1
|
Enninful KS, Kwofie SK, Tetteh-Tsifoanya M, Lamptey ANL, Djameh G, Nyarko S, Ghansah A, Wilson MD. Targeting the Plasmodium falciparum’s Thymidylate Monophosphate Kinase for the Identification of Novel Antimalarial Natural Compounds. Front Cell Infect Microbiol 2022; 12:868529. [PMID: 35694550 PMCID: PMC9174469 DOI: 10.3389/fcimb.2022.868529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recent reports of resistance to artemisinin-based combination drugs necessitate the need to discover novel antimalarial compounds. The present study was aimed at identifying novel antimalarial compounds from natural product libraries using computational methods. Plasmodium falciparum is highly dependent on the pyrimidine biosynthetic pathway, a de novo pathway responsible for the production of pyrimidines, and the parasite lacks the pyrimidine salvage enzymes. The P. falciparum thymidylate monophosphate kinase (PfTMPK) is an important protein necessary for rapid DNA replication; however, due to its broad substrate specificity, the protein is distinguished from its homologs, making it a suitable drug target. Compounds from AfroDB, a database of natural products originating from Africa, were screened virtually against PfTMPK after filtering the compounds for absorption, distribution, metabolism, excretion, and toxicity (ADMET)-acceptable compounds with FAF-Drugs4. Thirteen hits with lower binding energies than thymidine monophosphate were selected after docking. Among the thirteen compounds, ZINC13374323 and ZINC13365918 with binding energies of −9.4 and −8.9 kcal/mol, respectively, were selected as plausible lead compounds because they exhibited structural properties that ensure proper binding at the active site and inhibitory effect against PfTMPK. ZINC13374323 (also called aurantiamide acetate) is known to exhibit anti-inflammatory and antiviral activities, and ZINC13365918 exhibits antileishmanial activity. Furthermore, aurantiamide acetate, which is commercially available, is a constituent of Artemisia annua, the herb from which artemisinin was derived. The compound also shares interactions with several residues with a potent thymidine analog inhibitor of PfTMPK. The anti-plasmodial activity of aurantiamide acetate was evaluated in vitro, and the mean half-maximal inhibitory concentration (IC50) was 69.33 μM when synchronized P. falciparum 3D7 culture was used as compared to IC50 > 100 μM with asynchronized culture. The significance of our findings within the context of malaria treatment strategies and challenges is discussed.
Collapse
Affiliation(s)
- Kweku S. Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Tetteh-Tsifoanya
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Amanda N. L. Lamptey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Georgina Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Samuel Nyarko
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Stritch School of Medicine, Loyola University of Chicago, Maywood, IL, United States
- *Correspondence: Michael D. Wilson,
| |
Collapse
|
2
|
Ali F, Wali H, Jan S, Zia A, Aslam M, Ahmad I, Afridi SG, Shams S, Khan A. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria. Malar J 2021; 20:335. [PMID: 34344361 PMCID: PMC8336052 DOI: 10.1186/s12936-021-03865-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is an obligate intracellular parasite of humans that causes malaria. Falciparum malaria is a major public health threat to human life responsible for high mortality. Currently, the risk of multi-drug resistance of P. falciparum is rapidly increasing. There is a need to address new anti-malarial therapeutics strategies to combat the drug-resistance threat. METHODS The P. falciparum essential proteins were retrieved from the recently published studies. These proteins were initially scanned against human host and its gut microbiome proteome sets by comparative proteomics analyses. The human host non-homologs essential proteins of P. falciparum were additionally analysed for druggability potential via in silico methods to possibly identify novel therapeutic targets. Finally, the PfAp4AH target was prioritized for pharmacophore modelling based virtual screening and molecular docking analyses to identify potent inhibitors from drug-like compounds databases. RESULTS The analyses identified six P. falciparum essential and human host non-homolog proteins that follow the key druggability features. These druggable targets have not been catalogued so far in the Drugbank repository. These prioritized proteins seem novel and promising drug targets against P. falciparum due to their key protein-protein interactions features in pathogen-specific biological pathways and to hold appropriate drug-like molecule binding pockets. The pharmacophore features based virtual screening of Pharmit resource predicted a lead compound i.e. MolPort-045-917-542 as a promising inhibitor of PfAp4AH among prioritized targets. CONCLUSION The prioritized protein targets may worthy to test in malarial drug discovery programme to overcome the anti-malarial resistance issues. The in-vitro and in-vivo studies might be promising for additional validation of these prioritized lists of drug targets against malaria.
Collapse
Affiliation(s)
- Fawad Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.,Department of Biochemistry, Hazara University, Mansehra, 21120, Pakistan
| | - Hira Wali
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Saadia Jan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asad Zia
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Imtiaz Ahmad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
3
|
Sourabh S, Yasmin R, Tuteja R. Plasmodium falciparum DDX3X is a nucleocytoplasmic protein and requires N-terminal for DNA helicase activity. Parasitol Int 2021; 85:102420. [PMID: 34265466 DOI: 10.1016/j.parint.2021.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/19/2022]
Abstract
Malaria is a haemato-protozoan disease which causes thousands of deaths every year. Due to the alarming increase of drug resistant strains of P. falciparum, malaria is now becoming more deadly. Helicases are the most important components of the cellular machinery without which cells are unable to survive. The importance of helicases has been proven in variety of organisms. In this study we have reported detailed biochemical characterization of human homologue of DDX3X from Plasmodium falciparum (PfDDX3X). Our study revealed that PfDDX3X is ATP- dependent DNA helicase whereas in human host it is ATP-dependent RNA helicase. We show that N-terminal is essential for its activity and it is present in nucleus and cytoplasm in intraerythrocytic developmental stages of P. falciparum 3D7 strain. Also, it is highly expressed in the schizont stage of P. falciparum 3D7strain. The present study suggests that a protein can perform different functions in different systems. The present study will help to understand the basic biology of malaria parasite P. falciparum.
Collapse
Affiliation(s)
- Suman Sourabh
- Parasite Biology Group, ICGEB, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahena Yasmin
- Parasite Biology Group, ICGEB, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
4
|
Arwansyah A, Arif AR, Syahputra G, Sukarti S, Kurniawan I. Theoretical studies of Thiazolyl-Pyrazoline derivatives as promising drugs against malaria by QSAR modelling combined with molecular docking and molecular dynamics simulation. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1935926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arwansyah Arwansyah
- Department of Chemistry, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - Abdur Rahman Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - Gita Syahputra
- Research Center for Biotechnology, Indonesian Institute of Science, Bogor, Indonesia
| | - Sukarti Sukarti
- Department of Chemistry, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - Isman Kurniawan
- School of Computing, Telkom University, Bandung, Indonesia
- Research Center of Human Centric Engineering, Telkom University, Bandung, Indonesia
| |
Collapse
|
5
|
Dousti M, Manzano-Román R, Rashidi S, Barzegar G, Ahmadpour NB, Mohammadi A, Hatam G. A proteomic glimpse into the effect of antimalarial drugs on Plasmodium falciparum proteome towards highlighting possible therapeutic targets. Pathog Dis 2021; 79:ftaa071. [PMID: 33202000 DOI: 10.1093/femspd/ftaa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
There is no effective vaccine against malaria; therefore, chemotherapy is to date the only choice to fight against this infectious disease. However, there is growing evidences of drug-resistance mechanisms in malaria treatments. Therefore, the identification of new drug targets is an urgent need for the clinical management of the disease. Proteomic approaches offer the chance of determining the effects of antimalarial drugs on the proteome of Plasmodium parasites. Accordingly, we reviewed the effects of antimalarial drugs on the Plasmodium falciparum proteome pointing out the relevance of several proteins as possible drug targets in malaria treatment. In addition, some of the P. falciparum stage-specific altered proteins and parasite-host interactions might play important roles in pathogenicity, survival, invasion and metabolic pathways and thus serve as potential sources of drug targets. In this review, we have identified several proteins, including thioredoxin reductase, helicases, peptidyl-prolyl cis-trans isomerase, endoplasmic reticulum-resident calcium-binding protein, choline/ethanolamine phosphotransferase, purine nucleoside phosphorylase, apical membrane antigen 1, glutamate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase, heat shock protein 70x, knob-associated histidine-rich protein and erythrocyte membrane protein 1, as promising antimalarial drugs targets. Overall, proteomic approaches are able to partially facilitate finding possible drug targets. However, the integration of other 'omics' and specific pharmaceutical techniques with proteomics may increase the therapeutic properties of the critical proteins identified in the P. falciparum proteome.
Collapse
Affiliation(s)
- Majid Dousti
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Barzegar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Mohammadi
- Department of Disease Control, Komijan Treatment and Health Network, Arak University of Medical Science, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Yasmin R, Kaur I, Tuteja R. Plasmodium falciparum DDX55 is a nucleocytoplasmic protein and a 3'-5' direction-specific DNA helicase. PROTOPLASMA 2020; 257:1049-1067. [PMID: 32125511 DOI: 10.1007/s00709-020-01495-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Malaria is one of the major causes of mortality as well as morbidity in many tropical and subtropical countries around the world. Although artemisinin combination therapies (ACTs) are contributing to substantial decline in the worldwide malaria burden, it is becoming vulnerable by the emergence of artemisinin resistance in Plasmodium falciparum leading to clinical failure of ACTs in Southeast Asia. Helicases play important role in nucleic acid metabolic processes and have been also identified as therapeutic drug target for different diseases. Previously, it has been reported that P. falciparum contains a group of DEAD-box family of helicases which are homologous to Has1 family of yeast. Here, we present the characterization of a member of Has1 family (PlasmoDB number PF3D7_1419100) named as PfDDX55. The biochemical characterization of PfDDX55C revealed that it contains both DNA- and RNA-dependent ATPase activity. PfDDX55C unwinds partially duplex DNA in 3' to 5' direction and utilizes mainly ATP or dATP for its activity. The immunofluorescence assay and q-RT PCR analysis show that PfDDX55 is a nucleocytoplasmic protein expressed in all the intraerythrocytic development of P. falciparum 3D7 strain with maximum expression level in trophozoite stage. The LC-MS/MS experiment results and STRING analysis show that PfDDX55 interacts with AAA-ATPase which has been shown to be involved in ribosomal biogenesis.
Collapse
Affiliation(s)
- Rahena Yasmin
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Inderjeet Kaur
- Malaria Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
7
|
Yadav DK, Kumar S, Teli MK, Yadav R, Chaudhary S. Molecular Targets for Malarial Chemotherapy: A Review. Curr Top Med Chem 2019; 19:861-873. [DOI: 10.2174/1568026619666190603080000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/22/2022]
Abstract
The malaria parasite resistance to the existing drugs is a serious problem to the currently used
antimalarials and, thus, highlights the urgent need to develop new and effective anti-malarial molecules.
This could be achieved either by the identification of the new drugs for the validated targets or by further
refining/improving the existing antimalarials; or by combining previously effective agents with
new/existing drugs to have a synergistic effect that counters parasite resistance; or by identifying novel
targets for the malarial chemotherapy. In this review article, a comprehensive collection of some of the
novel molecular targets has been enlisted for the antimalarial drugs. The targets which could be deliberated
for developing new anti-malarial drugs could be: membrane biosynthesis, mitochondrial system,
apicoplasts, parasite transporters, shikimate pathway, hematin crystals, parasite proteases, glycolysis,
isoprenoid synthesis, cell cycle control/cycline dependent kinase, redox system, nucleic acid metabolism,
methionine cycle and the polyamines, folate metabolism, the helicases, erythrocyte G-protein, and
farnesyl transferases. Modern genomic tools approaches such as structural biology and combinatorial
chemistry, novel targets could be identified followed by drug development for drug resistant strains providing
wide ranges of novel targets in the development of new therapy. The new approaches and targets
mentioned in the manuscript provide a basis for the development of new unique strategies for antimalarial
therapy with limited off-target effects in the near future.
Collapse
Affiliation(s)
- Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Surendra Kumar
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Mahesh K. Teli
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, 191, Yeonsu-gu, Incheon 406-799, South Korea
| | - Ravikant Yadav
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur-302017, India
| |
Collapse
|
8
|
Plasmodium falciparum specific helicase 2 is a dual, bipolar helicase and is crucial for parasite growth. Sci Rep 2019; 9:1519. [PMID: 30728406 PMCID: PMC6365506 DOI: 10.1038/s41598-018-38032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Human malaria infection is a major challenge across the globe and is responsible for millions of deaths annually. Rapidly emerging drug resistant strains against the new class of anti-malarial drugs are major threat to control the disease burden worldwide. Helicases are present in every organism and have important role in various nucleic acid metabolic processes. Previously we have reported the presence of three parasite specific helicases (PSH) in Plasmodium falciparum 3D7 strain. Here we present the detailed biochemical characterization of PfPSH2. PfPSH2 is DNA and RNA stimulated ATPase and is able to unwind partially duplex DNA and RNA substrates. It can translocate in both 3' to 5' and 5' to 3' directions. PfPSH2 is expressed in all the stages of intraerythrocytic development and it is localized in cytoplasm in P. falciparum 3D7 strain. The dsRNA mediated inhibition study suggests that PfPSH2 is important for the growth and survival of the parasite. This study presents the detailed characterization of PfPSH2 and lays the foundation for future development of PfPSH2 as drug target.
Collapse
|
9
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
10
|
Chauhan M, Tarique M, Tuteja R. Plasmodium falciparum specific helicase 3 is nucleocytoplasmic protein and unwinds DNA duplex in 3' to 5' direction. Sci Rep 2017; 7:13146. [PMID: 29030567 PMCID: PMC5640622 DOI: 10.1038/s41598-017-12927-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
Plasmodium falciparum is responsible for most dangerous and prevalent form of malaria. The emergence of multi drug resistant parasite hindered the prevention of malaria burden worldwide. Helicases are omnipresent enzymes, which play important role in nucleic acid metabolism and can be used as potential targets for development of novel therapeutics. The genome wide analysis of P. falciparum 3D7 strain revealed some novel parasite specific helicases, which are not present in human host. Here we report the detailed biochemical characterization of P. falciparum parasite specific helicase 3 (PfPSH3). The characteristic ATPase and helicase activities of PfPSH3 reside in its N-terminal region (PfPSH3N) as it contains all the conserved signature motifs whereas the C-terminal does not show any detectable biochemical activity. PfPSH3N also shows DNA helicase activity in the 3′–5′ direction. The immunofluorescence microscopy results show that PSH3 is localized in nucleus as well as in cytoplasm during different stages such as trophozoite and early schizont stages of intraerythrocytic development. This report sets the foundation for further study of parasite specific helicases and will be helpful in understanding the parasite biology.
Collapse
Affiliation(s)
- Manish Chauhan
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammed Tarique
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Tuteja R. Unraveling the importance of the malaria parasite helicases. FEBS J 2017; 284:2592-2603. [DOI: 10.1111/febs.14109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi India
| |
Collapse
|
12
|
Tuteja R. Emerging functions of helicases in regulation of stress survival in malaria parasite Plasmodium falciparum and their comparison with human host. Parasitol Int 2016; 65:645-664. [PMID: 27586396 DOI: 10.1016/j.parint.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/28/2016] [Accepted: 08/28/2016] [Indexed: 02/04/2023]
Abstract
The cellular response to various stresses is a universal phenomenon and involves a common set of stress responses that are largely independent of the type of stress. The response to stress is complex and cells can activate multiple signaling pathways that act in concert to influence cell fate and results in a specific cellular outcome, including reduction in macromolecular synthesis by shared pathways, cell cycle arrest, DNA repair, senescence and/or apoptosis. Whether cells mount a protective response or die depends to a great degree on the nature and duration of the stress and the particular cell type. Helicases play essential roles in DNA replication, repair, recombination, transcription and translation, and also participate in RNA metabolic processes including pre-mRNA processing, ribosome biogenesis, RNA turnover, export, translation, surveillance, storage and decay. In order to survive in the human host, the malaria parasite Plasmodium falciparum has to handle variety of stresses, which it encounters during the erythrocytic stages of its life cycle. In recent past the role of helicases in imparting various stress responses has emerged. Therefore in the present review an attempt has been made to highlight the emerging importance of helicases in stress responses in malaria parasite and their comparison with human host is also presented. It is noteworthy that PfDHX33 and PfDDX60 are larger in size and different in sequence as compared to the HsDHX33 and HsDDX60. The study suggests that helicases are multifunctional and play major role in helping the cells to combat various stresses.
Collapse
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
13
|
Rahman F, Tarique M, Tuteja R. Plasmodium falciparum Bloom homologue, a nucleocytoplasmic protein, translocates in 3' to 5' direction and is essential for parasite growth. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:594-608. [PMID: 26917473 DOI: 10.1016/j.bbapap.2016.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
Malaria caused by Plasmodium, particularly Plasmodium falciparum, is the most serious and widespread parasitic disease of humans. RecQ helicase family members are essential in homologous recombination-based error-free DNA repair processes in all domains of life. RecQ helicases present in each organism differ and several homologues have been identified in various multicellular organisms. These proteins are involved in various pathways of DNA metabolism by providing duplex unwinding function. Five members of RecQ family are present in Homo sapiens but P. falciparum contains only two members of this family. Here we report the detailed biochemical and functional characterization of the Bloom (Blm) homologue (PfBlm) from P. falciparum 3D7 strain. Purified PfBlm exhibits ATPase and 3' to 5' direction specific DNA helicase activity. The calculated average reaction rate of ATPase was ~13 pmol of ATP hydrolyzed/min/pmol of enzyme. The immunofluorescence assay results show that PfBlm is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain. In some stages of development in addition to nucleus PfBlm also localizes in the cytoplasm. The gene disruption studies of PfBlm by dsRNA showed that it is required for the ex-vivo intraerythrocytic development of the parasite P. falciparum 3D7 strain. The dsRNA mediated inhibition of parasite growth suggests that a variety of pathways are affected resulting in curtailing of the parasite growth. This study will be helpful in unravelling the basic mechanism of DNA transaction in the malaria parasite and additionally it may provide leads to understand the parasite specific characteristics of this protein.
Collapse
Affiliation(s)
- Farhana Rahman
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
14
|
Rahman F, Tarique M, Ahmad M, Tuteja R. Plasmodium falciparum Werner homologue is a nuclear protein and its biochemical activities reside in the N-terminal region. PROTOPLASMA 2016; 253:45-60. [PMID: 25824666 DOI: 10.1007/s00709-015-0785-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
RecQ helicases, also addressed as a gatekeeper of genome, are an inevitable family of genome scrutiny proteins conserved from prokaryotes to eukaryotes and play a vital role in DNA metabolism. The deficiencies of three RecQ proteins out of five are involved in genetic abnormalities like Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS). It is noteworthy that Plasmodium falciparum contains only two members of the RecQ family as opposed to five members present in the host Homo sapiens. In the present study, we report the biochemical characterization of the homologue of Werner (Wrn) helicase from P. falciparum 3D7 strain. Although there are significant sequence conservations between Wrn helicases of both H. sapiens and P. falciparum as well as among all the other Plasmodium species, they contain some peculiar differences also. In silico studies reveal that PfWrn is evolutionarily close to the bacterial RecQ protein. The N-terminal fragment (PfWrnN) contains all the helicase motifs along with all the functional domains and the predicted structure resembles with the human RecQ1 protein, whereas the C-terminal fragment (PfWrnC) contains no significant domain. Biochemical characterization further revealed that purified recombinant PfWrnN shows ATPase and DNA helicase activity in 3' to 5' direction, but PfWrnC lacks the ATPase and helicase activities. Immunofluorescence study shows that PfWrn is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain and localizes distinctly in the nucleus. This study can be used for further characterization of RecQ helicases that will aid in understanding the physiological significance of these helicases in the malaria parasite.
Collapse
Affiliation(s)
- Farhana Rahman
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Reddy BPN, Shrestha S, Hart KJ, Liang X, Kemirembe K, Cui L, Lindner SE. A bioinformatic survey of RNA-binding proteins in Plasmodium. BMC Genomics 2015; 16:890. [PMID: 26525978 PMCID: PMC4630921 DOI: 10.1186/s12864-015-2092-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum. Methods Using different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes. Results We report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5 % of all annotated genes. Almost 90 % (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27 % of RBPs have elevated expression in gametocytes, while 47 and 24 % have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes. Conclusions The Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2092-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B P Niranjan Reddy
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Sony Shrestha
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA
| | - Xiaoying Liang
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Karen Kemirembe
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA.
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Newo ANS. Molecular modeling of the Plasmodium falciparum pre-mRNA splicing and nuclear export factor PfU52. Protein J 2015; 33:354-68. [PMID: 24861003 DOI: 10.1007/s10930-014-9566-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UAP56/SUB2 is a DExD/H-box RNA helicase that is critically involved in pre-mRNA splicing and mRNA nuclear export. This helicase is broadly conserved and essential in many eukaryotic lineages, including protozoan and metazoan parasites. Previous research suggests that helicases from parasites could be promising drug targets for treating parasitic diseases. Accordingly, characterizing the structure and function of these proteins is of interest for structure-based, de novo design of new lead compounds. Here, we used homology modeling to construct a three-dimensional structure of PfU52 (PMDB ID: PM0079288), the Plasmodium falciparum ortholog of UAP56/SUB2, and explored the detailed architecture of its functional sites. Comparative in silico analysis revealed that although PfU52 shared many physicochemical, structural and dynamic similarities with its human homolog, it also displayed some unique features that could be exploited for drug design.
Collapse
Affiliation(s)
- Alain N S Newo
- Beckman Research Institute of City of Hope, Duarte, CA, USA,
| |
Collapse
|
17
|
Suntornthiticharoen P, Srila W, Chavalitshewinkoon-Petmitr P, Limudomporn P, Yamabhai M. Characterization of recombinant malarial RecQ DNA helicase. Mol Biochem Parasitol 2014; 196:41-4. [PMID: 25111966 DOI: 10.1016/j.molbiopara.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/23/2014] [Accepted: 07/31/2014] [Indexed: 01/27/2023]
Abstract
RecQ DNA gene of multi-drug resistant Plasmodium falciparum K1 (PfRecQ1) was cloned, and the recombinant C-terminal-decahistidine-tagged PfRecQ1 was expressed in Escherichia coli. The purified enzyme could efficiently unwind partial duplex DNA substrate in a 3' to 5' direction. The malarial RecQ1 could not unwind substrates with both 5' and 3' overhangs, those with a 5' overhang, or blunt-ended DNA duplexes. Unwinding of DNA helicase activity was driven by the hydrolysis of ATP. The drug inhibitory effects of six compounds indicated that only doxorubicin and daunorubicin could inhibit the unwinding activity.
Collapse
Affiliation(s)
| | - Witsanu Srila
- Molecular Biotechnology Laboratory, Suranaree University of Technology, Thailand
| | | | | | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, Suranaree University of Technology, Thailand.
| |
Collapse
|
18
|
Plasmodium falciparum UvrD activities are downregulated by DNA-interacting compounds and its dsRNA inhibits malaria parasite growth. BMC BIOCHEMISTRY 2014; 15:9. [PMID: 24707807 PMCID: PMC4234510 DOI: 10.1186/1471-2091-15-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/31/2014] [Indexed: 12/11/2022]
Abstract
Background Human malaria parasite infection and its control is a global challenge which is responsible for ~0.65 million deaths every year globally. The emergence of drug resistant malaria parasite is another challenge to fight with malaria. Enormous efforts are being made to identify suitable drug targets in order to develop newer classes of drug. Helicases play crucial roles in DNA metabolism and have been proposed as therapeutic targets for cancer therapy as well as viral and parasitic infections. Genome wide analysis revealed that Plasmodium falciparum possesses UvrD helicase, which is absent in the human host. Results Recently the biochemical characterization of P. falciparum UvrD helicase revealed that N-terminal UvrD (PfUDN) hydrolyses ATP, translocates in 3’ to 5’ direction and interacts with MLH to modulate each other’s activity. In this follow up study, further characterization of P. falciparum UvrD helicase is presented. Here, we screened the effect of various DNA interacting compounds on the ATPase and helicase activity of PfUDN. This study resulted into the identification of daunorubicin (daunomycin), netropsin, nogalamycin, and ethidium bromide as the potential inhibitor molecules for the biochemical activities of PfUDN with IC50 values ranging from ~3.0 to ~5.0 μM. Interestingly etoposide did not inhibit the ATPase activity but considerable inhibition of unwinding activity was observed at 20 μM. Further study for analyzing the importance of PfUvrD enzyme in parasite growth revealed that PfUvrD is crucial/important for its growth ex-vivo. Conclusions As PfUvrD is absent in human hence on the basis of this study we propose PfUvrD as suitable drug target to control malaria. Some of the PfUvrD inhibitors identified in the present study can be utilized to further design novel and specific inhibitor molecules.
Collapse
|
19
|
Ansari A, Tarique M, Tuteja R. Genetically engineered synthetic miniaturized versions of Plasmodium falciparum UvrD helicase are catalytically active. PLoS One 2014; 9:e90951. [PMID: 24608129 PMCID: PMC3946578 DOI: 10.1371/journal.pone.0090951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
Helicases catalyze unwinding of double stranded nucleic acids in an energy-dependent manner. We have reported characterization of UvrD helicase from Plasmodium falciparum. We reported that the N-terminal and C-terminal fragments of PfUvrD contain characteristic ATPase and DNA helicase activities. Here we report the generation and characterization of a genetically engineered version of PfUvrD and its derivatives. This synthetic UvrD (sUD) contains all the conserved domains of PfUvrD but only the intervening linker sequences are shortened. sUD (∼45 kDa) and one of its smallest derivative sUDN1N2 (∼22 kDa) contain ATPase and DNA helicase activities. sUD and sUDN1N2 can utilize hydrolysis of all the NTPs and dNTPs, can also unwind blunt end duplex DNA substrate and unwind DNA duplex in 3 to 5 direction only. Some of the properties of sUD are similar to the PfUvrD helicase. Mutagenesis in the conserved motif Ia indicate that the mutants sUDM and sUDN1N2M lose all the enzyme activities, which further confirms that these activities are intrinsic to the synthesized proteins. These studies show that for helicase activity only the conserved domains are essentially required and intervening sequences have almost no role. These observations will aid in understanding the unwinding mechanism by a helicase.
Collapse
Affiliation(s)
- Abulaish Ansari
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
20
|
Abstract
Malaria is still a devastating disease caused by the mosquito-transmitted parasite Plasmodium, particularly Plasmodium falciparum. During the last few years the situation has worsened in many ways, mainly due to malarial parasites becoming increasingly resistant to several anti-malarial drugs. Thus there is an urgent need to find alternate ways to control malaria and therefore it is necessary to identify new drug targets and new classes of anti-malarial drugs. A malaria vaccine would be the ultimate weapon to fight this deadly disease but unfortunately despite encouraging advances a vaccine is not likely soon. DNA helicases from the PcrA/UvrD/Rep (PUR) subfamily are important for the survival of the various organisms, mainly pathogenic bacteria. Members from this subfamily can be targeted and inhibited by a variety of synthetic compounds. Using bioinformatics analysis we have shown that UvrD from this subfamily is the only member present in the P. falciparum genome, while PcrA and Rep are absent in the genome. UvrD from the parasite shows no homology to any protein or enzyme from human and thus can be considered as a strong potential drug target. In the present study we report an in silico analysis of this important enzyme from a variety of Plasmodium species. The results suggest that among all the species of Plasmodium, P. falciparum contains the largest UvrD and this enzyme is variable at the sequence and structural level.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| |
Collapse
|
21
|
Ahmad M, Ansari A, Tarique M, Satsangi AT, Tuteja R. Plasmodium falciparum UvrD helicase translocates in 3' to 5' direction, colocalizes with MLH and modulates its activity through physical interaction. PLoS One 2012; 7:e49385. [PMID: 23185322 PMCID: PMC3503981 DOI: 10.1371/journal.pone.0049385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/10/2012] [Indexed: 01/25/2023] Open
Abstract
Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN) containing UvrD helicase domain, which consists of helicase motifs Q, Ia-Id, II, III and most of motif IV, and the C-terminal fragment (PfUDC1) containing UvrD helicase C terminal domain, consisting of remaining part of motif IV and motifs IVa-IVc and 161 amino acids of intervening sequence between motif IV and V, possess ssDNA-dependent ATPase and DNA helicase activities in vitro. Using immunodepletion assays we show that the ATPase and helicase activities are attributable to PfUDN and PfUDC1 proteins. The helicase activity can utilize the hydrolysis of all the nucleotide and deoxynucleotide triphosphates and the direction of unwinding is 3' to 5'. The endogenous P. falciparum UvrD contains the characteristic DNA helicase activity. PfUDN interacts with PfMLH (P. falciparum MutL homologue) and modulates the endonuclease activity of PfMLH and PfMLH positively regulates the unwinding activity of PfUDN. We show that PfUvrD is expressed in the nucleus distinctly in the schizont stages of the intraerythrocytic development of the parasite and it colocalizes with PfMLH. These studies will make an important contribution in understanding the nucleic acid transaction in the malaria parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Abulaish Ansari
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Akash Tripathi Satsangi
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
22
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB proteins: Emerging importance and expectations beyond cell cycle progression. Commun Integr Biol 2012; 5:350-61. [PMID: 23060959 PMCID: PMC3460840 DOI: 10.4161/cib.20005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The urgent requirement of next generation antimalarials has been of recent interest due to the emergence of drug-resistant parasite. The genome-wide analysis of Plasmodium falciparum helicases revealed three RuvB proteins. Due to the presence of helicase motif I and II in PfRuvBs, there is a high probability that they contain ATPase and possibly helicase activity. The Plasmodium database has homologs of several key proteins that interact with RuvBs and are most likely involved in the cell cycle progression, chromatin remodeling, and other cellular activities. Phylogenetically PfRuvBs are closely related to Saccharomyces cerevisiae RuvB, which is essential for cell cycle progression and survival of yeast. Thus PfRuvBs can serve as potential drug target if they show an essential role in the survival of parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | | |
Collapse
|
23
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gargantini PR, Lujan HD, Pereira CA. In silicoanalysis of trypanosomatids' helicases. FEMS Microbiol Lett 2012; 335:123-9. [DOI: 10.1111/j.1574-6968.2012.02644.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 01/08/2023] Open
Affiliation(s)
- Pablo R. Gargantini
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina; Universidad Católica de Córdoba; Córdoba; Argentina
| | - Hugo D. Lujan
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina; Universidad Católica de Córdoba; Córdoba; Argentina
| | - Claudio A. Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas ‘Alfredo Lanari’; Universidad de Buenos Aires and CONICET; Buenos Aires; Argentina
| |
Collapse
|
25
|
Evans L, Gowers D, Firman K, Youell J. Enhanced purification and characterization of the PfeIF4A (PfH45) helicase from Plasmodium falciparum using a codon-optimised clone. Protein Expr Purif 2012; 85:1-8. [PMID: 22750398 DOI: 10.1016/j.pep.2012.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 11/26/2022]
Abstract
With the intention of investigating the DNA strand displacement properties of Plasmodium falciparum helicase PfeIF4A (formerly known as PfH45) a codon-optimized gene for expression in Escherichia coli has been produced. Several histidine-containing proteins with intrinsic helicase activity were captured from the bacterial sonicate by initial Ni(2+)-chromatography. Heparin and size-exclusion steps were subsequently required for unambiguous PfeIF4A purification. This strategy generated an active recombinant protein of significantly improved yield in comparison to previously published studies (~4.2 mg/g wet weight of cells). Helicase unwinding assays confirmed a bipolar activity, but revealed a preference for unwinding a free 3'-end, with a rate of displacement in the 3'-5' direction 2-fold higher than that in the 5'-3' direction. DNA constructs with two, three or four blunt ends were not unwound. Studies confirmed the enzyme to be Mg(2+)-dependent, optimally active at 37°C and had a background ATP turnover rate of 23.16±1.74 pmol/min, which in the presence of single- or double-stranded DNA doubled to 42.92±3.21 pmol/min.
Collapse
Affiliation(s)
- Luke Evans
- IBBS Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom
| | | | | | | |
Collapse
|
26
|
Tuteja R, Ansari A, Anita, Suthar MK, Saxena JK. Genome wide computational analysis of Brugia malayi helicases: A comparison with human host. Gene X 2012; 499:202-8. [DOI: 10.1016/j.gene.2012.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/01/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022] Open
|
27
|
Firman K, Evans L, Youell J. A Synthetic Biology Project - Developing a single-molecule device for screening drug-target interactions. FEBS Lett 2012; 586:2157-63. [PMID: 22710185 DOI: 10.1016/j.febslet.2012.01.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
Abstract
This review describes a European-funded project in the area of Synthetic Biology. The project seeks to demonstrate the application of engineering techniques and methodologies to the design and construction of a biosensor for detecting drug-target interactions at the single-molecule level. Production of the proteins required for the system followed the principle of previously described "bioparts" concepts (a system where a database of biological parts - promoters, genes, terminators, linking tags and cleavage sequences - is used to construct novel gene assemblies) and cassette-type assembly of gene expression systems (the concept of linking different "bioparts" to produce functional "cassettes"), but problems were quickly identified with these approaches. DNA substrates for the device were also constructed using a cassette-system. Finally, micro-engineering was used to build a magnetoresistive Magnetic Tweezer device for detection of single molecule DNA modifying enzymes (motors), while the possibility of constructing a Hall Effect version of this device was explored. The device is currently being used to study helicases from Plasmodium as potential targets for anti-malarial drugs, but we also suggest other potential uses for the device.
Collapse
Affiliation(s)
- Keith Firman
- IBBS Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, United Kingdom
| | | | | |
Collapse
|
28
|
Hanson AM, Hernandez JJ, Shadrick WR, Frick DN. Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase. Methods Enzymol 2012; 511:463-83. [PMID: 22713333 DOI: 10.1016/b978-0-12-396546-2.00021-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter describes two types of FRET-based fluorescence assays that can be used to identify and analyze compounds that inhibit the helicase encoded by the hepatitis C virus (HCV). Both assays use a fluorescently labeled DNA or RNA oligonucleotide to monitor helicase-catalyzed strand separation, and they differ from other real-time helicase assays in that they do not require the presence of other nucleic acids to trap the reaction products. The first assay is a molecular beacon-based helicase assay (MBHA) that monitors helicase-catalyzed displacement of a hairpin-forming oligonucleotide with a fluorescent moiety on one end and a quencher on the other. DNA-based MBHAs have been used extensively for high-throughput screening (HTS), but RNA-based MBHAs are typically less useful because of poor signal to background ratios. In the second assay discussed, the fluorophore and quencher are split between two hairpin-forming oligonucleotides annealed in tandem to a third oligonucleotide. This split beacon helicase assay can be used for HTS with either DNA or RNA oligonucleotides. These assays should be useful to the many labs searching for HCV helicase inhibitors in order to develop new HCV therapies that are still desperately needed.
Collapse
Affiliation(s)
- Alicia M Hanson
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
29
|
Singh M, Singh PK, Misra-Bhattacharya S. RNAi mediated silencing of ATPase RNA helicase gene in adult filarial parasite Brugia malayi impairs in vitro microfilaria release and adult parasite viability. J Biotechnol 2011; 157:351-8. [PMID: 22192512 DOI: 10.1016/j.jbiotec.2011.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 12/02/2011] [Accepted: 12/06/2011] [Indexed: 02/05/2023]
Abstract
The DExD/H box families of RNA helicases are a multifunctional group of proteins involved in unwinding of inter- and intra-molecular base-paired regions. Successful knockdown of DEAD box RNA helicase gene (BmL3-Helicase) of human lymphatic filarial parasite Brugia malayi was done with specifically designed and chemically synthesized siRNA of <20bp to observe the role of enzyme in parasite biology and its worth as an antifilarial drug target. We made efforts to deliver siRNA into parasite by both electroporation and soaking that resulted into diminished helicase gene expression associated with decreased parasite motility, viability (97%) and release of microfilariae (81.0% reduction) from adult females in vitro. The specific gene knockdown also resulted into death of adult male worms in addition to phenotypic deformities in female worm intrauterine stages. RT-PCR of siRNA treated worms revealed a complete knockdown of BmL3-Helicase transcription within 16h. The present findings thus illustrate that targeting helicase gene of B. malayi would not only interfere with embryogenesis and microfilarial production but also result into decreased motility and viability of microfilariae and adult parasites. The B. malayi helicase enzyme thus represents a possible antifilarial drug target.
Collapse
Affiliation(s)
- Meghna Singh
- Division of Parasitology, Central Drug Research Institute, CSIR, M.G. Marg, Lucknow 226001 (U.P.), India
| | | | | |
Collapse
|
30
|
Mehta J, Tuteja R. Inhibition of unwinding and ATPase activities of Plasmodium falciparum Dbp5/DDX19 homolog. Commun Integr Biol 2011; 4:299-303. [PMID: 21980563 DOI: 10.4161/cib.4.3.14778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
We have recently reported the isolation and characterization of Plasmodium falciparum Dbp5/DDX19 homolog PfD66 and the results indicate that it contains ATP-dependent bipolar DNA and RNA unwinding activity, intrinsic nucleic acid-dependent ATPase and RNA-binding activities. In the present study we report the effect of a number of compounds such as actinomycin D, aphidicolin, camptothecin, cyclophosphamide, 4',6'-di-amidino-2-phenylindole (DAPI), daunorubicin, distamycin, ethidium bromide, ellipticine, genistein, mitoxantrone, nalidixic acid, netropsin, nogalamycin, novobiocin and VP-16 on the DNA unwinding and ATPase activities of PfD66. The results indicate that DAPI, ethidium bromide, netropsin and nogalamycin efficiently inhibited the helicase and ATPase activities of PfD66. These studies will make an important contribution in understanding the mechanism of DNA unwinding by Plasmodium falciparum helicase PfD66.
Collapse
Affiliation(s)
- Jatin Mehta
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, Delhi India
| | | |
Collapse
|
31
|
Cantacessi C, Gasser RB, Strube C, Schnieder T, Jex AR, Hall RS, Campbell BE, Young ND, Ranganathan S, Sternberg PW, Mitreva M. Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. Biotechnol Adv 2011; 29:261-71. [PMID: 21182926 PMCID: PMC3827682 DOI: 10.1016/j.biotechadv.2010.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022]
Abstract
The lungworm, Dictyocaulus viviparus, causes parasitic bronchitis in cattle, and is responsible for substantial economic losses in temperate regions of the world. Here, we undertake the first large-scale exploration of available transcriptomic data for this lungworm, examine differences in transcription between different stages/both genders and identify and prioritize essential molecules linked to fundamental metabolic pathways, which could represent novel drug targets. Approximately 3 million expressed sequence tags (ESTs), generated by 454 sequencing from third-stage larvae (L3s) as well as adult females and males of D. viviparus, were assembled and annotated. The assembly of these sequences yielded ~61,000 contigs, of which relatively large proportions encoded collagens (4.3%), ubiquitins (2.1%) and serine/threonine protein kinases (1.9%). Subtractive analysis in silico identified 6928 nucleotide sequences as being uniquely transcribed in L3, and 5203 and 7889 transcripts as being exclusive to the adult female and male, respectively. Most peptides predicted from the conceptual translations were nucleoplasmins (L3), serine/threonine protein kinases (female) and major sperm proteins (male). Additional analyses allowed the prediction of three drug target candidates, whose Caenorhabditis elegans homologues were linked to a lethal RNA interference phenotype. This detailed exploration, combined with future transcriptomic sequencing of all developmental stages of D. viviparus, will facilitate future investigations of the molecular biology of this parasitic nematode as well as genomic sequencing. These advances will underpin the discovery of new drug and/or vaccine targets, focused on biotechnological outcomes.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Schnieder
- Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Aaron R. Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E. Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Maquarie University, Sydney, New South Wales, Australia
| | - Paul W. Sternberg
- California Institute of Technology, Biology Division, Pasadena, California, USA
| | - Makedonka Mitreva
- Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, Forest Park Boulevard, St Louis, Missouri, USA
| |
Collapse
|
32
|
Mehta J, Tuteja R. A novel dual Dbp5/DDX19 homologue from Plasmodium falciparum requires Q motif for activity. Mol Biochem Parasitol 2010; 176:58-63. [PMID: 21168450 DOI: 10.1016/j.molbiopara.2010.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 02/03/2023]
Abstract
Helicases are ubiquitous essential enzymes which have significant role in the nucleic acid metabolism. Using in silico approaches in the recent past we have identified a number of helicases in the Plasmodium falciparum genome. In the present study we report purification and detailed characterization of a novel helicase from P. falciparum. Our results indicate that this helicase is a homologue of Dbp5 and DDX19 from yeast and human, respectively. The biochemical characterization shows that it contains DNA and RNA unwinding, nucleic acid dependent ATPase and RNA binding activities. It is interesting to note that this enzyme can unwind DNA duplexes in both 5' to 3' and 3' to 5' directions. Using truncated derivatives we further show that Q motif is essentially required for all of its activities. These studies should make an important contribution in understanding the enzymes involved in nucleic acid metabolism in the parasite.
Collapse
Affiliation(s)
- Jatin Mehta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
33
|
A method to inhibit the growth of Plasmodium falciparum by double-stranded RNA-mediated gene silencing of helicases. Methods Mol Biol 2010. [PMID: 20225164 DOI: 10.1007/978-1-60327-355-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Malaria in human is caused by four Plasmodium species, with Plasmodium falciparum responsible for the most severe form of the disease. Global resistance to multiple antimalarial drugs is becoming a major challenge in worldwide efforts to control malaria. It is essential to identify new targets. One possible target is helicases, which are important ubiquitous unwinding enzymes required for nucleic acid metabolism and the maintenance of genomic stability. Helicases are motor proteins that use the energy derived from their intrinsic nucleic acid-dependent NTPase activity to unwind the duplex nucleic acid substrate. In this chapter, we study the functional role of helicases in malaria parasite by using specific dsRNA against PfH45, one of the parasite helicases. We describe the methods for Plasmodium falciparum culture, the amplification of specific helicase gene, the construction of specific dsRNA, and the analysis of the effect of dsRNA on parasite growth. Using this approach, we show that helicases are indispensable enzymes, which are required for growth and most probably survival of the malaria parasite.
Collapse
|
34
|
Prakash K, Tuteja R. A novel DEAD box helicase Has1p from Plasmodium falciparum: N-terminal is essential for activity. Parasitol Int 2010; 59:271-7. [PMID: 20153446 DOI: 10.1016/j.parint.2010.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 12/19/2022]
Abstract
Helicases catalyze the opening of nucleic acid duplexes and are implicated in many nucleic acid metabolic cellular processes that require single stranded DNA or reorganization of RNA structure. Previously we have reported that Plasmodium falciparum genome contains a number of DEAD box helicases. In the present study we report the cloning, expression and characterization of one of the novel members of DEAD box family from P. falciparum. Our results indicate that it is a homologue of Has1p from yeast and it contains DNA and RNA unwinding, nucleic acid-dependent ATPase and RNA binding activities. This enzyme can utilize all the nucleosidetriphosphates (NTPs) and deoxy nucleosidetriphosphates (dNTPs) for its unwinding activity. Using a truncated derivative of this protein we further report that the N-terminal region of the protein is essentially required for its activity. These studies suggest that besides the conserved helicase domain the highly variable N-terminal region also contributes in the activity of the protein.
Collapse
Affiliation(s)
- Krishna Prakash
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
35
|
Na-Bangchang K, Karbwang J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam Clin Pharmacol 2009; 23:387-409. [PMID: 19709319 DOI: 10.1111/j.1472-8206.2009.00709.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimalarial drugs have played a mainstream role in controlling the spread of malaria through the treatment of patients infected with the plasmodial parasites and controlling its transmissibility. The inadequate armory of drugs in widespread use for the treatment of malaria, development of strains resistant to currently used antimalarials, and the lack of affordable new drugs are the limiting factors in the fight against malaria. In addition, other problems with some existing agents include unfavorable pharmacokinetic properties and adverse effects/toxicity. These factors underscore the continuing need of research for new classes of antimalarial agents, and a re-examination of the existing antimalarial drugs that may be effective against resistant strains. In recent years, major advances have been made in the pharmacology of several antimalarial drugs both in pharmacokinetics and pharmacodynamics aspects. These include the design, development, and optimization of appropriate dosage regimens of antimalarials, basic knowledge in metabolic pathways of key antimalarials, as well as the elucidation of mechanisms of action and resistance of antimalarials. Pharmacologists have been working in close collaboration with scientists in other disciplines of science/biomedical sciences for more understanding on the biology of the parasite, host, in order to exploit rational design of drugs. Multiple general approaches to the identification of new antimalarials are being pursued at this time. All should be implemented in parallel with focus on the rational development of new agents directed against newly identified parasite targets. With major advances in our understanding of malaria parasite biology coupled with the completion of the malaria genome, has presented exciting opportunities for target-based antimalarial drug discovery.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee, Thailand.
| | | |
Collapse
|
36
|
Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitol Res 2008; 104:753-61. [DOI: 10.1007/s00436-008-1251-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
37
|
Isolation and characterization of Plasmodium falciparum UAP56 homolog: evidence for the coupling of RNA binding and splicing activity by site-directed mutations. Arch Biochem Biophys 2008; 478:143-53. [PMID: 18722339 DOI: 10.1016/j.abb.2008.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 01/25/2023]
Abstract
UAP56 (U2AF65 associated protein) is a member of the DEAD-box helicase family. Helicases are essential enzymes generally involved in the metabolism of nucleic acids. The gene encoding a member of DEAD-box family was cloned and characterized from the human malaria parasite Plasmodium falciparum. PfU52 is homologous to UAP56 and contains the RNA-dependent ATPase, RNA helicase and RNA binding activities. Using the parasite extract we report that PfU52 is involved in splicing reaction. Site-directed mutagenesis studies indicate that the conserved residues glycine 181, isoleucine 182 and arginine 206 are involved in RNA binding and this activity is required for the enzymatic activities of PfU52. PfU52 is expressed in all the intraerythrocytic developmental stages of the parasite. In the present study we have reported the detailed characterization of PfU52 from P. falciparum and these results advance the knowledge regarding the function of UAP56 in general.
Collapse
|
38
|
Pradhan A, Hussain EM, Tuteja R. Characterization of replication fork and phosphorylation stimulated Plasmodium falciparum helicase 45. Gene 2008; 420:66-75. [DOI: 10.1016/j.gene.2008.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/29/2008] [Accepted: 05/01/2008] [Indexed: 12/14/2022]
|
39
|
Sahu NK, Sahu S, Kohli DV. Novel Molecular Targets for Antimalarial Drug Development. Chem Biol Drug Des 2008; 71:287-97. [DOI: 10.1111/j.1747-0285.2008.00640.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Shankar J, Tuteja R. UvrD helicase of Plasmodium falciparum. Gene 2007; 410:223-33. [PMID: 18242886 DOI: 10.1016/j.gene.2007.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/04/2007] [Accepted: 12/13/2007] [Indexed: 11/25/2022]
Abstract
Malaria caused by the mosquito-transmitted parasite Plasmodium is the cause of enormous number of deaths every year in the tropical and subtropical areas of the world. Among four species of Plasmodium, Plasmodium falciparum causes most fatal form of malaria. With time, the parasite has developed insecticide and drug resistance. Newer strategies and advent of novel drug targets are required so as to combat the deadly form of malaria. Helicases is one such class of enzymes which has previously been suggested as potential antiviral and anticancer targets. These enzymes play an essential role in nearly all the nucleic acid metabolic processes, catalyzing the transient opening of the duplex nucleic acids in an NTP-dependent manner. DNA helicases from the PcrA/UvrD/Rep subfamily are important for the survival of the various organisms. Members from this subfamily can be targeted and inhibited by a variety of synthetic compounds. UvrD from this subfamily is the only member present in the P. falciparum genome, which shows no homology with UvrD from human and thus can be considered as a strong potential drug target. In this manuscript we provide an overview of UvrD family of helicases and bioinformatics analysis of UvrD from P. falciparum.
Collapse
Affiliation(s)
- Jay Shankar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | |
Collapse
|
41
|
Pradhan A, Tuteja R. Bipolar, Dual Plasmodium falciparum helicase 45 expressed in the intraerythrocytic developmental cycle is required for parasite growth. J Mol Biol 2007; 373:268-81. [PMID: 17822710 DOI: 10.1016/j.jmb.2007.07.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/12/2007] [Accepted: 07/16/2007] [Indexed: 11/21/2022]
Abstract
Helicases are ubiquitous molecular motor proteins that have an important role in the metabolism of nucleic acids. The gene encoding a helicase was cloned from the human malaria parasite Plasmodium falciparum. The polypeptide of 398 amino acid residues has a molecular mass of 45 kDa, contains striking homology to eukaryotic translation initiation factor 4A (eIF4A) and all the conserved domains of the DEAD-box family. The recombinantly expressed and homogeneous P. falciparum protein PfH45 is an ATP-dependent DNA and RNA helicase, with ATPase and ATP-binding activities. PfH45 is a unique bipolar helicase that contains both the 3' to 5' and 5' to 3' directional helicase activities and anti-PfH45 antibodies curtail all its activities. PfH45 is expressed in all the intraerythrocytic developmental stages of the parasite and has a role in translation. Parasite cultures treated with PfH45 double-stranded RNA or purified immunoglobulins against PfH45 exhibited approximately 60% and approximately 55% growth inhibition, respectively. This inhibitory effect was due to interference with expression of the cognate messenger and down-regulation of synthesis of PfH45 protein in the parasite culture and was associated with morphologic deformation of the parasite. These studies indicate that PfH45 is an indispensable enzyme that is essential for growth, and probably survival, of P. falciparum.
Collapse
Affiliation(s)
- Arun Pradhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, PO Box 10504, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | |
Collapse
|