1
|
Liu L, Fu Z, Wang X, Xu C, Gan C, Fan D, Soon Chow W. Exposed anthocyanic leaves of Prunus cerasifera are special shade leaves with high resistance to blue light but low resistance to red light against photoinhibition of photosynthesis. ANNALS OF BOTANY 2023; 132:163-177. [PMID: 37382489 PMCID: PMC10550276 DOI: 10.1093/aob/mcad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND AND AIMS The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy. METHODS We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured. KEY RESULTS The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light. CONCLUSIONS In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.
Collapse
Affiliation(s)
- Lu Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Zengjuan Fu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiangping Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Changqing Gan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Encinas-Valero M, Esteban R, Hereş AM, Becerril JM, García-Plazaola JI, Artexe U, Vivas M, Solla A, Moreno G, Curiel Yuste J. Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. TREE PHYSIOLOGY 2022; 42:208-224. [PMID: 33611551 DOI: 10.1093/treephys/tpab006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.
Collapse
Affiliation(s)
- Manuel Encinas-Valero
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Ana-Maria Hereş
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven-1, 500123 Braşov, Romania
| | - José María Becerril
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Unai Artexe
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - María Vivas
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Gerardo Moreno
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for SciencePlaza Euskadi 548009 Bilbao, Bizkaia, Spain
| |
Collapse
|
3
|
Muñoz P, Cotado A, Munné-Bosch S. Transient photoinhibition and photo-oxidative stress as an integral part of stress acclimation and plant development in a dioecious tree adapted to Mediterranean ecosystems. TREE PHYSIOLOGY 2021; 41:1212-1229. [PMID: 33388772 DOI: 10.1093/treephys/tpaa177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Mastic trees (Pistacia lentiscus L.) are dioecious perennial plants that are highly adapted to Mediterranean climates but display a high sensitivity to winter periods. In order to understand how sex, leaf phenology and ecological context could condition sensitivity to winter and associated mechanisms to acclimate to these conditions, photoinhibition and photo-oxidative stress markers were examined in mastic trees (P. lentiscus) from a natural population growing in the Garraf Natural Park for a consecutive 12-month period (seasonal study), as well as in three populations naturally growing in the Montseny Natural Park, including the highest altitudes described for this species, during winter (altitudinal study). Results from these studies indicate that both the winter period and higher elevation influenced the degree of photoinhibition, but this was not conditioned by sex. In fact, winter photoinhibition occurred transiently even though it was accompanied by chlorophyll loss and malondialdehyde contents. Stress acclimation was achieved through biochemical adjustments in chloroplasts, characterized by anthocyanin shielding, increased de-epoxidation state of the xanthophyll cycle as well as tocopherol accumulation, and phenological adaptations, the latter allowing a complete resetting of the physiological performance of leaves. Moreover, although females showed higher lipid peroxidation than males during the coldest winter months, at the highest elevation and during flowering in spring, this oxidative stress was mild and transient with no negative consequences for the physiology of plants. It is concluded that evergreen mastic trees acclimate to winter conditions and higher elevations by activation of antioxidant defenses together with phenological adjustments, altogether playing a crucial role in plant survival. Sexual dimorphism in mastic trees appears as a relevant factor when considering sensitivity to photo-oxidative stress in winter and altitudinal conditions.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Plant Physiology Section, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Alba Cotado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Plant Physiology Section, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Plant Physiology Section, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Physiological and Proteomic Responses of Mulberry Trees ( Morus alba. L.) to Combined Salt and Drought Stress. Int J Mol Sci 2019; 20:ijms20102486. [PMID: 31137512 PMCID: PMC6566768 DOI: 10.3390/ijms20102486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Intensive investigations have been conducted on the effect of sole drought or salinity stress on the growth of plants. However, there is relatively little knowledge on how plants, particularly woody species, respond to a combination of these two stresses although these stresses can simultaneously occur in the field. In this study, mulberry, an economically important resource for traditional medicine, and the sole food of domesticated silkworms was subjected to a combination of salt and drought stress and analyzed by physiological methods and TMT-based proteomics. Stressed mulberry exhibited significant alteration in physiological parameters, including root/shoot ratio, chlorophyll fluorescence, total carbon, and ion reallocation. A total of 577 and 270 differentially expressed proteins (DEPs) were identified from the stressed leaves and roots, respectively. Through KEGG analysis, these DEPs were assigned to multiple pathways, including carbon metabolism, photosynthesis, redox, secondary metabolism, and hormone metabolism. Among these pathways, the sucrose related metabolic pathway was distinctly enriched in both stressed leaves and roots, indicating an important contribution in mulberry under stress condition. The results provide a comprehensive understanding of the adaptive mechanism of mulberry in response to salt and drought stress, which will facilitate further studies on innovations in terms of crop performance.
Collapse
|
5
|
Chen D, Wang S, Xiong B, Cao B, Deng X. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor. PLoS One 2015; 10:e0137026. [PMID: 26317421 PMCID: PMC4552878 DOI: 10.1371/journal.pone.0137026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence.
Collapse
Affiliation(s)
- Daoqian Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Binglin Xiong
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Beibei Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Deng
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Sperdouli I, Moustakas M. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. JOURNAL OF PLANT RESEARCH 2014; 127:481-9. [PMID: 24848774 DOI: 10.1007/s10265-014-0635-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/10/2014] [Indexed: 05/26/2023]
Abstract
We examined whether young and mature leaves of Arabidopsis thaliana in their response to mild water deficit (MiWD) and moderate water deficit (MoWD), behave differentially, and whether photosynthetic acclimation to water deficit correlates with increased proline and sugar accumulation. We observed that with increasing water deficit, leaf relative water content decreased, while proline and sugar accumulation increased in both leaf-developmental stages. Under both MiWD and MoWD, young leaves showed less water loss and accumulated higher level of metabolites compared to mature leaves. This, leaf age-related increase in metabolite accumulation that was significantly higher under MoWD, allowed young leaves to cope with oxidative damage by maintaining their base levels of lipid peroxidation. Thus, acclimation of young leaves to MoWD, involves a better homeostasis of reactive oxygen species (ROS), that was achieved among others by (1) increased sugar accumulation and (2) either increased proline synthesis and/or decreased proline catabolism, that decrease the NADPH/NADP(+) ratio, resulting in a higher level of oxidized state of quinone A and thus in a reduced excitation pressure, and by (3) stimulation of the photoprotective mechanism of non-photochemical quenching, that reflects the dissipation of excess excitation energy in the form of harmless heat, thus protecting the plant from the damaging effects of ROS.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | | |
Collapse
|
7
|
|
8
|
Juvany M, Müller M, Munné-Bosch S. Photo-oxidative stress in emerging and senescing leaves: a mirror image? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3087-98. [PMID: 23825233 DOI: 10.1093/jxb/ert174] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.
Collapse
Affiliation(s)
- Marta Juvany
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
9
|
Jing HC, Nam HG. Leaf senescence in plants: from model plants to crops, still so many unknowns. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:514-5. [PMID: 22830955 DOI: 10.1111/j.1744-7909.2012.01148.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|