Steffen Lerch
- Institute for Molecular Genetics, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 32, 55128, Mainz, Germany. .,Departement of Neurology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstr.1, 55131, Mainz, Germany.
| | - Daniel Schäfer
- Institute for Molecular Genetics, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 32, 55128, Mainz, Germany. .,Departement of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Erwin R Schmidt
- Institute for Molecular Genetics, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 32, 55128, Mainz, Germany.
| |
Collapse
|
23
|
Wang P, Cheng H, Wu J, Yan A, Zhang L. STK33 plays an important positive role in the development of human large cell lung cancers with variable metastatic potential. Acta Biochim Biophys Sin (Shanghai) 2015; 47:214-23. [PMID: 25662617 DOI: 10.1093/abbs/gmu136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serine/threonine kinase 33 (STK33) is a novel protein that has attracted considerable interest in recent years. Previous research has revealed that STK33 expression plays a special role in cancer cell proliferation. However, the mechanisms of STK33 induction of cancer cells remain largely unknown. In this study, it is demonstrated that STK33 expression varies in NL9980 and L9981 cells which are homogeneous cell lines with similar genetic backgrounds. STK33 can promote cell migration and invasion and suppress p53 gene expression in the NL9980 and L9981 cells. In addition, this protein also promotes epithelial-mesenchymal transition (EMT). Moreover, STK33 knockdown decreases tumor-related gene expression and inhibits cell migration, invasion, and EMT, suggesting that STK33 may be a mediator of signaling pathways that are involved in cancer. In conclusion, our results suggest that STK33 may be an important prognostic marker and a therapeutic target for the metastatic progression of human lung cancer.
Collapse
Affiliation(s)
- Ping Wang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming 650031, China
| | - Hongzhong Cheng
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming 650031, China
| | - Jianqiang Wu
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming 650031, China
| | - Anrun Yan
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming 650031, China
| | - Libin Zhang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming 650031, China
| |
Collapse
|
24
|
Huang L, Chen C, Zhang G, Ju Y, Zhang J, Wang H, Li J. STK33 overexpression in hypopharyngeal squamous cell carcinoma: possible role in tumorigenesis. BMC Cancer 2015; 15:13. [PMID: 25603720 PMCID: PMC4305229 DOI: 10.1186/s12885-015-1009-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/06/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The role of serine/threonine kinase 33 (STK33) gene in tumorigenesis is still controversial. This study was aimed to investigate whether STK33 had the effect on hypopharyngeal squamous cell carcinoma (HSCC) and relevant genes, as well as the potential relation to ERK1/2 pathway. METHODS Immunohistochemistry was performed to investigate STK33 expression in human HSCC specimens. MTT, immunofluorescence, clone formation and matrigel invasion assays were employed to detect the effects of STK33 knockdown (STK33-RNAi) and/or PD98059 on major oncogenic properties of a HSCC cell line (Fadu), while, real-time PCR and western blot were used to examine the expressions of relevant genes. RESULTS STK33 was over-expressed in HSCC specimens, which was significantly associated with certain clinicopathological parameters. STK33-RNAi in Fadu cells resulted in inhibition of proliferation, induction of apoptosis, reduction of clone formation, and decline in the migration and invasion. These effects were potentiated by administration of PD98059. Mechanistic studies revealed that STK33-RNAi led to an increase in Caspse-3, Nm-23-H1 and E-Cadherin expressions and a reduction in Bcl-2, Ki-67 and Vimentin expressions. Moreover, PD98059 significantly reduced both ERK1/2 and STK33 expressions in Fadu cells. CONCLUSIONS STK33 is a potential oncogene and a promising diagnostic marker for HSCC. STK33 may promote tumorigenesis and progression of HSCC, and serve as a valuable molecular target for treatment of HSCC.
Collapse
Affiliation(s)
- Lingyan Huang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jingwu Street 324, Jinan, 250021, P.R. China. .,Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, P.R. China. .,Department of Pathology, Medical College, Shandong University, Jinan, 250021, P.R. China.
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jingwu Street 324, Jinan, 250021, P.R. China. .,Department of Pathology, Medical College, Shandong University, Jinan, 250021, P.R. China.
| | - Guodong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jingwu Street 324, Jinan, 250021, P.R. China.
| | - Yuanrong Ju
- Intensive Care Unit, Provincial Hospital Affiliated to Shandong University, Jinan, 250021, P.R. China.
| | - Jianzhong Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, P.R. China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jingwu Street 324, Jinan, 250021, P.R. China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jingwu Street 324, Jinan, 250021, P.R. China. .,Department of Pathology, Medical College, Shandong University, Jinan, 250021, P.R. China.
| |
Collapse
|
25
|
Brauksiepe B, Baumgarten L, Reuss S, Schmidt ER. Co-localization of serine/threonine kinase 33 (Stk33) and vimentin in the hypothalamus. Cell Tissue Res 2013; 355:189-99. [PMID: 24057876 DOI: 10.1007/s00441-013-1721-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/16/2013] [Indexed: 01/04/2023]
Abstract
We investigate the immunoreactivity of serine/threonine kinase 33 (Stk33) and of vimentin in the brain of mouse, rat and hamster. Using a Stk33-specific polyclonal antibody, we show by immunofluorescence staining that Stk33 is present in a variety of brain regions. We found a strong staining in the ependymal lining of all cerebral ventricles and the central canal of the spinal cord as well as in hypothalamic tanycytes. Stk33 immunoreactivity was also found in circumventricular organs such as the area postrema, subfornical organ and pituitary and pineal glands. Double-immunostaining experiments with antibodies against Stk33 and vimentin showed a striking colocalization of Stk33 and vimentin. As shown previously, Stk33 phosphorylates recombinant vimentin in vitro. Co-immunoprecipitation experiments and co-sedimentation assays indicate that Stk33 and vimentin are associated in vivo and that this association does not depend on further interacting partners (Brauksiepe et al. in BMC Biochem 9:25, 2008). This indicates that Stk33 is involved in the dynamics of vimentin polymerization/depolymerization. Since in tanycytes the vimentin expression is regulated by the photoperiod (Kameda et al. in Cell Tissue Res 314:251-262, 2003), we determine whether this also holds true for Stk33. We study hypothalamic sections from adult Djungarian hamsters (Phodopus sungorus) held under either long photoperiods (L:D 16:8 h) or short photoperiods (L:D 8:16 h) for 2 months. In addition, we examine whether age-dependent changes in Stk33 protein content exist. Our results show that Stk33 in tanycytes is regulated by the photoperiod as is the case for vimentin. Stk33 may participate in photoperiodic regulation of the endocrine system.
Collapse
Affiliation(s)
- Bastienne Brauksiepe
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Johann-Joachim Becherweg 32, 55128, Mainz, Germany
| | | | | | | |
Collapse
|
26
|
Rask-Andersen M, Moschonis G, Chrousos GP, Marcus C, Dedoussis GV, Fredriksson R, Schiöth HB. The STK33-linked SNP rs4929949 is associated with obesity and BMI in two independent cohorts of Swedish and Greek children. PLoS One 2013; 8:e71353. [PMID: 23967198 PMCID: PMC3744548 DOI: 10.1371/journal.pone.0071353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/30/2013] [Indexed: 12/26/2022] Open
Abstract
Recent genome wide association studies (GWAS) have identified a locus on chromosome 11p15.5, closely associated with serine/threonine kinase 33 (STK33), to be associated with body mass. STK33, a relatively understudied protein, has been linked to KRAS mutation-driven cancers and explored as a potential antineoplastic drug target. The strongest association with body mass observed at this loci in GWAS was rs4929949, a single nucleotide polymorphism located within intron 1 of the gene encoding STK33. The functional implications of rs4929949 or related variants have not been explored as of yet. We have genotyped rs4929949 in two cohorts, an obesity case-control cohort of 991 Swedish children, and a cross-sectional cohort of 2308 Greek school children. We found that the minor allele of rs4929949 was associated with obesity in the cohort of Swedish children and adolescents (OR = 1.199 (95%CI: 1.002–1.434), p = 0.047), and with body mass in the cross-sectional cohort of Greek children (β = 0.08147 (95% CI: 0.1345–0.1618), p = 0.021). We observe the effects of rs4929949 on body mass to be detectable already at adolescence. Subsequent analysis did not detect any association of rs4929949 to phenotypic measurements describing body adiposity or to metabolic factors such as insulin levels, triglycerides and insulin resistance (HOMA).
Collapse
Affiliation(s)
- Mathias Rask-Andersen
- Department of Neuroscience, Functional Pharmacology, Uppsala University BMC, Uppsala, Sweden
| | - George Moschonis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - George P. Chrousos
- First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Claude Marcus
- Department for Clinical Science Intervention and Technology (CLINTEC), Department of Pediatrics, Karolinska University Hospital Karolinska Institutet, Huddinge, Sweden
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Robert Fredriksson
- Department of Neuroscience, Functional Pharmacology, Uppsala University BMC, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
27
|
Carter H, Samayoa J, Hruban RH, Karchin R. Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM). Cancer Biol Ther 2010; 10:582-7. [PMID: 20581473 DOI: 10.4161/cbt.10.6.12537] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over 20,000 genes were recently sequenced in a series of 24 pancreatic cancers. We applied CHASM (Cancer-specific High-throughput Annotation of Somatic Mutations) to 963 of the missense somatic missense mutations discovered in these 24 cancers. CHASM identified putative driver mutations (false discovery rate ≤0.3) in three known pancreatic cancer driver genes (P53, SMAD4, CDKN2A). An additional 15 genes with putative driver mutations include genes coding for kinases (PIK3CG, DGKA, STK33, TTK and PRKCG), for cell cycle related proteins (NEK8), and for proteins involved in cell adhesion (CMAS, PCDHB2). These and other mutations identified by CHASM point to potential "driver genes" in pancreatic cancer that should be prioritized for additional follow-up.
Collapse
Affiliation(s)
- Hannah Carter
- Department of Biomedical Engineering and Institute for Computational Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA
| | | | | | | |
Collapse
|
28
|
Brauksiepe B, Mujica AO, Herrmann H, Schmidt ER. The Serine/threonine kinase Stk33 exhibits autophosphorylation and phosphorylates the intermediate filament protein Vimentin. BMC BIOCHEMISTRY 2008; 9:25. [PMID: 18811945 PMCID: PMC2567967 DOI: 10.1186/1471-2091-9-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 09/23/2008] [Indexed: 02/02/2023]
Abstract
Background Colocalization of Stk33 with vimentin by double immunofluorescence in certain cells indicated that vimentin might be a target for phosphorylation by the novel kinase Stk33. We therefore tested in vitro the ability of Stk33 to phosphorylate recombinant full length vimentin and amino-terminal truncated versions thereof. In order to prove that Stk33 and vimentin are also in vivo associated proteins co-immunoprecipitation experiments were carried out. For testing the enzymatic activity of immunoprecipitated Stk33 we incubated precipitated Stk33 with recombinant vimentin proteins. To investigate whether Stk33 binds directly to vimentin, an in vitro co-sedimentation assay was performed. Results The results of the kinase assays demonstrate that Stk33 is able to specifically phosphorylate the non-α-helical amino-terminal domain of vimentin in vitro. Furthermore, co-immunoprecipitation experiments employing cultured cell extracts indicate that Stk33 and vimentin are associated in vivo. Immunoprecipitated Stk33 has enzymatic activity as shown by successful phosphorylation of recombinant vimentin proteins. The results of the co-sedimentation assay suggest that vimentin binds directly to Stk33 and that no additional protein mediates the association. Conclusion We hypothesize that Stk33 is involved in the in vivo dynamics of the intermediate filament cytoskeleton by phosphorylating vimentin.
Collapse
|
29
|
Sabeur K, Ball BA, Corbin CJ, Conley A. Characterization of a novel, testis-specific equine serine/threonine kinase. Mol Reprod Dev 2008; 75:867-73. [PMID: 18246530 DOI: 10.1002/mrd.20792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Testis-specific protein kinases are important because of their potential role in spermiogenesis, sperm maturation, and sperm function. In the present study, a novel serine-threonine kinase with high identity to human serine-threonine kinase 31 (STK31) was cloned from equine testis and expression of the protein was characterized in equine testis and ejaculated spermatozoa. Five over-lapping independent clones were plaque purified after screening of a lambda ZAP cDNA expression library constructed from equine testis. Sequence analysis and alignment of all five clones showed high identity with human STK31 with approximately 200 bp of the equine N-terminal sequence incomplete. The putative full-length coding sequence of this testis specific equine cDNA was completed by amplification of a 200-bp fragment using a human primer upstream of the reported translational start site with equine specific nested primers. Northern blot analysis using the equine STK31 cDNA detected an RNA transcript of approximately 3.1 kb present in testis but not in other reproductive or somatic tissues. Immunolocalization of the protein in equine testis and spermatozoa demonstrated that STK31 was present in post-meiotic germ cells with localization to the equatorial segment of testicular spermatozoa. Analysis of the domain structure of equine STK31 revealed a protein kinase domain along with a putative RNA-binding region. The post-meiotic expression of this protein along with its domain structure suggests that STK31 may have a role in reorganization of sperm chromatin during spermiogenesis. The cloning of this novel, testis-specific equine STK provides a new tool to explore the role of kinases in sperm function.
Collapse
Affiliation(s)
- Khalida Sabeur
- Department of Population Health and Reproduction, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
30
|
Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, Mushegian A, Goel M, Morales J, Geneviere AM, Lapraz F, Robertson AJ, Kelkar H, Loza-Coll M, Townley IK, Raisch M, Roux MM, Lepage T, Gache C, McClay DR, Manning G. The sea urchin kinome: a first look. Dev Biol 2006; 300:180-93. [PMID: 17027740 DOI: 10.1016/j.ydbio.2006.08.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/19/2006] [Accepted: 08/22/2006] [Indexed: 12/31/2022]
Abstract
This paper reports a preliminary in silico analysis of the sea urchin kinome. The predicted protein kinases in the sea urchin genome were identified, annotated and classified, according to both function and kinase domain taxonomy. The results show that the sea urchin kinome, consisting of 353 protein kinases, is closer to the Drosophila kinome (239) than the human kinome (518) with respect to total kinase number. However, the diversity of sea urchin kinases is surprisingly similar to humans, since the urchin kinome is missing only 4 of 186 human subfamilies, while Drosophila lacks 24. Thus, the sea urchin kinome combines the simplicity of a non-duplicated genome with the diversity of function and signaling previously considered to be vertebrate-specific. More than half of the sea urchin kinases are involved with signal transduction, and approximately 88% of the signaling kinases are expressed in the developing embryo. These results support the strength of this nonchordate deuterostome as a pivotal developmental and evolutionary model organism.
Collapse
|