1
|
Mahoney MW, Helander J, Kooner AS, Norman M, Damalanka VC, De Bona P, Kasperkiewicz P, Rut W, Poreba M, Kashipathy MM, Battaile KP, Lovell S, O'Donoghue AJ, Craik CS, Drag M, Janetka JW. Use of protease substrate specificity screening in the rational design of selective protease inhibitors with unnatural amino acids: Application to HGFA, matriptase, and hepsin. Protein Sci 2024; 33:e5110. [PMID: 39073183 PMCID: PMC11284329 DOI: 10.1002/pro.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.
Collapse
Affiliation(s)
- Matthew W. Mahoney
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Jonathan Helander
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Anoopjit S. Kooner
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Mariah Norman
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Vishnu C. Damalanka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paolo De Bona
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paulina Kasperkiewicz
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Wioletta Rut
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Marcin Poreba
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | | | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaSan DiegoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marcin Drag
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - James W. Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
Raj N, Click TH, Yang H, Chu JW. Structure-mechanics statistical learning uncovers mechanical relay in proteins. Chem Sci 2022; 13:3688-3696. [PMID: 35432911 PMCID: PMC8966636 DOI: 10.1039/d1sc06184d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
A protein's adaptive response to its substrates is one of the key questions driving molecular physics and physical chemistry. This work employs the recently developed structure-mechanics statistical learning method to establish a mechanical perspective. Specifically, by mapping all-atom molecular dynamics simulations onto the spring parameters of a backbone-side-chain elastic network model, the chemical moiety specific force constants (or mechanical rigidity) are used to assemble the rigidity graph, which is the matrix of inter-residue coupling strength. Using the S1A protease and the PDZ3 signaling domain as examples, chains of spatially contiguous residues are found to exhibit prominent changes in their mechanical rigidity upon substrate binding or dissociation. Such a mechanical-relay picture thus provides a mechanistic underpinning for conformational changes, long-range communication, and inter-domain allostery in both proteins, where the responsive mechanical hotspots are mostly residues having important biological functions or significant mutation sensitivity. Protein residues exhibit specific routes of mechanical relay as the adaptive responses to substrate binding or dissociation. On such physically contiguous connections, residues experience prominent changes in their coupling strengths.![]()
Collapse
Affiliation(s)
- Nixon Raj
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Timothy H Click
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| | - Haw Yang
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | - Jhih-Wei Chu
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan Republic of China
| |
Collapse
|
3
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
4
|
Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair. Int J Mol Sci 2018; 19:ijms19113435. [PMID: 30388869 PMCID: PMC6275078 DOI: 10.3390/ijms19113435] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte growth factor (HGF) promotes pleiotropic signaling through its specific receptor tyrosine kinase, MET. As such, it has important roles in the regeneration of injured tissues. Since HGF is produced mainly by mesenchymal cells and MET is expressed in most epithelial, endothelial and somatic stem cells, HGF functions as a typical paracrine growth factor. HGF is secreted as an inactive precursor (proHGF) and requires proteolytic activation to initiate HGF-induced MET signaling. HGF activator (HGFAC) is a serum activator of proHGF and produces robust HGF activities in injured tissues. HGFAC is a coagulation factor XII-like serine endopeptidase that circulates in the plasma as a zymogen (proHGFAC). Thrombin, kallikrein-related peptidase (KLK)-4 or KLK-5 efficiently activates proHGFAC. The activated HGFAC cleaves proHGF at Arg494-Val495, resulting in the formation of the active disulfide-linked heterodimer HGF. Macrophage stimulating protein, a ligand of RON, is also activated by HGFAC in vivo. Although HGFAC functions primarily at the site of damaged tissue, a recent report has suggested that activated HGFAC relays a signal to stem cells in non-injured tissues via proHGF activation in the stem cell niche. This review focuses on current knowledge regarding HGFAC-mediated proHGF activation and its roles in tissue regeneration and repair.
Collapse
|
5
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
6
|
Mitchell AC, Kannan D, Hunter SA, Parra Sperberg RA, Chang CH, Cochran JR. Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. J Biol Chem 2018; 293:4969-4980. [PMID: 29386351 DOI: 10.1074/jbc.m117.815142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/17/2018] [Indexed: 01/17/2023] Open
Abstract
Dysregulated matriptase activity has been established as a key contributor to cancer progression through its activation of growth factors, including the hepatocyte growth factor (HGF). Despite its critical role and prevalence in many human cancers, limitations to developing an effective matriptase inhibitor include weak binding affinity, poor selectivity, and short circulating half-life. We applied rational and combinatorial approaches to engineer a potent inhibitor based on the hepatocyte growth factor activator inhibitor type-1 (HAI-1), a natural matriptase inhibitor. The first Kunitz domain (KD1) of HAI-1 has been well established as a minimal matriptase-binding and inhibition domain, whereas the second Kunitz domain (KD2) is inactive and involved in negative regulation. Here, we replaced the inactive KD2 domain of HAI-1 with an engineered chimeric variant of KD2/KD1 domains and fused the resulting construct to an antibody Fc domain to increase valency and circulating serum half-life. The final protein variant contains four stoichiometric binding sites that we showed were needed to effectively inhibit matriptase with a Ki of 70 ± 5 pm, an increase of 120-fold compared with the natural HAI-1 inhibitor, to our knowledge making it one of the most potent matriptase inhibitors identified to date. Furthermore, the engineered inhibitor demonstrates a protease selectivity profile similar to that of wildtype KD1 but distinct from that of HAI-1. It also inhibits activation of the natural pro-HGF substrate and matriptase expressed on cancer cells with at least an order of magnitude greater efficacy than KD1.
Collapse
Affiliation(s)
| | | | - Sean A Hunter
- Cancer Biology Program, Stanford University, Stanford, California 94305
| | | | | | - Jennifer R Cochran
- From the Departments of Bioengineering and .,Cancer Biology Program, Stanford University, Stanford, California 94305.,Chemical Engineering and
| |
Collapse
|
7
|
Beckmann AM, Glebov K, Walter J, Merkel O, Mangold M, Schmidt F, Becker-Pauly C, Gütschow M, Stirnberg M. The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2. Biol Chem 2017; 397:777-90. [PMID: 27078672 DOI: 10.1515/hsz-2015-0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/11/2016] [Indexed: 11/15/2022]
Abstract
Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.
Collapse
|
8
|
Beckmann AM, Maurer E, Lülsdorff V, Wilms A, Furtmann N, Bajorath J, Gütschow M, Stirnberg M. En Route to New Therapeutic Options for Iron Overload Diseases: Matriptase-2 as a Target for Kunitz-Type Inhibitors. Chembiochem 2016; 17:595-604. [PMID: 26762582 DOI: 10.1002/cbic.201500651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 02/04/2023]
Abstract
The cell-surface serine protease matriptase-2 is a critical stimulator of iron absorption by negatively regulating hepcidin, the key hormone of iron homeostasis. Thus, it has attracted much attention as a target in primary and secondary iron overload diseases. Here, we have characterised Kunitz-type inhibitors hepatocyte growth factor activator inhibitor 1 (HAI-1) and HAI-2 as powerful, slow-binding matriptase-2 inhibitors. The binding modes of the matriptase-2-HAI complexes were suggested by molecular modelling. Different assays, including cell-free and cell-based measurements of matriptase-2 activity, determination of inhibition constants and evaluation of matriptase-2 inhibition by analysis of downstream effects in human liver cells, demonstrated that matriptase-2 is an excellent target for Kunitz inhibitors. In particular, HAI-2 is considered a promising scaffold for the design of potent and selective matriptase-2 inhibitors.
Collapse
Affiliation(s)
| | - Eva Maurer
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Verena Lülsdorff
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Annika Wilms
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Norbert Furtmann
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.,Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstrasse 2, 53113, Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstrasse 2, 53113, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Marit Stirnberg
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
9
|
Sechler M, Borowicz S, Van Scoyk M, Avasarala S, Zerayesus S, Edwards MG, Kumar Karuppusamy Rathinam M, Zhao X, Wu PY, Tang K, Bikkavilli RK, Winn RA. Novel Role for γ-Catenin in the Regulation of Cancer Cell Migration via the Induction of Hepatocyte Growth Factor Activator Inhibitor Type 1 (HAI-1). J Biol Chem 2015; 290:15610-15620. [PMID: 25925948 PMCID: PMC4505473 DOI: 10.1074/jbc.m114.631820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 12/16/2022] Open
Abstract
γ-catenin (Plakoglobin), a well-described structural protein functioning at the adherens junctions and desmosomes, was shown to be either lost or weakly expressed in non-small cell lung cancer (NSCLC) cells and tumor tissues. However, the tumor suppressive affects of γ-catenin were not fully understood. In this study, we have identified a novel role for the affects of γ-catenin on non-small cell lung cancer (NSCLC) cell migration. Expression of γ-catenin in NSCLC cells resulted in reduced cell migration as determined by both scratch assays and trans-well cell migration assays. Moreover, the affects of γ-catenin on cell migration were observed to be p53-dependent. Mechanistically, the anti-migratory effects seen via γ-catenin were driven by the expression of hepatocyte growth factor activator inhibitor Type I (HAI-1 or SPINT-1), an upstream inhibitor of the c-MET signaling pathway. Furthermore, the re-expression of γ-catenin sensitized NSCLC cells to c-MET inhibitor-mediated growth inhibition. Taken together, we identify γ-catenin as a novel regulator of HAI-1, which is a critical regulator of HGF/c-MET signaling. Therefore, targeting γ-catenin-mediated HAI-1 expression might be a useful strategy to sensitize NSCLC to c-MET inhibitors.
Collapse
Affiliation(s)
- Marybeth Sechler
- Cancer Biology Program, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Stanley Borowicz
- Division of Hematology and Oncology, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Michelle Van Scoyk
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Sreedevi Avasarala
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Sereke Zerayesus
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Michael G Edwards
- School of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Manoj Kumar Karuppusamy Rathinam
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Xiangmin Zhao
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Pei-Ying Wu
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Ke Tang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Rama Kamesh Bikkavilli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Robert A Winn
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
10
|
Pathak M, Wilmann P, Awford J, Li C, Hamad BK, Fischer PM, Dreveny I, Dekker LV, Emsley J. Coagulation factor XII protease domain crystal structure. J Thromb Haemost 2015; 13:580-91. [PMID: 25604127 PMCID: PMC4418343 DOI: 10.1111/jth.12849] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. OBJECTIVE To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. METHODS AND RESULTS A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. CONCLUSIONS These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation.
Collapse
Affiliation(s)
- M Pathak
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zheng Q, Wu H, Cao J, Ye J. Hepatocyte growth factor activator inhibitor type‑1 in cancer: advances and perspectives (Review). Mol Med Rep 2014; 10:2779-85. [PMID: 25310042 DOI: 10.3892/mmr.2014.2628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the most common diseases, with high morbidity and mortality rates. Large‑scale efforts have been made to understand the pathogenesis of the disease, particularly in the advanced stages, in order to develop effective therapeutic approaches. Hepatocyte growth factor activator inhibitor type-1 (HAI-1), also known as serine protease inhibitor Kunitz type 1, inhibits the activity of several trypsin-like serine proteases. In particular, HAI-1 suppresses hepatocyte growth factor (HGF) activator and matriptase, resulting in subsequent inhibition of HGF/scatter factor and macrophage‑stimulating protein (MSP). HGF and MSP are involved in cancer development and progression, via the receptors Met receptor tyrosine kinase (RTK) and Ron RTK, respectively. Therefore, HAI-1-mediated downregulation of HGF and MSP signaling may suppress tumorigenesis and progression in certain types of cancers. Abnormal HAI-1 expression levels have been observed in various types of human cancer. The exact function of HAI-1 in cancer pathogenesis, however, has not been fully elucidated. In this review, the focus is on the potential impact of aberrant HAI-1 expression levels on tumorigenesis and progression, the underlying mechanisms, and areas that require further investigation to clarify the precise role of HAI-1 in cancer.
Collapse
Affiliation(s)
- Qiaoli Zheng
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Haijian Wu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingjia Ye
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
12
|
Ye J, Cheng H, Wang Y, Cao J. Down-regulation of HAI-1 is associated with poor-differentiation status of colorectal cancer. Hum Cell 2013; 26:162-9. [PMID: 23979832 DOI: 10.1007/s13577-013-0074-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor which is widely expressed in epithelial cells. The purpose of this study is to investigate the relationship between HAI-1 expression and differentiation status of colorectal epithelia. The expression of HAI-1 in clinical samples of both cancerous and normal colorectal tissues was evaluated by immunohistochemical staining. An in vitro epithelial differentiation model of Caco-2 cell was established, and the characteristics of differentiation of Caco-2 cells were observed by transmission electron microscopy. The expression of HAI-1 in Caco-2 cells at different differentiation stages was examined by western blot. Immunohistochemical staining of 52 human colorectal cancer tissues showed a definite correlation between HAI-1 expression and differentiation status: IHC score (mean ± SE) of HAI-1 was higher for well- or moderately-differentiated colorectal cancer tissues than for poorly-differentiated colorectal cancer tissues, with significant differences in HAI-1 positive rate (P < 0.01 and P < 0.05 for well-differentiated vs. poorly-differentiated and moderately-differentiated vs. poorly-differentiated, respectively). Immunohistochemical staining of normal colorectal tissues showed positive HAI-1 expression in well-differentiated epithelial cells whereas the under-differentiated crypt cells showed very weak HAI-1 staining signals. The result of western blot also showed the gradual increasing of HAI-1 expression during the process of Caco-2 differentiation in vitro. HAI-1 expression correlates with the differentiation status of colorectal epithelia and could serve as a differentiation marker.
Collapse
Affiliation(s)
- Jingjia Ye
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
13
|
Kohama K, Kawaguchi M, Fukushima T, Lin CY, Kataoka H. Regulation of pericellular proteolysis by hepatocyte growth factor activator inhibitor type 1 (HAI-1) in trophoblast cells. Hum Cell 2012; 25:100-10. [PMID: 23248048 DOI: 10.1007/s13577-012-0055-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor Kunitz type 1 (HAI-1/SPINT1) is a membrane-bound Kunitz-type serine protease inhibitor that is abundantly expressed on the surface of cytotrophoblasts, and is critically required for the formation of the placenta labyrinth in mice. HAI-1/SPINT1 regulates several membrane-associated cell surface serine proteases, with matriptase being the most cognate target. Matriptase degrades extracellular matrix protein such as laminin and activates other cell surface proteases including prostasin. This study aimed to analyze the role of HAI-1/SPINT1 in pericellular proteolysis of trophoblasts. In HAI-1/SPINT1-deficient mouse placenta, laminin immunoreactivity around trophoblasts was irregular and occasionally showed an intense punctate pattern, which differed significantly from the linear distribution along the basement membrane observed in wild-type placenta. To explore the molecular mechanism underlying this observation, we analyzed the effect of HAI-1/SPINT1 knock down (KD) on pericellular proteolysis in the human trophoblast cell line, BeWo. HAI-1/SPINT1-KD BeWo cells had increased amounts of cellular laminin protein and decreased laminin degradation activity in the culture supernatant. Subsequent analysis indicated that cell-associated matriptase was significantly decreased in KD cells whereas its mRNA level was not altered, suggesting an enhanced release and/or dislocation of matriptase in the absence of HAI-1/SPINT1. Moreover, prostasin activation and pericellular total serine protease activities were significantly suppressed by HAI-1/SPINT1 KD. These observations suggest that HAI-1/SPINT1 is critically required for the cell surface localization of matriptase in trophoblasts, and, in the absence of HAI-1/SPINT1, physiological activation of prostasin and other protease(s) initiated by cell surface matriptase may be impaired.
Collapse
Affiliation(s)
- Kazuyo Kohama
- Department of Pathology, Faculty of Medicine, Section of Oncopathology and Regenerative Biology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
14
|
Swedberg JE, Harris JM. Plasmin Substrate Binding Site Cooperativity Guides the Design of Potent Peptide Aldehyde Inhibitors. Biochemistry 2011; 50:8454-62. [DOI: 10.1021/bi201203y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Joakim E. Swedberg
- Institute of Health and
Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland
4059, Australia
| | - Jonathan M. Harris
- Institute of Health and
Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland
4059, Australia
| |
Collapse
|
15
|
Fukushima T, Kawaguchi M, Yamasaki M, Tanaka H, Yorita K, Kataoka H. Hepatocyte growth factor activator inhibitor type 1 suppresses metastatic pulmonary colonization of pancreatic carcinoma cells. Cancer Sci 2011; 102:407-13. [PMID: 21166957 PMCID: PMC11159235 DOI: 10.1111/j.1349-7006.2010.01808.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a transmembrane protease inhibitor that regulates the activities of membrane-bound and extracellular serine proteases. HAI-1 has two Kunitz-type inhibitor domains with the N-terminal Kunitz domain (KD1) responsible for inhibiting known target proteases. Previously, we reported that knockdown of HAI-1 in the human pancreatic carcinoma cell line SUIT-2 resulted in epithelial to mesenchymal transition. To evaluate the role of HAI-1 in metastasis, we examined the metastatic capability of SUIT-2 cells that did or did not stably express HAI-1 short-hairpin RNA in an experimental pulmonary metastasis assay using nude mice. The extent of pulmonary metastasis was verified by histological examination and direct measurement of human cytokeratin 19 mRNA levels. One week after injecting SUIT-2 cells into mouse tail veins, apparent metastatic colonization was observed in 36% (4/11) of mice injected with HAI-1-knockdown SUIT-2, whereas none (0/11) of the control mice were positive for metastasis. After 2 weeks the metastasis positive ratios were 80% (4/5) and 40% (2/5), and after 4 weeks the ratios were 82% (9/11) and 45% (5/11) for HAI-1-knockdown and control SUIT-2 cells, respectively. Thus, loss of HAI-1 promoted pulmonary metastasis. Co-injection of recombinant KD1 abolished metastasis produced by HAI-1-knockdown SUIT-2 cells after 1 week. Moreover, recombinant KD1 restored E-cadherin levels in HAI-1 knockdown SUIT-2 cells and reduced their invasiveness in vitro. These data indicate that HAI-1 regulates pulmonary metastasis of SUIT-2, and KD1 may have therapeutic application for inhibiting metastatic cancer cell spreading.
Collapse
Affiliation(s)
- Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Antibodies display great versatility in protein interactions and have become important therapeutic agents for a variety of human diseases. Their ability to discriminate between highly conserved sequences could be of great use for therapeutic approaches that target proteases, for which structural features are conserved among family members. Recent crystal structures of antibody-protease complexes provide exciting insight into the variety of ways antibodies can interfere with the catalytic machinery of serine proteases. The studies revealed the molecular details of two fundamental mechanisms by which antibodies inhibit catalysis of trypsin-like serine proteases, exemplified by hepatocyte growth factor activator and MT-SP1 (matriptase). Enzyme kinetics defines both mechanisms as competitive inhibition systems, yet, on the molecular level, they involve distinct structural elements of the active-site region. In the steric hindrance mechanism, the antibody binds to protruding surface loops and inserts one or two CDR (complementarity-determining region) loops into the enzyme's substrate-binding cleft, which results in obstruction of substrate access. In the allosteric inhibition mechanism the antibody binds outside the active site at the periphery of the substrate-binding cleft and, mediated through a conformational change of a surface loop, imposes structural changes at important substrate interaction sites resulting in impaired catalysis. At the centre of this allosteric mechanism is the 99-loop, which is sandwiched between the substrate and the antibody-binding sites and serves as a mobile conduit between these sites. These findings provide comprehensive structural and functional insight into the molecular versatility of antibodies for interfering with the catalytic machinery of proteases.
Collapse
|
17
|
Kataoka H, Kawaguchi M. Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J 2010; 277:2230-7. [PMID: 20402763 DOI: 10.1111/j.1742-4658.2010.07640.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocyte growth factor activator (HGFA) is a serine protease initially identified as a potent activator of hepatocyte growth factor/scatter factor. Hepatocyte growth factor/scatter factor is known to be critically involved in tissue morphogenesis, regeneration, and tumor progression, via its receptor, MET. In vivo, HGFA also activates macrophage-stimulating protein, which has roles in macrophage recruitment and inflammatory processes, cellular survival and wound healing through its receptor, RON. Therefore, the pericellular activity of HGFA might be an important factor regulating the activities of these multifunctional cytokines in vivo. HGFA is secreted mainly by the liver, circulates in the plasma as a zymogen (pro-HGFA), and is activated in response to tissue injury, including tumor growth. In addition, local production of pro-HGFA by epithelial, stromal or tumor cells has been reported. Although the generation of HGFA-knockout mice revealed that the role played by HGFA in normal development and physiological settings can be compensated for by other protease systems, HGFA has important roles in regeneration and initial macrophage recruitment in injured tissue in vivo. Insufficient activity of HGFA results in impaired regeneration of severely damaged mucosal epithelium, and may contribute to the progression of fibrotic lung diseases. On the other hand, deregulated excess activity of HGFA may be involved in the progression of some types of cancer.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan.
| | | |
Collapse
|
18
|
Miyazawa K. Hepatocyte growth factor activator (HGFA): a serine protease that links tissue injury to activation of hepatocyte growth factor. FEBS J 2010; 277:2208-14. [DOI: 10.1111/j.1742-4658.2010.07637.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
|