1
|
Xu X, Fan Y, Yang X, Liu Y, Wang Y, Zhang J, Hou X, Fan Y, Zhang M. Anji white tea relaxes precontracted arteries, represses voltage-gated Ca 2+ channels and voltage-gated K + channels in the arterial smooth muscle cells: Comparison with green tea main component (-)-epigallocatechin gallate. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117855. [PMID: 38346524 DOI: 10.1016/j.jep.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.
Collapse
Affiliation(s)
- Xiaojia Xu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yingying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Yang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yu Liu
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Jiangtao Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Xinjiannanlu 56, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
2
|
Li Z, Luo W, Fang S, Chen X, Lin T, Zhou S, Zhang L, Yang W, Li Z, Ye J, Wang J, Liu P, Li Z. Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient. Acta Physiol (Oxf) 2021; 231:e13555. [PMID: 32886850 DOI: 10.1111/apha.13555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
AIM By activating prostacyclin receptors (IP receptors), prostacyclin (PGI2 ) exerts cardiovascular protective effects such as vasodilation and inhibition of vascular smooth muscle cell (VSMC) proliferation. However, IP receptors are dysfunctional under pathological conditions, and PGI2 produces detrimental effects that are opposite to its physiological protective effects via thromboxane-prostanoid (TP) receptors. This attempted to investigate whether or not IP receptor dysfunction facilitates the shift of PGI2 action. METHODS The effects of PGI2 and its stable analog iloprost on VSMC phenotypic transformation and proliferation were examined in A10 cells silencing IP receptors, in human aortic VSMCs (HAVSMCs) knocked down IP receptor by CRISPR-Cas9, or in HAVSMCs transfected with a dysfunctional mutation of IP receptor IPR212C . RESULTS PGI2 /iloprost treatment stimulated cell proliferation, upregulated synthetic proteins and downregulated contractile proteins, suggesting that PGI2 /iloprost promotes VSMC phenotypic transformation in IP-deficient cells. The effect of PGI2 /iloprost was prevented by TP antagonist S18886 or TP knockdown, indicating that the VSMC detrimental effect of PGI2 is dependent on TP receptor. RNA sequencing and Western blotting results showed that RhoA/ROCKs, MEK1/2 and JNK signalling cascades were involved. Moreover, IP deficiency increased the distribution of TP receptors at the cell membrane. CONCLUSION PGI2 induces VSMC phenotypic transformation when IP receptors are impaired. This is attributed to the activation of TP receptor and its downstream signaling cascades, and to the increased membrane distribution of TP receptors. The VSMC detrimental effect of PGI2 medicated by IP dysfunction and TP activation might probably exacerbate vascular remodelling, accelerating cardiovascular diseases.
Collapse
Affiliation(s)
- Ziqing Li
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Wenwei Luo
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Shi Fang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Xinyi Chen
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Tong Lin
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Sihang Zhou
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Lili Zhang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Wanqi Yang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Zhenzhen Li
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Junjian Wang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| |
Collapse
|
3
|
Bujor A, Miron A, Luca SV, Skalicka-Wozniak K, Silion M, Trifan A, Girard C, Demougeot C, Totoson P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112559. [PMID: 31935497 DOI: 10.1016/j.jep.2020.112559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus leaves, flowers and fruits have been traditionally used to improve blood circulation, numerous preclinical and clinical studies supporting the cardiovascular benefits of Crataegus preparations. In this respect, there is very limited data on Crataegus pentagyna; in addition, the chemical profile of this species is still incompletely elucidated. AIM OF THE STUDY The objective of this study was to examine the cardiovascular benefits of Crataegus pentagyna Waldst. et Kit. ex Willd. (small-flowered black hawthorn, Rosaceae) extracts (leaf, flower and fruit ethyl acetate extracts) and the underlying mechanisms. We hypothesized that C. pentagyna extracts might exert vasodilatory effects and inhibit arginase activity due, in large part, to their polyphenolic constituents. MATERIALS AND METHODS C. pentagyna extracts induced-relaxation and the mechanisms involved were studied ex vivo in isolated aortic rings from Sprague-Dawley rats. The inhibitory effects on bovine liver arginase I were assessed by an in vitro assay. Metabolite profiling of C. pentagyna extracts was performed and the most endothelium- and nitric oxide synthase-dependent; flower extract additionally reduced Ca2+ entry and, to a lesser extent, Ca2+ release from the sarcoplasmic reticulum. C. pentagyna proved to be an important source of arginase inhibitors with potential benefits in endothelial dysfunction that remains to be explored.
Collapse
Affiliation(s)
- Alexandra Bujor
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Anca Miron
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Simon Vlad Luca
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Mihaela Silion
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Corine Girard
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Céline Demougeot
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Perle Totoson
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| |
Collapse
|
4
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
5
|
Abstract
One of the main mechanisms by which dietary flavonoids are thought to influence cardiovascular disease is via protection of the bioactivity of the endothelium-derived nitric oxide (NO). Additionally, flavonoids may also interfere with the signalling cascades of inflammation and prevent overproduction of NO and its deleterious consequences in shock and ischemia-reperfusion injury. In the present paper we review the evidence of the effects of flavonoids on NO. Flavonoids exert complex actions on the synthesis and bioavailability of NO which may result both in enhanced or decreased NO levels: (1) in cell free systems, several flavonoids may scavenge NO via its pro-oxidant properties by increasing superoxide. However, under conditions of oxidative stress, flavonoids may also protect NO from superoxide-driven inactivation. (2) In intact healthy tissues, some flavonoids increase eNOS activity in endothelial cells. Paradoxically this effect involves a pro-oxidant effect which results in Ca(2+)-dependent activation of eNOS. As inhibitors of PI3K, flavonoids may potentially inhibit the PI3K/Akt-dependent activation of eNOS. (3) Under conditions of inflammation and oxidative stress, flavonoids may prevent the inflammatory signalling cascades via inhibition of NFκB and thereby downregulate iNOS. On the other hand, they also prevent the overexpression of ROS generating enzymes, reducing superoxide and peroxynitrite levels, and hence preventing superoxide-induced NO inactivation and eNOS uncoupling. Therefore, the final effect of flavonoids on NO levels will depend on the flavonoid structure and the concentrations used, on the cell type under study and particularly on the presence of inflammatory/oxidative conditions.
Collapse
Affiliation(s)
- J Duarte
- Department of Pharmacology, University of Granada, 18071, Granada, Spain
| | | | | |
Collapse
|
6
|
Kaufeld AM, Pertz HH, Kolodziej H. 2,3-cis-procyanidins elicit endothelium-dependent relaxation in porcine coronary arteries via activation of the PI3/Akt kinase signaling pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9609-9616. [PMID: 24032351 DOI: 10.1021/jf402460m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyphenols including procyanidins have been reported to reduce the risk of cardiovascular diseases. However, polyphenolic extracts represent complex mixtures, and detailed information on their chemical composition is commonly lacking. The aim of this study was to investigate the potential of a highly purified and chemically defined 2,3-cis-procyanidin sample (di- to hexameric [4β,8]-linked oligomers) from Nelia meyeri to relax coronary arteries and to get insight into the underlying mechanisms. The procyanidins produced a concentration-dependent relaxation in endothelium-intact vascular rings by activation of the NO and endothelium-derived hyperpolarizing factor (EDHF)-signaling pathway via PI3/Akt kinase in a redox-sensitive manner, with O2(-) as key species predominantly produced by xanthine oxidase and NADPH oxidase. Our observations in tissue bath studies were confirmed by Western blotting; 2,3-cis-procyanidins induced phosphorylation of eNOS and Akt in a ROS-dependent manner. These findings provide a basis for comparing the relaxant response and mode of action with that of structurally related proanthocyanidins. Our results may contribute to a better understanding of the potential link between the beneficial effects of proanthocyanidins on vascular health and their broad distribution in many fruits, natural food sources, and foodstuffs.
Collapse
Affiliation(s)
- Aurica M Kaufeld
- Institute of Pharmacy, Pharmaceutical Biology, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
| | | | | |
Collapse
|
7
|
Toniolo A, Buccellati C, Pinna C, Gaion RM, Sala A, Bolego C. Cyclooxygenase-1 and prostacyclin production by endothelial cells in the presence of mild oxidative stress. PLoS One 2013; 8:e56683. [PMID: 23441213 PMCID: PMC3575487 DOI: 10.1371/journal.pone.0056683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
This study aimed at evaluating the relative contribution of endothelial cyclooxygenase-1 and -2 (COX-1 and COX-2) to prostacyclin (PGI2) production in the presence of mild oxidative stress resulting from autooxidation of polyphenols such as (-)-epigallocatechin 3-gallate (EGCG), using both endothelial cells in culture and isolated blood vessels. EGCG treatment resulted in an increase in hydrogen peroxide formation in human umbilical vein endothelial cells. In the presence of exogenous arachidonic acid and EGCG, PGI2 production was preferentially inhibited by a selective COX-1 inhibitor. This effect of selective inhibition was also substantially reversed by catalase. In addition, EGCG caused vasorelaxation of rat aortic ring only partially abolished by a nitric oxide synthase inhibitor. Concomitant treatment with a selective COX-1 inhibitor completely prevented the vasorelaxation as well as the increase in PGI2 accumulation in the perfusate observed in EGCG-treated aortic rings, while a selective COX-2 inhibitor was completely uneffective. Our data strongly support the notions that H2O2 generation affects endothelial PGI2 production, making COX-1, and not COX-2, the main source of endothelial PGI2 under altered oxidative tone conditions. These results might be relevant to the reappraisal of the impact of COX inhibitors on vascular PGI2 production in patients undergoing significant oxidative stress.
Collapse
Affiliation(s)
- Alice Toniolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Carola Buccellati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milano, Italy
| | - Christian Pinna
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milano, Italy
| | - Rosa Maria Gaion
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Angelo Sala
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milano, Italy
- IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy
- * E-mail:
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Endothelium/nitric oxide mechanism mediates vasorelaxation and counteracts vasoconstriction induced by low concentration of flavanols. Eur J Nutr 2012; 52:263-72. [PMID: 22322926 DOI: 10.1007/s00394-012-0320-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/25/2012] [Indexed: 01/22/2023]
Abstract
PURPOSE At relatively low concentrations, flavanols induce inconsistent effects on isolated arterial tone, sometimes explained as being due to a structure-activity relationship. The aim of our study was to investigate the effects of two flavanols at different doses on arterial functional state. METHODS The effects of two catechins, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin (EP), on rat-isolated aorta tone were investigated on resting tension and on precontracted preparations, both in the presence and in the absence of endothelium. RESULTS At resting tension, endothelium-intact preparations, EGCG and EP (0.01-10 μM), induced a slight concentration-dependent, non-significant contraction. On endothelium-denuded preparations, both EGCG and EP induced a concentration-dependent contraction (significance at 0.1 and 1 μM concentrations of the two compounds, respectively). In phenylephrine (PE) (1 μM) precontracted, endothelium-intact preparations, EGCG and EP (0.01-10 μM), induced a concentration-dependent vasorelaxation, reaching significance at 1 μM concentration of both agonists. On endothelium-denuded preparations, EGCG and EP did not significantly affect PE (0.3 μM)-induced tone. In endothelium-intact precontracted preparations, Nω nitro-L-arginine (L-NNA), a nitric oxide synthase (NOS) activity inhibitor, abolished the vasorelaxant effect of EGCG and EP (0.01-10 μM). At high concentrations, EGCG and EP (100 μM) elicited a marked relaxation. This was significantly larger in the presence than in the absence of endothelium or in the presence of L-NNA. CONCLUSIONS Our findings highlight the important role played by an endothelium/NO-mechanism in the regulation of basal tone and in both mediating vasorelaxation and counteracting vasoconstriction induced by low concentrations of flavanols in rat thoracic aorta.
Collapse
|