1
|
Harith-Fadzilah N, Nihad M, AlSaleh MA, Bazeyad AY, Pandurangan SB, Munawar K, Vidyawan A, Alharbi HA, Jakše J, Pain A, Antony B. Genome-Wide Identification and Expression Profiling of Glycosidases, Lipases, and Proteases from Invasive Asian Palm Weevil, Rhynchophorus ferrugineus. INSECTS 2025; 16:421. [PMID: 40332944 PMCID: PMC12027728 DOI: 10.3390/insects16040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
The red palm weevil, Rhynchophorus ferrugineus, is a destructive, invasive pest to a diverse range of palm plantations globally. Commonly used broad-range chemical insecticides for insect control pose high risks to non-target organisms, humans, and the environment. A bio-rational approach of screening natural small-molecule inhibitors that specifically target R. ferrugineus proteins critical to its life processes can pave the way for developing novel bioinsecticides. Digestive enzymes (DEs), which impair feeding on plants (herbivory), are promising targets. We generated de novo transcriptomes, annotated DE-related genes from the R. ferrugineus gut and abdomen, manually annotated the DE gene family from the recently available genome and our transcriptome data, and reported 34 glycosidases, 85 lipases, and 201 proteases. We identified several tandem duplicates and allelic variants from the lipase and protease families, notably, 10 RferLip and 21 RferPro alleles, which emerged primarily through indels and single-site substitution. These alleles may confer enhanced digestive lipolysis and proteolysis. Phylogenetic analyses identified and classified different subfamilies of DEs and revealed close evolutionary relationships with other coleopterans. We assessed select candidate DEs' activity and the potential for inhibition in silico to better understand the herbivory arsenal. In silico analysis revealed that the selected enzymes exhibited similar ligand-binding affinity to their corresponding substrate, except for protease aminopeptidase N, RferPro40, which exhibited poorer affinity to the inhibitor bestatin. Overall, our study serves as a foundation for further functional analysis and offers a novel target for the development of a novel bio-rational insecticide for R. ferrugineus.
Collapse
Affiliation(s)
- Nazmi Harith-Fadzilah
- School of Agriculture Sciences and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut 22200, Malaysia
| | - Mohammad Nihad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Ali AlSaleh
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulqader Yaslam Bazeyad
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kashif Munawar
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arya Vidyawan
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hattan A. Alharbi
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jernej Jakše
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955, Saudi Arabia;
| | - Binu Antony
- Department of Plant Protection, Center for Chemical Ecology and Functional Genomics, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Mótyán JA, Kassay N, Matúz K, Tőzsér J. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors. Viruses 2022; 14:v14091888. [PMID: 36146695 PMCID: PMC9505669 DOI: 10.3390/v14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
4
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
5
|
Ramabulana T, Scheepers LM, Moodley T, Maharaj VJ, Stander A, Gama N, Ferreira D, Sonopo MS, Selepe MA. Bioactive Lignans from Hypoestes aristata. JOURNAL OF NATURAL PRODUCTS 2020; 83:2483-2489. [PMID: 32786879 DOI: 10.1021/acs.jnatprod.0c00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytochemical investigation of extracts of the stems of Hypoestes aristata led to the isolation of nine lignans that included four known compounds, namely, hinokinin (1), savinin (2), medioresinol (3), and two cubebins (8a,b), three new butyrolactone lignans (4-6), and butyrolactol lignans 7a-c. The structures of the new compounds were established using 1D and 2D NMR and HRESIMS data. The absolute configurations of the new lignans were determined from their ECD data and the Mosher's ester method. This is the first unequivocal assignment of the absolute configuration at C-7 and C-7' of 7- and 7'-hydroxybutyrolactone lignans. The compounds were screened for inhibition of an HIV-1 protease enzyme, and compounds 1 and 6 exhibited moderate activity in this regard.
Collapse
Affiliation(s)
- Tshifhiwa Ramabulana
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Luki-Marié Scheepers
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Thirshen Moodley
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - André Stander
- Department of Physiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Ntombenhle Gama
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| | - Daneel Ferreira
- Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Molahlehi S Sonopo
- Radiochemistry, South African Nuclear Energy Corporation (Necsa), Pelindaba, Brits, South Africa
| | - Mamoalosi A Selepe
- Department of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria 0002, South Africa
| |
Collapse
|
6
|
Biochemical Characterization of Human Retroviral-Like Aspartic Protease 1 (ASPRV1). Biomolecules 2020; 10:biom10071004. [PMID: 32640672 PMCID: PMC7408472 DOI: 10.3390/biom10071004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a mammalian retroviral-like enzyme that catalyzes a critical proteolytic step during epidermal differentiation; therefore, it is also referred to as skin-specific aspartic protease (SASPase). Neutrophil granulocytes were also found recently to express ASPRV1 that is involved in the progression of acute chronic inflammation of the central nervous system, especially in autoimmune encephalomyelitis. Thus, investigation of ASPRV1 is important due to its therapeutic or diagnostic potential. We investigated the structural characteristics of ASPRV1 by homology modeling; analysis of the proposed structure was used for interpretation of in vitro specificity studies. For in-vitro characterization, activities of SASP28 and SASP14 enzyme forms were measured using synthetic oligopeptide substrates. We demonstrated that self-processing of SASP28 precursor causes autoactivation of the protease. The highest activity was measured for GST-SASP14 at neutral pH and at high ionic strength, and we proved that pepstatin A and acetyl-pepstatin can also inhibit the protease. In agreement with the structural characteristics, the relatively lower urea dissociation constant implied lower dimer stability of SASP14 compared to that of HIV-1 protease. The obtained structural and biochemical characteristics support better understanding of ASPRV1 function in the skin and central nervous system.
Collapse
|
7
|
Dimer Interface Organization is a Main Determinant of Intermonomeric Interactions and Correlates with Evolutionary Relationships of Retroviral and Retroviral-Like Ddi1 and Ddi2 Proteases. Int J Mol Sci 2020; 21:ijms21041352. [PMID: 32079302 PMCID: PMC7072860 DOI: 10.3390/ijms21041352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
The life cycles of retroviruses rely on the limited proteolysis catalyzed by the viral protease. Numerous eukaryotic organisms also express endogenously such proteases, which originate from retrotransposons or retroviruses, including DNA damage-inducible 1 and 2 (Ddi1 and Ddi2, respectively) proteins. In this study, we performed a comparative analysis based on the structural data currently available in Protein Data Bank (PDB) and Structural summaries of PDB entries (PDBsum) databases, with a special emphasis on the regions involved in dimerization of retroviral and retroviral-like Ddi proteases. In addition to Ddi1 and Ddi2, at least one member of all seven genera of the Retroviridae family was included in this comparison. We found that the studied retroviral and non-viral proteases show differences in the mode of dimerization and density of intermonomeric contacts, and distribution of the structural characteristics is in agreement with their evolutionary relationships. Multiple sequence and structure alignments revealed that the interactions between the subunits depend mainly on the overall organization of the dimer interface. We think that better understanding of the general and specific features of proteases may support the characterization of retroviral-like proteases.
Collapse
|
8
|
Gazda LD, Joóné Matúz K, Nagy T, Mótyán JA, Tőzsér J. Biochemical characterization of Ty1 retrotransposon protease. PLoS One 2020; 15:e0227062. [PMID: 31917798 PMCID: PMC6952103 DOI: 10.1371/journal.pone.0227062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Ty1 is one of the many transposons in the budding yeast Saccharomyces cerevisiae. The life-cycle of Ty1 shows numerous similarities with that of retroviruses, e.g. the initially synthesized polyprotein precursor undergoes proteolytic processing by the protease. The retroviral proteases have become important targets of current antiretroviral therapies due to the critical role of the limited proteolysis of Gag-Pol polyprotein in the replication cycle and they therefore belong to the most well-studied enzymes. Comparative analyses of retroviral and retroviral-like proteases can help to explore the key similarities and differences which may help understanding how resistance is developed against protease inhibitors, but the available information about the structural and biochemical characteristics of retroviral-like, and especially retrotransposon, proteases is limited. To investigate the main characteristics of Ty1 retrotransposon protease of Saccharomyces cerevisiae, untagged and His6-tagged forms of Ty1 protease were expressed in E. coli. After purification of the recombinant proteins, activity measurements were performed using synthetic oligopeptide and fluorescent recombinant protein substrates, which represented the wild-type and the modified forms of naturally occurring cleavage sites of the protease. We investigated the dependence of enzyme activity on different reaction conditions (pH, temperature, ionic strength, and urea concentration), and determined enzyme kinetic parameters for the studied substrates. Inhibitory potentials of 10 different protease inhibitors were also tested. Ty1 protease was not inhibited by the inhibitors which have been designed against human immunodeficiency virus type 1 protease and are approved as antiretroviral therapeutics. A quaternary structure of homodimeric Ty1 protease was proposed based on homology modeling, and this structure was used to support interpretation of experimental results and to correlate some structural and biochemical characteristics with that of other retroviral proteases.
Collapse
Affiliation(s)
- Lívia Diána Gazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Joóné Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (JAM); (JT)
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (JAM); (JT)
| |
Collapse
|
9
|
Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis. Biometals 2016; 29:637-50. [DOI: 10.1007/s10534-016-9940-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
10
|
Bandyopadhyay A, Malik A, Kumar MG, Gopi HN. Exploring β-Hydroxy γ-Amino Acids (Statines) in the Design of Hybrid Peptide Foldamers. Org Lett 2013; 16:294-7. [DOI: 10.1021/ol403290h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Anupam Bandyopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Ankita Malik
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Mothukuri Ganesh Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Hosahudya N. Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| |
Collapse
|