1
|
Yuan GR, Chen ML, Peng ML, Lei W, Meng LW, Dou W, Wang JJ. Knockdown of a Nicotinic Acetylcholine Receptor Subunit Gene Bdorβ1 Decreases Susceptibility to Oxa-Bridged trans- instead of cis-Nitromethylene Neonicotinoid Insecticides in Bactrocera dorsalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13554-13562. [PMID: 36224100 DOI: 10.1021/acs.jafc.2c04709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast action of acetylcholine in synaptic cholinergic transmissions. Insect nAChRs are the target of several classes of insecticides. Here, the full-length cDNA encoding a nAChR beta1 subunit (Bdorβ1) was identified and characterized from a destructive pest, Bactrocera dorsalis. The amino acid sequence of Bdorβ1 shows high identities to other insect nAChRs β1 subunits. Double injection of dsBdorβ1 reduced the expression of Bdorβ1 and in turn significantly decreased susceptibility to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids. Our results support the involvement of Bdorβ1 in the susceptibility of B. dorsalis to oxa-bridged trans- instead of cis-nitromethylene neonicotinoids and imply that these two classes of neonicotinoids might be acting at different nAChR subtypes.
Collapse
Affiliation(s)
- Guo-Rui Yuan
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Ling Chen
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Meng-Lan Peng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Lei
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Li-Wei Meng
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Wei Dou
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Key Laboratory of Entomology and Pest Control Engineering (Chongqing), College of Plant Protection, Southwest University, Chongqing 400716, China
| |
Collapse
|
2
|
Zhang BZ, Zhang MY, Li YS, Hu GL, Fan XZ, Guo TX, Zhou F, Zhang P, Wu YB, Gao YF, Gao XW. MicroRNA-263b confers imidacloprid resistance in Sitobion miscanthi (Takahashi) by regulating the expression of the nAChRβ1 subunit. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105218. [PMID: 36127060 DOI: 10.1016/j.pestbp.2022.105218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The Chinese wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Imidacloprid plays a critical role in controlling pests with sucking mouthparts. However, imidacloprid-resistant pests have been observed after insecticide overuse. Point mutations and low expression levels of the nicotinic acetylcholine receptor β1 (nAchRβ1) subunit are the main imidacloprid-resistant mechanisms. However, the regulatory mechanism underlying nAChRβ1 subunit expression is poorly understood. In this study, a target of miR-263b was isolated from the 5'UTR of the nAchRβ1 subunit in the CWA. Low expression levels were found in the imidacloprid-resistant strain CWA. Luciferase reporter assays showed that miR-263b could combine with the 5'UTR of the nAChRβ1 subunit and suppress its expression by binding to a site in the CWA. Aphids treated with the miR-263b agomir exhibited a significantly reduced abundance of the nAchRβ1 subunit and increased imidacloprid resistance. In contrast, aphids treated with the miR-263b antagomir exhibited significantly increased nAchRβ1 subunit abundance and decreased imidacloprid resistance. These results provide a basis for an improved understanding of the posttranscriptional regulatory mechanism of the nAChRβ1 subunit and further elucidate the function of miRNAs in regulating susceptibility to imidacloprid in the CWA. These results provide a better understanding of the mechanisms of posttranscriptional regulation of nAChRβ1 and will be helpful for further studies on the role of miRNAs in the regulation of nAChRβ1 subunit resistance in homopteran pests.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Meng-Yuan Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ya-She Li
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xin-Zheng Fan
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Tian-Xin Guo
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Feng Zhou
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Pei Zhang
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yan-Bing Wu
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Yang-Fan Gao
- College of Resources and Environment, Henan engineering research center of biological pesticide & fertilizer development and synergistic application, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
Zeng J, Mu LL, Jin L, Ali Anjum A, Li GQ. RNAi of vacuolar-type H +-ATPase genes causes growth delay and molting defect in Henosepilachna vigintioctopunctata. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:705-714. [PMID: 34112278 DOI: 10.1017/s0007485321000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Henosepilachna vigintioctopunctata is one of the most serious insect pests to a large number of nightshades and cucurbits. RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) offers a reduced risk approach to control the beetle. Identification of amenable target genes and determination of appropriate life stage for dsRNA treatment are two critical steps in order to improve RNAi efficiency. In the present paper, we identified three vATPase genes, namely HvvATPaseC, HvvATPaseE and HvvATPaseH. We found that the three transcripts were widely expressed in the eggs, first- to fourth-instar larvae, prepupae, pupae and adults. They were abundantly transcribed in the hindgut and Malpighian tubules, in contrast to the epidermis and fat body. Three days' ingestion of dsvATPaseC, dsvATPaseE and dsvATPaseH by the fourth-instar larvae significantly decreased corresponding transcript level by 90.1, 88.9 and 97.2%, greatly reduced larval fresh weight by 28.0, 29.9 and 28.0%, and caused 66.7, 100 and 78.7% larval lethality respectively. Comparably, 3 days' exposure of the third-instar larvae to dsvATPaseC significantly reduced HvvATPaseC mRNA level by 89.5%, decreased approximately 80% of the larval fresh weight, and killed 100% of the treated larvae. Therefore, the three vATPase genes, especially HvvATPaseE, are potential amenable target genes and young larvae are more susceptible to dsRNA. Our findings will enable the development of the dsRNA-based pesticide to control H. vigintioctopunctata.
Collapse
Affiliation(s)
- Jie Zeng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Ahmad Ali Anjum
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
4
|
Rosenthal JS, Yuan Q. Constructing and Tuning Excitatory Cholinergic Synapses: The Multifaceted Functions of Nicotinic Acetylcholine Receptors in Drosophila Neural Development and Physiology. Front Cell Neurosci 2021; 15:720560. [PMID: 34650404 PMCID: PMC8505678 DOI: 10.3389/fncel.2021.720560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both in vitro and animal studies had helped clarify the basic molecular features of the members of the Drosophila nAchR gene family and illustrated their utility as targets for insecticides. Later, increasingly sophisticated techniques have illuminated how nAchRs mediate excitatory neurotransmission in the Drosophila brain and play an integral part in neural development and synaptic plasticity, as well as cognitive processes such as learning and memory. This review is intended to provide an updated survey of Drosophila nAchR subunits, focusing on their molecular diversity and unique contributions to physiology and plasticity of the fly neural circuitry. We will also highlight promising new avenues for nAchR research that will likely contribute to better understanding of central cholinergic neurotransmission in both Drosophila and other organisms.
Collapse
Affiliation(s)
- Justin S Rosenthal
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Chen J, Peng Y, Zhang H, Wang K, Tang Y, Gao J, Zhao C, Zhu G, Palli SR, Han Z. Transcript level is a key factor affecting RNAi efficiency. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104872. [PMID: 34119217 DOI: 10.1016/j.pestbp.2021.104872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Efficiency is the basis for the application of RNA interference (RNAi) technology. Actually, RNAi efficiency varies greatly among insect species, tissues and genes. Previous efforts have revealed the mechanisms for variation among insect species and tissues. Here, we investigated the reason for variable efficiency among the target genes in the same insect. First, we tested the genes sampled randomly from Tribolium castaneum, Locusta migratoria and Drosophila S2 cells for both their expression levels and sensitivity to RNAi. The results indicated that the genes with higher expression levels were more sensitive to RNAi. Statistical analysis showed that the correlation coefficients between transcript levels and knockdown efficiencies were 0.8036 (n = 90), 0.7255 (n = 18) and 0.9505 (n = 13), respectively in T. castaneum, L. migratoria and Drosophila S2 cells. Subsequently, ten genes with varied expression level in different tissues (midgut and carcass without midgut) of T. castaneum were tested. The results indicated that the higher knockdown efficiency was always obtained in the tissue where the target gene expressed higher. In addition, three genes were tested in different developmental stages, larvae and pupae of T. castaneum. The results found that when the expression level increased after insect pupation, these genes became more sensitive to RNAi. Thus, all the proofs support unanimously that transcript level is a key factor affecting RNAi sensitivity. This finding allows for a better understanding of the RNAi efficiency variation and lead to effective or efficient use of RNAi technology.
Collapse
Affiliation(s)
- Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingchuan Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangxu Wang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Yujie Tang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunqing Zhao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanheng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107,China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects / Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Zhou H, Guo F, Luo J, Zhang Y, Liu J, Zhang Y, Zheng X, Wan F, Ding W. Functional analysis of an upregulated calmodulin gene related to the acaricidal activity of curcumin against Tetranychus cinnabarinus (Boisduval). PEST MANAGEMENT SCIENCE 2021; 77:719-730. [PMID: 32865312 DOI: 10.1002/ps.6066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/01/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Curcumin is a promising botanical acaricidal compound with activity against Tetranychus cinnabarinus. Calmodulin (CaM) is a key calcium ion (Ca2+ ) sensor that plays a vital role in calcium signaling. Overexpression of the CaM gene with inducible character occurs in curcumin-treated mites, but its functional role remains to be further analyzed by RNA interference (RNAi) and protein expression. RESULTS A CaM gene was cloned from T. cinnabarinus (designated TcCaM). TcCaM was upregulated and the protein was activated in mites by curcumin. The susceptibility of mites to curcumin was decreased after inhibiting CaM function with anti-CaM drug trifluoperazine (TFP) and silencing CaM transcription with RNAi, suggesting that the CaM gene is involved in the acaricidal activity of curcumin against mites. Moreover, the TFP pre-treated Sf9 cells were resistant to curcumin-mediated increase in [Ca2+ ]i levels, indicating that CaM-mediated Ca2+ homeostasis was disturbed by curcumin. TcCaM was then re-engineered for heterologous expression in Escherichia coli. Strikingly, our results showed that the recombinant CaM protein was directly activated by curcumin via inducing its conformational changes, its half-maximal effective concentration (EC50 ) value is 0.3 μmol L-1 in vitro, which is similar to curcumin against CaM-expressing Sf9 cells (0.76 μmol L-1 ) in vivo. CONCLUSION These results confirm that the overexpressed CaM gene is involved in the acaricidal activity of curcumin, and the mode of action of curcumin may be via activating CaM function, and thereby disrupting Ca2+ homeostasis in T. cinnabarinus. This study highlights the novel target mechanism of new acaricides, promoting our understanding of the molecular mechanism of CaM-mediated acaricide targets in mites.
Collapse
Affiliation(s)
- Hong Zhou
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Fuyou Guo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Jinxiang Luo
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yongqiang Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Jinlin Liu
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Yanchun Zhang
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Xinyu Zheng
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Fenglin Wan
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, P. R. China
| |
Collapse
|
7
|
Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep 2018; 8:7320. [PMID: 29743510 PMCID: PMC5943259 DOI: 10.1038/s41598-018-25434-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Sclerotinia sclerotiorum, the causal agent of white stem rot, is responsible for significant losses in crop yields around the globe. While our understanding of S. sclerotiorum infection is becoming clearer, genetic control of the pathogen has been elusive and effective control of pathogen colonization using traditional broad-spectrum agro-chemical protocols are less effective than desired. In the current study, we developed species-specific RNA interference-based control treatments capable of reducing fungal infection. Development of a target identification pipeline using global RNA sequencing data for selection and application of double stranded RNA (dsRNA) molecules identified single gene targets of the fungus. Using this approach, we demonstrate the utility of this technology through foliar applications of dsRNAs to the leaf surface that significantly decreased fungal infection and S. sclerotiorum disease symptoms. Select target gene homologs were also tested in the closely related species, Botrytis cinerea, reducing lesion size and providing compelling evidence of the adaptability and flexibility of this technology in protecting plants against devastating fungal pathogens.
Collapse
|
8
|
Wei P, Che W, Wang J, Xiao D, Wang R, Luo C. RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:1-7. [PMID: 29482724 DOI: 10.1016/j.pestbp.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 06/08/2023]
Abstract
The Bemisia tabaci (Gennadius) cryptic species complex comprises very destructive insect pests of agricultural crops worldwide and has been found to be resistant to various insecticides in China. Abamectin is one of the most widely used insecticides for insect pest control and the glutamate-gated chloride channel (GluCl) in insects was presumed to be the main target site of abamectin. In this study, a 1353bp full-length cDNA encoding GluCl (named BtGluCl, GenBank ID: MF673854) was cloned and characterized from B. tabaci. BtGluCl encodes 450 amino acids, which shares 71-81% identity with other insect GluCl isoforms. Spatial and temporal expression revealed BtGluCl was highly expressed in the 4th nymphal instar and adult head, and the least expressed in the 1st nymphal instar and adult leg. Dietary ingestion of dsBtGluCl significantly reduced the mRNA level of BtGluCl in the treated adults by 62.9% and greatly decreased abamectin-induced mortality. Thus, our results could be conducive to further understanding the mechanisms of resistance to abamectin in arthropods.
Collapse
Affiliation(s)
- Peiling Wei
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Wunan Che
- Department of Pesticide Sciences, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinda Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
9
|
Kumar D, Gong C. Insect RNAi: Integrating a New Tool in the Crop Protection Toolkit. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121382 DOI: 10.1007/978-3-319-61343-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protecting crops against insect pests is a major focus area in crop protection. Over the past two decades, biotechnological interventions, especially Bt proteins, have been successfully implemented across the world and have had major impacts on reducing chemical pesticide applications. As insects continue to adapt to insecticides, both chemical and protein-based, new methods, molecules, and modes of action are necessary to provide sustainable solutions. RNA interference (RNAi) has emerged as a significant tool to knock down or alter gene expression profiles in a species-specific manner. In the past decade, there has been intense research on RNAi applications in crop protection. This chapter looks at the current state of knowledge in the field and outlines the methodology, delivery methods, and precautions required in designing targets. Assessing the targeting of specific gene expression is also an important part of a successful RNAi strategy. The current literature on the use of RNAi in major orders of insect pests is reviewed, along with a perspective on the regulatory aspects of the approach. Risk assessment of RNAi would focus on molecular characterization, food/feed risk assessment, and environmental risk assessment. As more RNAi-based products come through regulatory systems, either via direct application or plant expression based, the impact of this approach on crop protection will become clearer.
Collapse
Affiliation(s)
- Dhiraj Kumar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Chen X, Li F, Chen A, Ma K, Liang P, Liu Y, Song D, Gao X. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:1-8. [PMID: 28911734 DOI: 10.1016/j.pestbp.2016.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 05/27/2023]
Abstract
Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Fen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:487-501. [PMID: 28878489 PMCID: PMC5567704 DOI: 10.1007/s12298-017-0443-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.
Collapse
Affiliation(s)
- B. Mamta
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - M. V. Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
12
|
Xu Z, Wu Q, Xu Q, He L. From the Cover: Functional Analysis Reveals Glutamate and Gamma-Aminobutyric Acid-Gated Chloride Channels as Targets of Avermectins in the Carmine Spider Mite. Toxicol Sci 2016; 155:258-269. [DOI: 10.1093/toxsci/kfw210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Abd El Halim HM, Alshukri BMH, Ahmad MS, Nakasu EYT, Awwad MH, Salama EM, Gatehouse AMR, Edwards MG. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum. Sci Rep 2016; 6:29301. [PMID: 27411529 PMCID: PMC4944135 DOI: 10.1038/srep29301] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/24/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.
Collapse
Affiliation(s)
- Hesham M. Abd El Halim
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Entomology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Baida M. H. Alshukri
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Munawar S. Ahmad
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Department of Zoology, University of, Swabi, KPK, Pakistan
| | - Erich Y. T. Nakasu
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Mohammed H. Awwad
- Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Elham M. Salama
- Entomology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Angharad M. R. Gatehouse
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Martin G. Edwards
- Newcastle Institute for Research on Environment and Sustainability, School of Biology, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
14
|
Lim ZX, Robinson KE, Jain RG, Chandra GS, Asokan R, Asgari S, Mitter N. Diet-delivered RNAi in Helicoverpa armigera--Progresses and challenges. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:86-93. [PMID: 26549127 DOI: 10.1016/j.jinsphys.2015.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 05/03/2023]
Abstract
Helicoverpa armigera (the cotton bollworm) is a significant agricultural pest endemic to Afro-Eurasia and Oceania. Gene suppression via RNA interference (RNAi) presents a potential avenue for management of the pest, which is highly resistant to traditional insecticide sprays. This article reviews current understanding on the fate of ingested double-stranded RNA in H. armigera. Existing in vivo studies on diet-delivered RNAi and their effects are summarized and followed by a discussion on the factors and hurdles affecting the efficacy of diet-delivered RNAi in H. armigera.
Collapse
Affiliation(s)
- Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Karl E Robinson
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ritesh G Jain
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - G Sharath Chandra
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake Post, Bengaluru 560 089, India
| | - R Asokan
- Division of Biotechnology, Indian Institute of Horticultural Research (IIHR), Hesaraghatta Lake Post, Bengaluru 560 089, India
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
15
|
Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, Hediger M, Jones AK, Kasai S, Leichter CA, Li M, Meisel RP, Minx P, Murphy TD, Nelson DR, Reid WR, Rinkevich FD, Robertson HM, Sackton TB, Sattelle DB, Thibaud-Nissen F, Tomlinson C, van de Zande L, Walden KKO, Wilson RK, Liu N. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol 2015; 15:466. [PMID: 25315136 PMCID: PMC4195910 DOI: 10.1186/s13059-014-0466-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022] Open
Abstract
Background Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. Results We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. Conclusions This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0466-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim YH, Soumaila Issa M, Cooper AMW, Zhu KY. RNA interference: Applications and advances in insect toxicology and insect pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 120:109-17. [PMID: 25987228 DOI: 10.1016/j.pestbp.2015.01.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 05/27/2023]
Abstract
Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.
Collapse
Affiliation(s)
- Young Ho Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | | | - Anastasia M W Cooper
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA.
| |
Collapse
|
17
|
Ridgeway JA, Timm AE. Comparison of RNA isolation methods from insect larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2014; 14:268. [PMID: 25527580 PMCID: PMC5634029 DOI: 10.1093/jisesa/ieu130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 04/16/2014] [Indexed: 06/04/2023]
Abstract
Isolating RNA from insects is becoming increasingly important in molecular entomology. Four methods including three commercial kits RNeasy Mini Kit (Qiagen), SV Total RNA isolation system (Promega), TRIzol reagent (Invitrogen), and a cetyl trimethylammonium bromide (CTAB)-based method were compared regarding their ability to isolate RNA from whole-body larvae of Thaumatotibia leucotreta (Meyrick), Thanatophilus micans (F.), Plutella xylostella (L.), and Tenebrio molitor (L.). A difference was observed among the four methods regarding RNA quality but not quantity. However, RNA quality and quantity obtained was not dependent on the insect species. The CTAB-based method produced low-quality RNA and the Trizol reagent produced partially degraded RNA, whereas the RNeasy Mini Kit and SV Total RNA isolation system produced RNA of consistently high quality. However, after reverse transcription to cDNA, RNA produced using all four extraction methods could be used to successfully amplify a 708 bp fragment of the cytochrome oxidase I gene. Of the four methods, the SV Total RNA isolation system showed the least amount of DNA contamination with the highest RNA integrity number and is thus recommended for stringent applications where high-quality RNA is required. This is the first comparison of RNA isolation methods among different insect species and the first to compare RNA isolation methods in insects in the last 20 years.
Collapse
Affiliation(s)
- J A Ridgeway
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa
| | - A E Timm
- Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown 6139, South Africa
| |
Collapse
|
18
|
Scott JG, Michel K, Bartholomay L, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE. Towards the elements of successful insect RNAi. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1212-21. [PMID: 24041495 PMCID: PMC3870143 DOI: 10.1016/j.jinsphys.2013.08.014] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 05/09/2023]
Abstract
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.
Collapse
Affiliation(s)
- Jeffrey G. Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Kristin Michel
- Department of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Blair D. Siegfried
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA
| | | | - Guy Smagghe
- Department of Crop Protection, Ghent University, B-9000 Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Author for correspondence: , Tel. 1-607-255-8539
| |
Collapse
|
19
|
Zhu KY. RNA interference: a powerful tool in entomological research and a novel approach for insect pest management. INSECT SCIENCE 2013; 20:1-3. [PMID: 23955820 DOI: 10.1111/1744-7917.12006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| |
Collapse
|