1
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
2
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
3
|
Kim C, Park S. IGF-1 protects SH-SY5Y cells against MPP +-induced apoptosis via PI3K/PDK-1/Akt pathway. Endocr Connect 2018; 7:443-455. [PMID: 29459421 PMCID: PMC5843822 DOI: 10.1530/ec-17-0350] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 01/13/2023]
Abstract
Insulin-like growth factor (IGF)-1 is a well-known anti-apoptotic pro-survival factor and phosphatidylinositol-3-kinase (PI3K)/Akt pathway is linked to cell survival induced by IGF-1. It is also reported that Akt signaling is modulated by 3-phosphoinositide-dependent kinase-1 (PDK1). In the current study, we investigated whether the anti-apoptotic effect of IGF-1 in SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+) is associated with the activity of PI3K/PDK1/Akt pathway. Treatment of cells with IGF-1 inhibited MPP+-induced apoptotic cell death. IGF-1-induced activation of Akt and the protective effect of IGF-1 on MPP+-induced apoptosis were abolished by chemical inhibition of PDK1 (GSK2334470) or PI3K (LY294002). The phosphorylated levels of Akt and PDK1 were significantly suppressed after MPP+ exposure, while IGF-1 treatment completely restored MPP+-induced reductions in phosphorylation. IGF-1 protected cells from MPP+ insult by suppressing intracellular reactive oxygen species (ROS) production and malondialdehyde levels and increasing superoxide dismutase activity. Mitochondrial ROS levels were also increased during MPP+ exposure, which were attenuated by IGF-1 treatment. In addition, IGF-1-treated cells showed increased activities of succinate dehydrogenase and citrate synthase, stabilization of mitochondrial transmembrane potential, increased ratio of Bcl-2 to Bax, prevention of cytochrome c release and inhibition of caspase-3 activation with PARP cleavage. Furthermore, the protective effects of IGF-1 on oxidative stress and mitochondrial dysfunction were attenuated when cells were preincubated with GSK2334470 or LY294002. Our data suggest that IGF-1 protects SH-SY5Y cells against MPP+-associated oxidative stress by preserving mitochondrial integrity and inhibiting mitochondrial apoptotic cascades via the activation of PI3K/PDK1/Akt pathway.
Collapse
Affiliation(s)
- Chanyang Kim
- Department of Biomedical ScienceGraduate School, Kyung Hee University, Seoul, Korea
| | - Seungjoon Park
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science InstituteSchool of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Cabezas R, Vega-Vela NE, González-Sanmiguel J, González J, Esquinas P, Echeverria V, Barreto GE. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol 2017; 55:3085-3095. [DOI: 10.1007/s12035-017-0567-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
|
5
|
Bonilla-Ramírez L, Jiménez-Del-Río M, Vélez-Pardo C. Glucose promotes resistance in lymphocytes against oxidative stress-induced apoptosis through signaling and metabolic pathways. Implications for Parkinson’s disease. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n2a02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Zhao P, Yang X, Yang L, Li M, Wood K, Liu Q, Zhu X. Neuroprotective effects of fingolimod in mouse models of Parkinson's disease. FASEB J 2016; 31:172-179. [PMID: 27671228 DOI: 10.1096/fj.201600751r] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/16/2016] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons with limited treatment options. Emerging evidence shows that FTY720 protects against neural injury via modulation of the sphingosine-1-phosphate 1 receptor (S1PR1). However, it remains unclear whether FTY720 could influence neurodegeneration in PD. Therefore, the present study was designed to determine the impact of fingolimod (FTY720), a sphingosine-1-phosphate receptor (S1PR) agonist, on 2 mouse models of PD. We found that FTY720 significantly reduced the deficit of motor function, diminished the loss of tyrosine hydroxylase-positive neurons in the substantia nigra, and attenuated the decrease of striatal dopamine and metabolite levels in mice receiving 6-hydroxydopamine (6-OHDA) or rotenone to simulate PD. An S1PR1-selective antagonist, W146, blocked the neuroprotective effects of FTY720. Of note, FTY720 retained the phosphorylation of ERK, together with a decreased expression of cleaved caspase-3 in mice treated with 6-OHDA or rotenone. In vitro studies revealed that FTY720 also attenuated 6-OHDA- or rotenone-induced toxicity in SH-SY5Y cells. These findings suggest the potential of S1PR modulation as a treatment for PD.-Zhao, P., Yang, X., Yang, L., Li, M., Wood, K., Liu, Q., Zhu, X. Neuroprotective effects of fingolimod in mouse models of Parkinson's disease.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Xiaoxia Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Liu Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and.,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kristofer Wood
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and .,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; and .,Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
7
|
Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Neuroprotective Effect of the LRRK2 Kinase Inhibitor PF-06447475 in Human Nerve-Like Differentiated Cells Exposed to Oxidative Stress Stimuli: Implications for Parkinson's Disease. Neurochem Res 2016; 41:2675-2692. [PMID: 27394417 DOI: 10.1007/s11064-016-1982-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/12/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in oxidative stress (OS) and neurodegeneration in Parkinson's disease (PD). However, the pathophysiological mechanism of the LRRK2 kinase in neurons under stress stimuli is not yet understood. We demonstrate that rotenone (ROT), a mitochondria complex I inhibitor frequently used to generate in vitro and in vivo experimental models of PD, induces LRRK2 phosphorylation at serine 935 p-(S935) concomitant with cell death in nerve-like differentiated cells (NLCs). Indeed, ROT (50 µM) at 6 h exposure significantly increased reactive oxygen species (ROS) (~100 %), p-(S935)-LRRK2 kinase [~2 f(old)-(i)ncrease] level, induced nuclei condensation/fragmentation (16 %), increased the expression of NF-κB (5.6 f-i), p53 (5.3 f-i), c-Jun (5.4 f-i) transcription factors, activated caspase-3 (8.0 f-i) and AIF (6.8 f-i) proteins; but significantly decreased mitochondrial membrane potential (∆Ψm, ~21 %), indicative of apoptosis -a type of regulated cell death process- compared to untreated cells. Strikingly, the LRRK2 kinase inhibitor PF-06447475 (PF-475, 1 µM) protects NLCs against ROT induced noxious effect. The inhibitor not only blocked the p-(S935)-LRRK2 kinase phosphorylation but also completely abolished ROS, and significantly reversed all ROT-induced apoptosis signaling and OS associated markers to comparable control values. We conclude that wild-type LRRK2 may act as a pro-apoptotic factor under OS stimuli. Our findings suggest an association between OS and LRRK2 phosphorylation in the NLCs death process, as PD model. Therefore, the pharmacological inhibition of LRRK2 might help to understand the OS-mediated kinase activation in PD neurodegenerative disorder.
Collapse
Affiliation(s)
- Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU Medellin, Colombia.
| |
Collapse
|
8
|
Song J, Kim J. Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson's Disease. Front Aging Neurosci 2016; 8:65. [PMID: 27065205 PMCID: PMC4811934 DOI: 10.3389/fnagi.2016.00065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 12/25/2022] Open
Abstract
The rates of metabolic diseases, such as type 2 diabetes mellitus (T2DM), obesity, and cardiovascular disease (CVD), markedly increase with age. In recent years, studies have reported an association between metabolic changes and various pathophysiological mechanisms in the central nervous system (CNS) in patients with metabolic diseases. Oxidative stress and hyperglycemia in metabolic diseases lead to adverse neurophysiological phenomena, including neuronal loss, synaptic dysfunction, and improper insulin signaling, resulting in Parkinson’s disease (PD). In addition, several lines of evidence suggest that alterations of CNS environments by metabolic changes influence the dopamine neuronal loss, eventually affecting the pathogenesis of PD. Thus, we reviewed recent findings relating to degeneration of dopaminergic neurons during metabolic diseases. We highlight the fact that using a metabolic approach to manipulate degeneration of dopaminergic neurons can serve as a therapeutic strategy to attenuate pathology of PD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| |
Collapse
|
9
|
Lu-Nguyen NB, Broadstock M, Yáñez-Muñoz RJ. Efficient Expression of Igf-1 from Lentiviral Vectors Protects In Vitro but Does Not Mediate Behavioral Recovery of a Parkinsonian Lesion in Rats. Hum Gene Ther 2015. [PMID: 26222254 DOI: 10.1089/hum.2015.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene therapy approaches delivering neurotrophic factors have offered promising results in both preclinical and clinical trials of Parkinson's disease (PD). However, failure of glial cell line-derived neurotrophic factor in phase 2 clinical trials has sparked a search for other trophic factors that may retain efficacy in the clinic. Direct protein injections of one such factor, insulin-like growth factor (IGF)-1, in a rodent model of PD has demonstrated impressive protection of dopaminergic neurons against 6-hydroxydopamine (6-OHDA) toxicity. However, protein infusion is associated with surgical risks, pump failure, and significant costs. We therefore used lentiviral vectors to deliver Igf-1, with a particular focus on the novel integration-deficient lentiviral vectors (IDLVs). A neuron-specific promoter, from the human synapsin 1 gene, excellent for gene expression from IDLVs, was additionally used to enhance Igf-1 expression. An investigation of neurotrophic effects on primary rat neuronal cultures demonstrated that neurons transduced with IDLV-Igf-1 vectors had complete protection on withdrawal of exogenous trophic support. Striatal transduction of such vectors into 6-OHDA-lesioned rats, however, provided neither protection of dopaminergic substantia nigra neurons nor improvement of animal behavior.
Collapse
Affiliation(s)
- Ngoc B Lu-Nguyen
- School of Biological Sciences, Royal Holloway, University of London , Egham, United Kingdom
| | - Martin Broadstock
- School of Biological Sciences, Royal Holloway, University of London , Egham, United Kingdom
| | - Rafael J Yáñez-Muñoz
- School of Biological Sciences, Royal Holloway, University of London , Egham, United Kingdom
| |
Collapse
|
10
|
PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 2014; 27:355-67. [PMID: 25516121 DOI: 10.1007/s12640-014-9509-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/27/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022]
Abstract
Rotenone is one of the most-studied neurotoxic substances as it induces oxidative stress processes both in cellular and animal models. Rotenone affects ATP generation, reactive oxygen species (ROS) production, and mitochondrial membrane potential in neurons and astrocyte-like cells. Previous epidemiologic studies have supported the role of neurotrophic factors such as BDNF and GDNF in neuroprotection mainly in neurons; however, only very few studies have focused on the importance of astrocytic protection in neurodegenerative models. In the present study, we assessed the neuroprotective effects of PDGF-BB against toxicity induced by rotenone in the astrocytic-like model of T98G human glioblastoma cell line. Our results demonstrated that pretreatment with PDGF-BB for 24 h increased cell viability, preserved nuclear morphology and mitochondrial membrane potential following stimulation with rotenone, and reduced ROS production nearly to control conditions. These observations were accompanied by important morphological changes induced by rotenone and that PDGF-BB was able to preserve cellular morphology under this toxic stimuli. These findings indicated that PDGF-BB protects mitochondrial functions, and may serve as a potential therapeutic strategy in rotenone-induced oxidative damage in astrocytes.
Collapse
|
11
|
Tyurina YY, Winnica DE, Kapralova VI, Kapralov AA, Tyurin VA, Kagan VE. LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: implications for mitochondrial dysfunction associated with Parkinson's disease. Mol Nutr Food Res 2013; 57:1410-22. [PMID: 23650208 PMCID: PMC3810210 DOI: 10.1002/mnfr.201200801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
SCOPE Rotenone is a toxicant believed to contribute to the development of Parkinson's disease. METHODS AND RESULTS Using human peripheral blood lymphocytes we demonstrated that exposure to rotenone resulted in disruption of electron transport accompanied by the production of reactive oxygen species, development of apoptosis and elevation of peroxidase activity of mitochondria. Employing LC/MS-based lipidomics/oxidative lipidomics we characterized molecular species of cardiolipin (CL) and its oxidation/hydrolysis products formed early in apoptosis and associated with the rotenone-induced mitochondrial dysfunction. CONCLUSION The major oxidized CL species - tetra-linoleoyl-CL - underwent oxidation to yield epoxy-C18:2 and dihydroxy-C18:2 derivatives predominantly localized in sn-1 and sn-2 positions, respectively. In addition, accumulation of mono-lyso-CL species and oxygenated free C18:2 were detected in rotenone-treated lymphocytes. These oxidation/hydrolysis products may be useful for the development of new biomarkers of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Daniel E. Winnica
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valentina I. Kapralova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
The bad, the good, and the ugly about oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:163913. [PMID: 22619696 PMCID: PMC3350994 DOI: 10.1155/2012/163913] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer.
Collapse
|
13
|
Bonilla-Porras AR, Jimenez-Del-Rio M, Velez-Pardo C. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism. Cancer Cell Int 2011; 11:19. [PMID: 21663679 PMCID: PMC3127817 DOI: 10.1186/1475-2867-11-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. RESULTS It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively. CONCLUSION We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.
Collapse
Affiliation(s)
- Angelica R Bonilla-Porras
- School of Medicine, Medical Research Institute, University of Antioquia (UdeA), Calle 62 # 52-59, Building 1, Laboratory 411/412; SIU- Medellin, Colombia.
| | | | | |
Collapse
|