1
|
White AL, Talkington GM, Ouvrier B, Ismael S, Solch-Ottaiano RJ, Bix G. Reactive Oxygen Species, a Potential Therapeutic Target for Vascular Dementia. Biomolecules 2024; 15:6. [PMID: 39858401 PMCID: PMC11761268 DOI: 10.3390/biom15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Vascular dementia (VaD) is a progressive neurodegenerative condition prevalent among elderly adults marked by cognitive decline resulting from injured and/or improperly functioning cerebrovasculature with resultant disruptions in cerebral blood flow. Currently, VaD has no specific therapeutics and the exact pathobiology is still being investigated. VaD has been shown to develop when reactive oxygen species (ROS) form from damaged targets at different levels of organization-mitochondria, endothelial cells, or cerebrovasculature. In this review, we highlight how specific ROS molecules may be important in the development of VaD and how they can be targeted as a potential therapeutic for VaD.
Collapse
Affiliation(s)
- Amanda Louise White
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Grant M. Talkington
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Blake Ouvrier
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rebecca J. Solch-Ottaiano
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
| |
Collapse
|
2
|
Romo-González M, Ijurko C, Alonso MT, Gómez de Cedrón M, Ramirez de Molina A, Soriano ME, Hernández-Hernández Á. NOX2 and NOX4 control mitochondrial function in chronic myeloid leukaemia. Free Radic Biol Med 2023; 198:92-108. [PMID: 36764627 DOI: 10.1016/j.freeradbiomed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Cancer cells are characterised by an elevated metabolic plasticity and enhanced production of reactive oxygen species (ROS), two features acknowledged as hallmarks in cancer, with a high translational potential to the therapeutic setting. These aspects, that have been traditionally studied separately, are in fact intimately intermingled. As part of their transforming activity, some oncogenes stimulate rewiring of metabolic processes, whilst simultaneously promoting increased production of intracellular ROS. In this scenario the latest discoveries suggest the relevance of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to connect ROS production and metabolic control. Here we have analysed the relevance of NOX2 and NOX4 in the regulation of metabolism in chronic myeloid leukaemia (CML), a neoplasia driven by the expression of the breakpoint cluster region-Abelson fusion oncogene (BCR-ABL). Silencing of NOX2 enhances glycolysis and oxidative phosphorylation rates, together with an enhanced production of mitochondrial ROS and a decrease in mitochondrial DNA copy number, which reflects mitochondrial dysfunction. NOX4 expression was upregulated upon NOX2 silencing, and this was required to alter mitochondrial function. Our results support the relevance of NOX2 to regulate metabolism-related signalling pathways downstream of BCR-ABL. Overall we show that NOX2, through the regulation of NOX4 expression, controls metabolism and mitochondrial function in CML cells. This notion was confirmed by transcriptomic analyses, that strongly relate both NOX isoforms with metabolism regulation in CML.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | | | | | | | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain.
| |
Collapse
|
3
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Buchmann GK, Schürmann C, Spaeth M, Abplanalp W, Tombor L, John D, Warwick T, Rezende F, Weigert A, Shah AM, Hansmann ML, Weissmann N, Dimmeler S, Schröder K, Brandes RP. The hydrogen-peroxide producing NADPH oxidase 4 does not limit neointima development after vascular injury in mice. Redox Biol 2021; 45:102050. [PMID: 34218201 PMCID: PMC8256285 DOI: 10.1016/j.redox.2021.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The NADPH oxidase Nox4 is an important source of H2O2. Nox4-derived H2O2 limits vascular inflammation and promotes smooth muscle differentiation. On this basis, the role of Nox4 for restenosis development was determined in the mouse carotid artery injury model. Methods and results Genetic deletion of Nox4 by a tamoxifen-activated Cre-Lox-system did not impact on neointima formation in the carotid artery wire injury model. To understand this unexpected finding, time-resolved single-cell RNA-sequencing (scRNAseq) from injured carotid arteries of control mice and massive-analysis-of-cDNA-ends (MACE)-RNAseq from the neointima harvested by laser capture microdissection of control and Nox4 knockout mice was performed. This revealed that resting smooth muscle cells (SMCs) and fibroblasts exhibit high Nox4 expression, but that the proliferating de-differentiated SMCs, which give rise to the neointima, have low Nox4 expression. In line with this, the first weeks after injury, gene expression was unchanged between the carotid artery neointimas of control and Nox4 knockout mice. Conclusion Upon vascular injury, Nox4 expression is transiently lost in the cells which comprise the neointima. NADPH oxidase 4 therefore does not interfere with restenosis development after wire-induced vascular injury.
Collapse
Affiliation(s)
- Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Wesley Abplanalp
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Lukas Tombor
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - David John
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London, British Heart Foundation Centre, London, UK
| | | | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Stefanie Dimmeler
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany; Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Frankfurt Am Main, Germany.
| |
Collapse
|
5
|
Tange R, Tachibana R, Sato T. Phosphorylation of Specificity Protein 3 Is Critical for Activation of β4-Galactosyltransferase 3 Gene Promoter in SH-SY5Y Human Neuroblastoma Cell Line. Biol Pharm Bull 2021; 44:557-563. [PMID: 33504757 DOI: 10.1248/bpb.b20-00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated expression of β4-galactosyltransferase (β4GalT) 3 is correlated with poor clinical outcome of neuroblastoma patients. Our recent study has revealed that the transcription of the β4GalT3 gene is activated by Specificity protein (Sp) 3 in SH-SY5Y human neuroblastoma cell line. Here we report the biological significance of the Sp3 phosphorylation in the transcriptional activation of the β4GalT3 gene. The treatment of SH-SY5Y cells with 10% fetal bovine serum (FBS) increased the mitogen-activated protein kinase (MAPK) signaling and the promoter activity of the β4GalT3 gene. Meanwhile, the treatment with U0126, an inhibitor for MAPK kinase, decreased the MAPK signaling and the promoter activity. These findings indicate that the transcriptional activation of the β4GalT3 gene is mediated by the MAPK signaling. In SH-SY5Y cells cultured in the medium containing 10% FBS, the serine (Ser) residues in Sp3 were phosphorylated. Human Sp3 contains four Ser residues, Ser73, Ser563, Ser566, and Ser646, as the putative phosphorylation sites. Sp3 mutant with the mutation of Ser73 did not decrease the promoter activation of the β4GalT3 gene, indicating that Ser73 is uninvolved in the promoter activation of the β4GalT3 gene by Sp3. In contrast, Sp3 mutants with the mutations of Ser563, Ser566, and Ser646 significantly reduced the promoter activation by Sp3. The results suggest that the phosphorylation of these Ser residues is implicated in the promoter activation by Sp3. This study demonstrates that the phosphorylation of Sp3 plays important roles in the transcriptional activation of the β4GalT3 gene in human neuroblastoma.
Collapse
Affiliation(s)
- Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Ryuji Tachibana
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
6
|
Tange R, Tomatsu T, Sato T. Transcription of human β4-galactosyltransferase 3 is regulated by differential DNA binding of Sp1/Sp3 in SH-SY5Y human neuroblastoma and A549 human lung cancer cell lines. Glycobiology 2019; 29:211-221. [PMID: 30561605 DOI: 10.1093/glycob/cwy109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022] Open
Abstract
Poor prognosis of neuroblastoma patients has been shown to be associated with increased expression of β4-galactosyltransferase (β4GalT) 3. To address the underlying mechanism of the increased expression of β4GalT3, the transcriptional regulation of the human β4GalT3 gene was investigated in SH-SY5Y human neuroblastoma cell line comparing with A549 human lung cancer cell line, in which the β4GalT3 gene expression was the lowest among four cancer cell lines examined. The core promoter region was identified between nucleotides -69 and -6 relative to the transcriptional start site, and the same region was utilized in both cell lines. The promoter region contained two Specificity protein (Sp)1/3-binding sites at nucleotide positions -39/-30 and -19/-10, and the sites were crucial for the promoter activity. Although the gene expression of Sp family transcription factors Sp1 and Sp3 was comparable in each cell line, Sp3 bound to the promoter region in SH-SY5Y cells whereas Sp1 bound to the region in A549 cells. The promoter activities were enhanced by Sp1 and Sp3 in SH-SY5Y cells. In contrast, the promoter activities were enhanced by Sp1 but reduced by Sp3 in A549 cells. Furthermore, the function of each Sp1/3-binding site differed between SH-SY5Y and A549 cells due to the differential binding of Sp1/Sp3. These findings suggest that the transcription of the β4GalT3 gene is regulated by differential DNA binding of Sp3 and Sp1 in neuroblastoma and lung cancer. The increased expression of β4GalT3 in neuroblastoma may be ascribed to the enhanced expression of Sp3, which is observed for various cancers.
Collapse
Affiliation(s)
- Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takuya Tomatsu
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
7
|
Sui X, Cai J, Li H, He C, Zhou C, Dong Y, Chen L, Zhang B, Wang Y, Zhang Y, Qiu Y, Zhang Y, Zhao Y, Huang Y, Shen Y, Wu H, Xiao J, Mason C, Zhu Q, Han S. p53-dependent CD51 expression contributes to characteristics of cancer stem cells in prostate cancer. Cell Death Dis 2018; 9:523. [PMID: 29743605 PMCID: PMC5943274 DOI: 10.1038/s41419-018-0541-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/05/2023]
Abstract
Castration-resistant prostate cancer (CRPC), which is considered to contain cancer stem cells (CSCs), leads to a high relapse rate in patients with prostate cancer (PCa). However, the markers of prostate CSCs are controversial. Here we demonstrate that CD51, in part, correlates with the poor prognosis of PCa patients. Further, we find that CD51 is a functional molecule that is able to promote the malignancy of PCa through enhancing tumor initiation, metastatic potential, and chemoresistance. Moreover, we find that elevated CD51 expression in PCa specimens correlates with p53 loss of function. Mechanistically, we demonstrate that p53 acts via Sp1/3 to repress CD51 transcription, and CD51 is required for PCa stemness and metastasis properties, and is downregulated by p53. Taken together, these results indicate that CD51 is a novel functional marker for PCa, which may provide a therapeutic target for the efficiently restricting PCa progression.
Collapse
Affiliation(s)
- Xin Sui
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianye Cai
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Congya Zhou
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yiping Dong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingnan Wang
- Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yanan Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuan Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yinong Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yutian Shen
- Guangzhou Cellgenes Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Haoxiang Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaqi Xiao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Clifford Mason
- Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Qing Zhu
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Abdominal Cancer, West China School of Medicine/ West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Coordinate activities of BRD4 and CDK9 in the transcriptional elongation complex are required for TGFβ-induced Nox4 expression and myofibroblast transdifferentiation. Cell Death Dis 2017; 8:e2606. [PMID: 28182006 PMCID: PMC5386453 DOI: 10.1038/cddis.2016.434] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Transdifferentiation of quiescent dermal fibroblasts to secretory myofibroblasts has a central role in wound healing and pathological scar formation. This myofibroblast transdifferentiation process involves TGFβ-induced de novo synthesis of alpha smooth muscle cell actin (αSMA)+ fibers that enhance contractility as well as increased expression of extracellular matrix (ECM) proteins, including collagen and fibronectin. These processes are mediated upstream by the reactive oxygen species (ROS)-producing enzyme Nox4, whose induction by TGFβ is incompletely understood. In this study, we demonstrate that Nox4 is involved in αSMA+ fiber formation and collagen production in primary human dermal fibroblasts (hDFs) using a small-molecule inhibitor and siRNA-mediated silencing. Furthermore, TGFβ-induced signaling via Smad3 is required for myofibroblast transformation and Nox4 upregulation. Immunoprecipitation-selected reaction monitoring (IP-SRM) assays of the activated Smad3 complex suggest that it couples with the epigenetic reader and transcription co-activator bromodomain and extraterminal (BET) domain containing protein 4 (BRD4) to promote Nox4 transcription. In addition, cyclin-dependent kinase 9 (CDK9), a component of positive transcription elongation factor, binds to BRD4 after TGFβ stimulation and is also required for RNA polymerase II phosphorylation and Nox4 transcription regulation. Surprisingly, BRD4 depletion decreases myofibroblast differentiation but does not affect collagen or fibronectin expression in primary skin fibroblasts, whereas knockdown of CDK9 decreases all myofibroblast genes. We observe enhanced numbers and persistence of myofibroblast formation and TGFβ signaling in hypertrophic scars. BRD4 inhibition reverses hypertrophic skin fibroblast transdifferentiation to myofibroblasts. Our data indicate that BRD4 and CDK9 have independent, coordinated roles in promoting the myofibroblast transition and suggest that inhibition of the Smad3-BRD4 pathway may be a useful strategy to limit hypertrophic scar formation after burn injury.
Collapse
|
9
|
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016; 114:110-120. [PMID: 27773825 DOI: 10.1016/j.phrs.2016.10.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are key signaling molecules that regulate vascular function and structure in physiological conditions. A misbalance between the production and detoxification of ROS increases oxidative stress that is involved in the vascular remodeling associated with cardiovascular diseases such as hypertension by affecting inflammation, hypertrophy, migration, growth/apoptosis and extracellular matrix protein turnover. The major and more specific source of ROS in the cardiovascular system is the NADPH oxidase (NOX) family of enzymes composed of seven members (NOX1-5, DUOX 1/2). Vascular cells express several NOXs being NOX-1 and NOX-4 the most abundant NOXs present in vascular smooth muscle cells. This review focuses on specific aspects of NOX-1 and NOX-4 isoforms including information on regulation, function and their role in vascular remodeling. In order to obtain a more integrated view about the role of the different NOX isoforms in different types of vascular remodeling, we discuss the available literature not only on hypertension but also in atherosclerosis, restenosis and aortic dilation.
Collapse
Affiliation(s)
- Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Andrea Aguado
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| |
Collapse
|
10
|
Cai Y, Yi M, Chen D, Liu J, Guleng B, Ren J, Shi H. Trefoil factor family 2 expression inhibits gastric cancer cell growth and invasion in vitro via interactions with the transcription factor Sp3. Int J Mol Med 2016; 38:1474-1480. [PMID: 27668303 PMCID: PMC5065293 DOI: 10.3892/ijmm.2016.2739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
The trefoil factor family (TFF) is a group of short secretory peptides of gastric mucous neck cells. The loss of TFF2 protein expression enhances gastric inflammation and occurs in gastric cancer. In this study, we examined the effect of TFF2 on gastric cancer cell lines in vitro and characterized the interaction between TFF2 and Sp3, including the mechanisms that mediate this interaction, using genomics and proteomics approaches, as well as genetics techniques, such as RNA interference and gene knockdown. Assays were performed to examine the role of TFF2 and Sp3 in cancer cell proliferation, invasion and migration. We found that TFF2 expression inhibited the proliferation and invasion capacity of gastric cancer cells, and induced apoptosis. TFF2 interacted with the Sp3 protein, as shown by immunofluorescence staining and immunoprecipitation with western blot analysis. Sp3 knockdown in gastric cancer cells antagonized TFF2 anti-tumor activity. Additionally, TFF2 upregulated the expression of pro-apoptotic proteins, such as Bid, but downregulated the expression of NF-κB and the anti-apoptotic proteins, Bcl-xL and Mcl-1. By contrast, Sp3 knockdown significantly blocked TFF2 activity, affecting the expression of these proteins. The data from our study demonstrate that the antitumor activity of TFF2 is mediated by an interaction with the Sp3 protein in gastric cancer cells. Additional in vivo and ex vivo warrned in order to fully characterize this interaction.
Collapse
Affiliation(s)
- Yiling Cai
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Mengting Yi
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Dajun Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
11
|
Hakami NY, Dusting GJ, Peshavariya HM. Trichostatin A, a histone deacetylase inhibitor suppresses NADPH Oxidase 4-Derived Redox Signalling and Angiogenesis. J Cell Mol Med 2016; 20:1932-44. [PMID: 27297729 PMCID: PMC5020625 DOI: 10.1111/jcmm.12885] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)-dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2 O2 ) was measured by amplex(®) red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4-deficient mice. Trichostatin A reduced Nox4 expression in a time- and concentration-dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2 O2 . Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300- histone acetyltransferase (p300-HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin-activating enzyme E1 (PYR-41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4-deficient endothelial cells. Finally, transforming growth factor beta1 (TGFβ1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFβ1 was substantially reduced in Nox4-deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFβ1-induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300-HAT-dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.
Collapse
Affiliation(s)
- Nora Y Hakami
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia. .,Ophthalmology, University of Melbourne, Department of Surgery, East Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Choi JA, Jung YS, Kim JY, Kim HM, Lim IK. Inhibition of breast cancer invasion by TIS21/BTG2/Pc3-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes. Oncogene 2016; 35:83-93. [PMID: 25798836 DOI: 10.1038/onc.2015.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/18/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
Abstract
The mammalian homolog of Drosophila diaphanous (mDia), actin nucleator, has been known to participate in the process of invasion and metastasis of cancer cells via regulating a number of actin-related biological processes. We have previously reported that tumor suppressor TIS21(/BTG2/Pc3) (TIS21) inhibits invadopodia formation by downregulating reactive oxygen species (ROS) in MDA-MB-231 cells. We herein report that TIS21(/BTG2/Pc3) downregulates diaphanous-related formin (DRF) expression via reducing NADPH oxidase 4 (Nox4)-derived ROS generation by Akt1 activation and subsequently impairs invasion activity of the highly invasive breast cancer cells. Knockdown of Akt1 by RNA interference recovered the TIS21(/BTG2/Pc3)-inhibited F-actin remodeling and ROS generation by recovering Nox4 expression. Furthermore, Sp1-mediated Nox4 transcription was downregulated by TIS21(/BTG2/Pc3)-Akt1 signals, leading to the inhibition of cancer cell invasion via F-actin remodeling by mDia genes. To our best knowledge, this is the first study to show that TIS21(/BTG2/Pc3)-Akt1 inhibited Sp1-Nox4-ROS cascade, subsequently reducing invasion activity via inhibition of mDia family genes.
Collapse
Affiliation(s)
- J-A Choi
- Departments of Biochemistry and Molecular Biology, Ajou University School of Medicine, and Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Y S Jung
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - J Y Kim
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - H M Kim
- Department of Energy Systems Research, Ajou University, Suwon, Korea
| | - I K Lim
- Departments of Biochemistry and Molecular Biology, Ajou University School of Medicine, and Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| |
Collapse
|
13
|
Yoo T, Ham SA, Hwang JS, Lee WJ, Paek KS, Oh JW, Kim JH, Do JT, Han CW, Kim JH, Seo HG. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts. Mol Oral Microbiol 2015; 31:398-409. [PMID: 26403493 DOI: 10.1111/omi.12137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 02/02/2023]
Abstract
We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity.
Collapse
Affiliation(s)
- T Yoo
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - S A Ham
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - J S Hwang
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - W J Lee
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - K S Paek
- Department of Nursing, Semyung University, Chungbuk, Korea
| | - J W Oh
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - J H Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - J T Do
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - C W Han
- Department of Internal Medicine, Pusan National University School of Korean Medicine, Yangsan, Kyeongnam, Korea
| | - J H Kim
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-Do, Korea
| | - H G Seo
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Guo S, Chen X. The human Nox4: gene, structure, physiological function and pathological significance. J Drug Target 2015; 23:888-96. [PMID: 25950600 DOI: 10.3109/1061186x.2015.1036276] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of a variety of diseases such as cardiovascular diseases and cancer. NADPH oxidase (Nox), a multicomponent enzyme, has been identified as one of the key sources of ROS. Nox4, one of the seven members of Nox family (Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2), has been extensively investigated in recent years. Its unique structures result in the constitutive generation of hydrogen peroxide (H2O2) as the main product. As a key oxygen sensor, Nox4-derived H2O2 plays diverse roles in cell proliferation, migration and death. Increased expression of Nox4 in cancer has been observed, which participates in metastasis, angiogenesis and apoptosis. Expression of Nox4 in endothelial cells actively mediated endothelial activation, dysfunction and injury, which contributes to the development of atherosclerosis, hypertension, cardiac hypertrophy and among others. This article explores the experimental studies related to the gene, structure, physiological function and pathological significance of Nox4. As Nox4 might serve as a potential target for the therapy of cardiovascular diseases and cancer, the Nox4 inhibitor is also discussed in this article.
Collapse
Affiliation(s)
- Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
15
|
Sanders YY, Liu H, Liu G, Thannickal VJ. Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic Biol Med 2015; 79:197-205. [PMID: 25526894 DOI: 10.1016/j.freeradbiomed.2014.12.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/25/2022]
Abstract
Aging is a well-known risk factor for a large number of chronic diseases, including those of the lung. Cellular senescence is one of the hallmarks of aging, and contributes to the pathogenesis of age-related diseases. Recent studies implicate the reactive oxygen species (ROS)-generating enzyme, NADPH oxidase 4 (Nox4) in cellular senescence. In this study, we investigated potential mechanisms for epigenetic regulation of Nox4. We observed constitutively high levels of Nox4 gene/protein and activity in a model of replication-induced cellular senescence of lung fibroblasts. In replicative senescent fibroblasts, the Nox4 gene is enriched with the activation histone mark, H4K16Ac, and inversely associated with the repressive histone mark, H4K20Me3, supporting an active transcriptional chromatin conformation. Silencing of the histone acetyltransferase Mof, which specifically acetylates H4K16, down-regulates Nox4 gene/protein expression. The Nox4 gene promoter is rich in CpG sites; mixed copies of methylated and unmethylated Nox4 DNA were detected in both nonsenescent and senescent cells. Interestingly, the Nox4 gene is variably associated with specific DNA methyltransferases and methyl binding proteins in these two cell populations. These results indicate a critical role for histone modifications involving H4K16Ac in epigenetic activation of the Nox4 gene, while the role of DNA methylation may be contextual. Defining mechanisms for the epigenetic regulation of Nox4 will aid in the development of novel therapeutic strategies for age-related diseases in which this gene is overexpressed, in particular idiopathic pulmonary fibrosis and cancer.
Collapse
Affiliation(s)
- Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hui Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Bai G, Hock TD, Logsdon N, Zhou Y, Thannickal VJ. A far-upstream AP-1/Smad binding box regulates human NOX4 promoter activation by transforming growth factor-β. Gene 2014; 540:62-7. [PMID: 24560583 PMCID: PMC4009368 DOI: 10.1016/j.gene.2014.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 01/09/2014] [Accepted: 02/18/2014] [Indexed: 01/25/2023]
Abstract
NADPH oxidase 4 (NOX4) is a member of the NADPH oxidase gene family that regulates cellular differentiation, innate immunity and tissue fibrosis. Transforming growth factor-β (TGF-β1) is known to induce expression of NOX4 mRNA in mesenchymal cells. However, the mechanisms of transcriptional regulation of NOX4 are not well understood. In this study, we examined the transcriptional regulation of NOX4 in human lung fibroblasts by TGF-β1. Five promoter-reporter constructs containing DNA fragments of 0.74kb, 1.35kb, 1.84kb, 3.97kb and 4.76kb upstream from the transcriptional start site (TSS) of the human NOX4 gene were generated and their relative responsiveness to TGF-β1 analyzed. TGF-β1-induced NOX4 gene promoter activation requires a region between -3.97kb and -4.76kb. Bioinformatics analysis revealed a 15bp AP-1/Smad binding element in this region. Mutation or deletion of either the AP-1 or the Smad element attenuated TGF-β1 responsiveness of the -4.76kb NOX4 promoter. Furthermore, insertion of this AP-1/Smad box conferred TGF-β1 inducibility to the non-responsive -3.97kb NOX4 promoter construct. Chromatin immunoprecipitation analysis indicated that phospho-Smad3 and cJun associate with this element in a TGF-β1-inducible manner. These results demonstrate that the AP-1/Smad box located between 3.97kb and 4.76kb upstream of the TSS site of the NOX4 promoter is essential for NOX4 gene transcription induced by TGF-β1 in human lung fibroblasts. Our study provides insights into the molecular mechanisms of NOX4 gene expression, informing novel therapeutic approaches to interfere with upregulation of NOX4 in diseases characterized by activation of the TGF-β1/NOX4 pathway.
Collapse
Affiliation(s)
- Guangxing Bai
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas D Hock
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naomi Logsdon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Katsuyama M. [Superoxide-generating enzymes NADPH oxidases, potential targets of drug therapy: various mechanisms for regulation of their expression]. Nihon Yakurigaku Zasshi 2013; 142:285-90. [PMID: 24334927 DOI: 10.1254/fpj.142.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
19
|
Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells. Basic Res Cardiol 2012; 107:283. [PMID: 22791246 DOI: 10.1007/s00395-012-0283-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 06/15/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Nox4 is a member of the NADPH oxidase family, which represents a major source of reactive oxygen species (ROS) in the vascular wall. Nox4-mediated ROS production mainly depends on the expression levels of the enzyme. The present study was aimed to investigate the mechanisms of Nox4 transcription regulation by histone deacetylases (HDAC). In human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 cells, treatment with the pan-HDAC inhibitor scriptaid led to a marked decrease in Nox4 mRNA expression. A similar down-regulation of Nox4 mRNA expression was observed by siRNA-mediated knockdown of HDAC3. HDAC inhibition in endothelial cells was associated with enhanced histone acetylation, increased chromatin accessibility in the human Nox4 promoter region, with no significant changes in DNA methylation. In addition, we provided evidence that c-Jun played an important role in controlling Nox4 transcription. Knockdown of c-Jun with siRNA led to a down-regulation of Nox4 mRNA expression. In response to scriptaid treatment, the binding of c-Jun to the Nox4 promoter region was reduced despite the open chromatin structure. In parallel, the binding of RNA polymerase IIa to the Nox4 promoter was significantly inhibited as well, which may explain the reduction in Nox4 transcription. In conclusion, HDAC inhibition decreases Nox4 transcription in human endothelial cells by preventing the binding of transcription factor(s) and polymerase(s) to the Nox4 promoter, most likely because of a hyperacetylation-mediated steric inhibition.
Collapse
|
20
|
Katsuyama M, Matsuno K, Yabe-Nishimura C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr 2011; 50:9-22. [PMID: 22247596 PMCID: PMC3246189 DOI: 10.3164/jcbn.11-06sr] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/17/2011] [Indexed: 01/19/2023] Open
Abstract
NADPH oxidase is a superoxide (O2•−)-generating enzyme first identified in phagocytes, essential for their bactericidal activities. Later, in non-phagocytes, production of O2•− was also demonstrated in an NADPH-dependent manner. In the last decade, several non-phagocyte-type NADPH oxidases have been identified. The catalytic subunit of these oxidases, NOX, constitutes the NOX family. There are five homologs in the family, NOX1 to NOX5, and two related enzymes, DUOX1 and DUOX2. Transgenic or gene-disrupted mice of the NOX family have also been established. NOX/DUOX proteins possess distinct features in the dependency on other components for their enzymatic activities, tissue distributions, and physiological functions. This review summarized the characteristics of the NOX family proteins, especially focused on their functions clarified through studies using gene-modified mice.
Collapse
|
21
|
Ago T, Kuroda J, Kamouchi M, Sadoshima J, Kitazono T. Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system. -Review and perspective-. Circ J 2011; 75:1791-800. [PMID: 21673456 DOI: 10.1253/circj.cj-11-0388] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has been established that oxidative stress plays a crucial role in the development and progression of vascular diseases. Besides the mitochondria, the NADPH oxidase/Nox family proteins are now thought to be important origins of the reactive oxygen species that underlie various vascular disease states, such as hypertension, atherosclerosis, angiogenesis, and ischemia/reperfusion injury. This review summarizes the basis of vascular Nox proteins and discusses their pathophysiological roles in the vascular system.
Collapse
Affiliation(s)
- Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan.
| | | | | | | | | |
Collapse
|