1
|
Day K, Weitzman CL, Rachmansah A, Skelton K, Christian K. Patterns of seasonal plasticity in evaporative water loss and preferred temperature in three geckos of the wet-dry tropics. Oecologia 2025; 207:53. [PMID: 40085226 PMCID: PMC11909027 DOI: 10.1007/s00442-025-05692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Seasonal physiological plasticity (acclimatisation) facilitates homeostasis in changing environments and has been studied extensively with respect to thermal biology and metabolism. Less is known about seasonal changes in evaporative water loss (EWL) in response to changing water availability and humidity. The wet-dry tropics of northern Australia experience moderate seasonal temperature changes, but substantial changes in rainfall and humidity. We studied three gecko species (Amalosia rhombifer, Heteronotia binoei and Hemidactylus frenatus) in the wet and dry seasons with respect to their EWL, preferred body temperatures (Tpref), and their choice between a dry and humid refuge at and below Tpref. EWL was significantly lower in the dry season (66% of wet season values). Tpref for two of the species did not change seasonally, but A. rhombifer selected lower Tpref during the warmer wet season. Given a choice of refugia, the humid refuge at low temperatures was never preferred over the warm microhabitat. When both refugia were at the preferred temperature, only A. rhombifer showed a preference for the humid microhabitat. These results demonstrate that although thermoregulation is prioritised in the short term, hydroregulation (physiological plasticity in EWL) is adjusted in the longer term, with shifts occurring on a seasonal scale. However, it is possible that shifts in EWL may occur in response to prevailing weather conditions on a shorter timescale. Before broad generalisations can be drawn about the phenomenon of EWL plasticity, measurements need to be taken from more species in different climatic regions at ecologically relevant timescales.
Collapse
Affiliation(s)
- Kimberley Day
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Brinkin, NT, 0810, Australia
| | - Chava L Weitzman
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Brinkin, NT, 0810, Australia
| | - Angga Rachmansah
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Brinkin, NT, 0810, Australia
| | - Kade Skelton
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Brinkin, NT, 0810, Australia
| | - Keith Christian
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Brinkin, NT, 0810, Australia.
| |
Collapse
|
2
|
Alomar N, Bodensteiner BL, Hernández-Rodríguez I, Landestoy MA, Domínguez-Guerrero SF, Muñoz MM. Comparison of Hydric and Thermal Physiology in an Environmentally Diverse Clade of Caribbean Anoles. Integr Comp Biol 2024; 64:377-389. [PMID: 38702856 DOI: 10.1093/icb/icae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the "cybotoid" anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.
Collapse
Affiliation(s)
- Nathalie Alomar
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | | | - Miguel A Landestoy
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, 10105, Dominican Republic
| | | | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Sakich NB, Tattersall GJ. Bearded dragons (Pogona vitticeps) with reduced scalation lose water faster but do not have substantially different thermal preferences. J Exp Biol 2021; 224:269179. [PMID: 34137892 DOI: 10.1242/jeb.234427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/24/2021] [Indexed: 01/11/2023]
Abstract
Whether scales reduce cutaneous evaporative water loss in lepidosaur reptiles (Superorder Lepidosauria) such as lizards and snakes has been a contentious issue for nearly half a century. Furthermore, while many studies have looked at whether dehydration affects thermal preference in lepidosaurs, far fewer have examined whether normally hydrated lepidosaurs can assess their instantaneous rate of evaporative water loss and adjust their thermal preference to compensate in an adaptive manner. We tested both of these hypotheses using three captive-bred phenotypes of bearded dragon (Pogona vitticeps) sourced from the pet trade: 'wild-types' with normal scalation, 'leatherbacks' exhibiting scales of reduced prominence, and scaleless bearded dragons referred to as 'silkbacks'. Silkbacks on average lost water evaporatively at about twice the rate that wild-types did. Leatherbacks on average were closer in their rates of evaporative water loss to silkbacks than they were to wild-types. Additionally, very small (at most ∼1°C) differences in thermal preference existed between the three phenotypes that were not statistically significant. This suggests a lack of plasticity in thermal preference in response to an increase in the rate of evaporative water loss, and may be reflective of a thermal 'strategy' as employed by thermoregulating bearded dragons that prioritises immediate thermal benefits over the threat of future dehydration. The results of this study bolster an often-discounted hypothesis regarding the present adaptive function of scales and have implications for the applied fields of animal welfare and conservation.
Collapse
Affiliation(s)
- Nicholas B Sakich
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
4
|
Hsu MH, Lin JW, Liao CP, Hsu JY, Huang WS. Trans-marine dispersal inferred from the saltwater tolerance of lizards from Taiwan. PLoS One 2021; 16:e0247009. [PMID: 33577597 PMCID: PMC7880474 DOI: 10.1371/journal.pone.0247009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Dehydration and hypersalinity challenge non-marine organisms crossing the ocean. The rate of water loss and saltwater tolerance thus determine the ability to disperse over sea and further influence species distribution. Surprisingly, this association between physiology and ecology is rarely investigated in terrestrial vertebrates. Here we conducted immersion experiments to individuals and eggs of six lizard species differently distributed across Taiwan and the adjacent islands to understand if the physiological responses reflect the geographical distribution. We found that Plestiodon elegans had the highest rate of water loss and the lowest saltwater tolerance, whereas Eutropis longicaudata and E. multifasciata showed the lowest rate of water loss and the highest saltwater tolerance. Diploderma swinhonis, Hemidactylus frenatus, and Anolis sagrei had medium measurements. For the eggs, only the rigid-shelled eggs of H. frenatus were incubated successfully after treatments. While, the parchment-shelled eggs of E. longicaudata and D. swinhonis lost or gained water dramatically in the immersions without any successful incubation. Combined with the historical geology of the islands and the origin areas of each species, the inferences of the results largely explain the current distribution of these lizards across Taiwan and the adjacent islands, pioneerly showing the association between physiological capability and species distribution.
Collapse
Affiliation(s)
- Min-Hao Hsu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jhan-Wei Lin
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Chen-Pan Liao
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jung-Ya Hsu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Wen-San Huang
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
5
|
Sannolo M, Civantos E, Martín J, Carretero M. Variation in field body temperature and total evaporative water loss along an environmental gradient in a diurnal ectotherm. J Zool (1987) 2019. [DOI: 10.1111/jzo.12744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Sannolo
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Vila do Conde Portugal
- Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal
| | - E. Civantos
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Vila do Conde Portugal
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales Madrid Spain
| | - J. Martín
- Department of Evolutionary Ecology Museo Nacional de Ciencias Naturales Madrid Spain
| | - M.A. Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources InBIO Universidade do Porto Vila do Conde Portugal
| |
Collapse
|
6
|
Baeckens S, Wainwright DK, Weaver JC, Irschick DJ, Losos JB. Ontogenetic scaling patterns of lizard skin surface structure as revealed by gel-based stereo-profilometry. J Anat 2019; 235:346-356. [PMID: 31099429 DOI: 10.1111/joa.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 11/30/2022] Open
Abstract
The skin surface structure of squamate reptiles varies greatly among species, likely because it plays a key role in a range of tasks, such as camouflage, locomotion, self-cleaning, mitigation of water loss and protection from physical damage. Although we have foundational knowledge about squamate skin morphology, we still know remarkably little about how intraspecific variation in skin surface structure translates to functional variation. This gap in our understanding can be in part traced back to: (i) our lack of knowledge on how body size determines skin surface structure; and (ii) the lack of means to perform high-throughput and detailed analysis of the three-dimensional (3D) anatomy of reptilian skin surfaces in a non-destructive manner. To fill this gap, we explored the possibilities of a new imaging technique, termed gel-based stereo-profilometry, to visualize and quantify the 3D topography of reptilian skin surface structure. Using this novel approach, we investigated intra-specific and intra-individual variation in the skin surface morphology of a focal lizard species, Anolis cristatellus. We assessed how various characteristics of surface topography (roughness, skew and kurtosis) and scale morphology (area, height, width and shape) scale with body size across different body regions. Based on an ontogenetic series of A. cristatellus males, we show that skin roughness increases with body size. Skin patches on the ventral body region of lizards were rougher than on the dorsum, but this was a consequence of ventral scales being larger than dorsal scales. Dorsal surface skew and kurtosis varied with body size, but surfaces on the ventral skin showed no such relationship. Scale size scaled isometrically with body size, and while ventral scales differed in shape from dorsal scales, scale shape did not change with ontogeny. Overall, this study demonstrates that gel-based stereo-profilometry is a promising method to rapidly assess the 3D surface structure of reptilian skin at the microscopic level. Additionally, our findings of the explanatory power of body size on skin surface diversity provide a foundation for future studies to disentangle the relationships among morphological, functional and ecological diversity in squamate reptile skin surfaces.
Collapse
Affiliation(s)
- Simon Baeckens
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.,Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Dylan K Wainwright
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Duncan J Irschick
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Jonathan B Losos
- Department of Biology, Washington University, St. Louis, MO, USA
| |
Collapse
|
7
|
Gunderson AR, Mahler DL, Leal M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc Biol Sci 2018; 285:20172241. [PMID: 29669895 PMCID: PMC5936720 DOI: 10.1098/rspb.2017.2241] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/27/2018] [Indexed: 11/12/2022] Open
Abstract
Elucidating how ecological and evolutionary mechanisms interact to produce and maintain biodiversity is a fundamental problem in evolutionary ecology. Here, we focus on how physiological evolution affects performance and species coexistence along the thermal niche axis in replicated radiations of Anolis lizards best known for resource partitioning based on morphological divergence. We find repeated divergence in thermal physiology within these radiations, and that this divergence significantly affects performance within natural thermal environments. Morphologically similar species that co-occur invariably differ in their thermal physiology, providing evidence that physiological divergence facilitates species coexistence within anole communities. Despite repeated divergence, phylogenetic comparative analyses indicate that physiological traits have evolved more slowly than key morphological traits related to the structural niche. Phylogenetic analyses also reveal that physiological divergence is correlated with divergence in broad-scale habitat climatic features commonly used to estimate thermal niche evolution, but that the latter incompletely predicts variation in the former. We provide comprehensive evidence for repeated adaptive evolution of physiological divergence within Anolis adaptive radiations, including the complementary roles of physiological and morphological divergence in promoting community-level diversity. We recommend greater integration of performance-based traits into analyses of climatic niche evolution, as they facilitate a more complete understanding of the phenotypic and ecological consequences of climatic divergence.
Collapse
Affiliation(s)
- Alex R Gunderson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3140, USA
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Oufiero CE, Van Sant MJ. Variation and repeatability of cutaneous water loss and skin resistance in relation to temperature and diel variation in the lizard Sceloporus consobrinus. J Comp Physiol B 2018; 188:671-681. [PMID: 29619510 DOI: 10.1007/s00360-018-1156-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 11/24/2022]
Abstract
Variation in rates of water loss has been proposed to be an important mechanism in the survival of terrestrial organisms, as high rates of water loss in desiccating environments may lead to hydric stress and death. Vapor density deficit, the driving force for evaporative water loss, increases exponentially as temperature increases. Acute temperature changes may be the result of daily behavioral thermoregulation of ectotherms, which may influence the among individual variation rates of water loss. The goals of this study were to determine (1) how rates of cutaneous water loss (CWL) and skin resistance (Rs) are affected by acute temperature acclimation, (2) how rates of CWL and Rs vary throughout the day allowing behavioral thermoregulation and (3) the repeatability of CWL and Rs within and among sampling periods. We measured CWL and calculated skin resistance (Rs) of 30 male Sceloporus consobrinus lizards across three summers. We measured CWL on the dorsal and ventral surface of each lizard at 23 °C followed by measurements at 35 °C, and three separate times throughout the day. We found a significant increase in Rs and decrease in CWL at increased acclimation temperatures (35 °C), a significant difference in CWL and Rs throughout the day allowing behavioral thermoregulation, and support for the repeatability of CWL and Rs. Our results demonstrate variability in CWL and Rs in relation to temperature acclimation and thermoregulation, but mixed evidence for repeatability across treatments. Our results suggest other factors, such as peripheral blood flow, may be influencing the inter-individual variation in CWL and Rs.
Collapse
Affiliation(s)
| | - Matthew J Van Sant
- Department of Agriculture, Biological and Health Sciences, Cameron University, Lawton, OK, 73505, USA
| |
Collapse
|
9
|
Belasen A, Brock K, Li B, Chremou D, Valakos E, Pafilis P, Sinervo B, Foufopoulos J. Fine with heat, problems with water: microclimate alters water loss in a thermally adapted insular lizard. OIKOS 2016. [DOI: 10.1111/oik.03712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anat Belasen
- Dept of Ecology and Evolutionary Biology; Univ. of Michigan; Ann Arbor MI USA
- School of Natural Resources and Environment; Univ. of Michigan; Ann Arbor MI USA
| | - Kinsey Brock
- School of Natural Resources and Environment; Univ. of Michigan; Ann Arbor MI USA
| | - Binbin Li
- School of Natural Resources and Environment; Univ. of Michigan; Ann Arbor MI USA
- Nicholas School of Environment; Duke Univ.; Durham NC USA
| | | | - Efstratios Valakos
- Dept of Animal and Human Physiology; National and Kapodistrian Univ. of Athens; Athens Greece
| | - Panayiotis Pafilis
- Dept of Zoology and Marine Biology; National and Kapodistrian Univ. of Athens; Athens Greece
| | - Barry Sinervo
- Dept of Ecology and Evolutionary Biology; Univ. of California; Santa Cruz CA USA
| | - Johannes Foufopoulos
- School of Natural Resources and Environment; Univ. of Michigan; Ann Arbor MI USA
| |
Collapse
|
10
|
Llewelyn J, Macdonald SL, Hatcher A, Moritz C, Phillips BL. Intraspecific variation in climate‐relevant traits in a tropical rainforest lizard. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12466] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- John Llewelyn
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- Land and Water Flagship CSIRO Townsville Qld 4811 Australia
| | - Stewart L. Macdonald
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- Land and Water Flagship CSIRO Townsville Qld 4811 Australia
| | - Amberlee Hatcher
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
| | - Craig Moritz
- Centre for Biodiversity Analysis Australian National University Canberra ACT 0200 Australia
| | - Ben L. Phillips
- Centre for Tropical Biodiversity and Climate Change James Cook University Townsville Qld 4811 Australia
- School of Biosciences University of Melbourne Melbourne Vic. 3010 Australia
| |
Collapse
|
11
|
Basson CH, Clusella-Trullas S. The Behavior-Physiology Nexus: Behavioral and Physiological Compensation Are Relied on to Different Extents between Seasons. Physiol Biochem Zool 2015; 88:384-94. [DOI: 10.1086/682010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Kolbe JJ, Ehrenberger JC, Moniz HA, Angilletta MJ. Physiological Variation among Invasive Populations of the Brown Anole (Anolis sagrei). Physiol Biochem Zool 2014; 87:92-104. [DOI: 10.1086/672157] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Dabés L, Bonfim VMG, Napoli MF, Klein W. Water Balance and Spatial Distribution of an Anuran Community from Brazil. HERPETOLOGICA 2012. [DOI: 10.1655/herpetologica-d-10-00058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Gunderson AR, Siegel J, Leal M. Tests of the contribution of acclimation to geographic variation in water loss rates of the West Indian lizard Anolis cristatellus. J Comp Physiol B 2011; 181:965-72. [DOI: 10.1007/s00360-011-0576-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/11/2011] [Accepted: 03/30/2011] [Indexed: 11/29/2022]
|
16
|
Perry G, Dmi'el R, Lazell J. Evaporative Water Loss in Insular Populations of Anolis cristatellus (Reptilia: Sauria) in the British Virgin Islands. III. Response to the End of Drought and a Common Garden Experiment1. Biotropica 2006. [DOI: 10.1111/j.1744-7429.2000.tb00520.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Abstract
SUMMARYThe vertebrate integument represents an evolutionary compromise between the needs for mechanical protection and those of sensing the environment and regulating the exchange of materials and energy. Fibrous keratins evolved as a means of strengthening the integument while simultaneously providing a structural support for lipids, which comprise the principal barrier to cutaneous water efflux in terrestrial taxa. Whereas lipids are of fundamental importance to water barriers, the efficacy of these barriers depends in many cases on structural features that enhance or maintain the integrity of function. Amphibians are exceptional among tetrapods in having very little keratin and a thin stratum corneum. Thus, effective lipid barriers that are present in some specialized anurans living in xeric habitats are external to the epidermis, whereas lipid barriers of amniotes exist as a lipid-keratin complex within the stratum corneum. Amphibians prevent desiccation of the epidermis and underlying tissues either by evaporating water from a superficial aqueous film, which must be replenished, or by shielding the stratum corneum with superficial lipids. Water barrier function in vertebrates generally appears to be relatively fixed, although various species have`plasticity' to adjust the barrier effectiveness facultatively. While it is clear that both phenotypic plasticity and genetic adaptation can account for covariation between environment and skin resistance to water efflux, studies of the relative importance of these two phenomena are few. Fundamental mechanisms for adjusting the skin water barrier include changes in barrier thickness, composition and physicochemical properties of cutaneous lipids,and/or geometry of the barrier within the epidermis. While cutaneous lipids have been studied extensively in the contexts of disease and cosmetics,relatively little is known about the processes of permeability barrier ontogenesis related to adaptation and environment. Advances in such knowledge have didactic significance for understanding vertebrate evolution as well as practical application to clinical dermatology.
Collapse
|
18
|
IRSCHICK DUNCANJ, CARLISLE ELIZABETH, ELSTROTT JUSTIN, RAMOS MARGARITA, BUCKLEY CHRISTINE, VANHOOYDONCK BIEKE, MEYERS JAY, HERREL ANTHONY. A comparison of habitat use, morphology, clinging performance and escape behaviour among two divergent green anole lizard (Anolis carolinensis) populations. Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00487.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
|
20
|
Perry G, Dmi'el R, Lazell J. Evaporative Water Loss in Insular Populations of Anolis cristatellus (Reptilia: Sauria) in the British Virgin Islands. III. Response to the End of Drought and a Common Garden Experiment1. Biotropica 2000. [DOI: 10.1646/0006-3606(2000)032[0722:ewliip]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Perry G, Dmi'el R, Lazell J. Evaporative Water Loss in Insular Populations of the Anolis cristatellus Group (Reptilia: Sauria) in the British Virgin Islands II: The Effects of Drought1. Biotropica 1999. [DOI: 10.1111/j.1744-7429.1999.tb00145.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Dmi’el R. Skin resistance to evaporative water loss in viperid snakes: habitat aridity versus taxonomic status. Comp Biochem Physiol A Mol Integr Physiol 1998. [DOI: 10.1016/s1095-6433(98)10080-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|