1
|
Wu M, Sun D, Zhang T, Zhou C, Zhang B. Study on the Function of Conveying, Kneading Block and Reversing Elements on the Mixing Efficiency and Dispersion Effect inside the Barrel of an Extruder with Numerical Simulation. Foods 2023; 12:3503. [PMID: 37761212 PMCID: PMC10528309 DOI: 10.3390/foods12183503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In order to better understand the extrusion process mechanism of plant protein inside a barrel, the parameter changes and flow characteristics of fluids under conveying, kneading block and reversing elements were investigated with numerical simulation. The results showed that the shear rate increased obviously with the increase in pitch; the shear rate value of the reversing element was larger, while that of the kneading block was the opposite. The screw combinations of conveying, kneading blocks and reversing elements all have a certain degree of mixing effect on the particles, and the reduction in pitch can effectively increase the mixing effect of the particles. The conveying element can provide a relatively constant acceleration for the particles, due to the pumping capability and pressure buildup as the pitch increases. The kneading block and the reversing element can increase the leakage flow between the discs and backflow, resulting in an extension of the residence time distribution that facilitates fluid interaction in the barrel and improves the dispersion of the particles. The restraint by the reversing element on the particles is obviously weaker than that of the kneading block and shows a higher particle mixing degree. Overall, the influence of different elements on the flow condition, mixing degree and residence time is significantly different, which improves the process controllability and provides references for potential applications to meet multiple demands.
Collapse
Affiliation(s)
- Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, P.O. Box 50, Beijing 100083, China
| | | | | | | | | |
Collapse
|
2
|
Interaction of starch with some food macromolecules during the extrusion process and its effect on modulating physicochemical and digestible properties. A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
3
|
Abstract
Extrusion is a versatile process capable of producing a variety of new and novel foods and ingredients, thus increasing manufacturing opportunities. Further, it could provide nutritious, safe, sustainable, and affordable foods, especially directed at individualized consumer needs. In addition to past research efforts, more investigations should be conducted in order to refine, redesign, or develop new extrusion processing technologies. The present review highlights the current advances made in new and novel food product development by considering the extrusion process, the influencing parameters, and product characteristics and properties; the most promising extrusion processes that can be used in novel food product and ingredient development, such as extrusion cooking, hot-melt extrusion, reactive extrusion, and extrusion-based 3D printing; the possibilities of using various raw materials in relation to process and product development; and the needs for product development modeling along with extrusion process design and modeling. In correlation with extruded product development, topics that merit further investigation may include structure formation, plant and animal biopolymers functionalization, biopolymer reactions, process simulation, modeling and control, engineering and mechanical aspects of extruders, analysis of pre-processing treatments, as well as prototyping, risk analysis, safety, sensory and consumer acceptance.
Collapse
Affiliation(s)
- Andriana E Lazou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
4
|
Huang X, Liu H, Ma Y, Mai S, Li C. Effects of Extrusion on Starch Molecular Degradation, Order-Disorder Structural Transition and Digestibility-A Review. Foods 2022; 11:foods11162538. [PMID: 36010538 PMCID: PMC9407177 DOI: 10.3390/foods11162538] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Extrusion is a thermomechanical technology that has been widely used in the production of various starch-based foods and can transform raw materials into edible products with unique nutritional characteristics. Starch digestibility is a crucial nutritional factor that can largely determine the human postprandial glycemic response, and frequent consumption of foods with rapid starch digestibility is related to the occurrence of type 2 diabetes. The extrusion process involves starch degradation and order-disorder structural transition, which could result in large variance in starch digestibility in these foods depending on the raw material properties and processing conditions. It provides opportunities to modify starch digestibility by selecting a desirable combination of raw food materials and extrusion settings. This review firstly introduces the application of extrusion techniques in starch-based food production, while, more importantly, it discusses the effects of extrusion on the alteration of starch structures and consequentially starch digestibility in various foods. This review contains important information to generate a new generation of foods with slow starch digestibility by the extrusion technique.
Collapse
Affiliation(s)
- Xiaoyue Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yue Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shihua Mai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
5
|
Zhang Z, Zhang L, He S, Li X, Jin R, Liu Q, Chen S, Sun H. High-moisture Extrusion Technology Application in the Processing of Textured Plant Protein Meat Analogues: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zuoyong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Luji Zhang
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Risheng Jin
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | | | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
6
|
Panyoo AE, Emmambux MN. Effects of Screw Configuration, Screw Speed, and Stearic Acid Addition on the Functional Properties and Structural Characteristics of Maize Starch Extrudates. STARCH-STARKE 2019. [DOI: 10.1002/star.201800149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A. Emmanuel Panyoo
- Department of Food Science; University of Pretoria; Pretoria 0002 South Africa
| | | |
Collapse
|
7
|
|
8
|
Characterization of pore structure of rice grits extrudates using mercury intrusion porosimetry, nitrogen adsorption and water vapour desorption methods. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Influence of extrusion on expansion, functional and digestibility properties of whole sweetpotato flour. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zheng J, Rehmann L. Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 2014; 15:18967-84. [PMID: 25334065 PMCID: PMC4227255 DOI: 10.3390/ijms151018967] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/23/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022] Open
Abstract
Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada.
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada.
| |
Collapse
|
12
|
Celhay C, Mathieu CE, Candy L, Vilarem G, Rigal L. Aqueous extraction of polyphenols and antiradicals from wood by-products by a twin-screw extractor: Feasibility study. CR CHIM 2014. [DOI: 10.1016/j.crci.2014.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Nutritional Changes during Extrusion Cooking. ACTA ACUST UNITED AC 2012. [DOI: 10.1201/b11286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
14
|
Gamlath S. Impact of ripening stages of banana flour on the quality of extruded products. Int J Food Sci Technol 2008. [DOI: 10.1111/j.1365-2621.2007.01574.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Van Melkebeke B, Vervaet C, Remon JP. Validation of a continuous granulation process using a twin-screw extruder. Int J Pharm 2008; 356:224-30. [PMID: 18295990 DOI: 10.1016/j.ijpharm.2008.01.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 11/24/2022]
Abstract
Using twin-screw granulation as particle size enlargement technique, the effect of modifying the screw configuration (number of mixing zones, configuration of kneading block) on granule quality, tablet properties and mixing efficiency was investigated. The amount of oversized agglomerates and yield was significantly influenced by the presence of an extra conveying element at the screw end. Changing the staggering angle of the kneading block significantly affected yield and granule friability. The 90 degrees configuration resulted in a lower yield and granule friability. Disintegration time was the only tablet property significantly influenced by the screw configuration as disintegration was significantly faster when an extra conveying element was placed at the screw end. The influence of tracer addition method (wet vs. dry) on mixing efficiency inside the extruder barrel was investigated by means of different tracers: riboflavin (0.05%) suspended in the granulation liquid and hydrochlorothiazide (2.5%) added separately as powder. Mixing efficiency in function of time and granule size (above and below 1400 microm) was tested using riboflavine sodium phosphate (0.05%) dissolved in the granulation liquid. Since a good mixing efficiency was obtained independent of tracer addition method, tracer solubility, granulation time and granule size, continuous granulation using a twin-screw extruder was identified as a robust process.
Collapse
Affiliation(s)
- B Van Melkebeke
- Laboratory of Pharmaceutical Technology, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
16
|
|
17
|
Amalia Kartika I, Pontalier PY, Rigal L. Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects. BIORESOURCE TECHNOLOGY 2006; 97:2302-10. [PMID: 16337375 DOI: 10.1016/j.biortech.2005.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 07/21/2005] [Accepted: 10/25/2005] [Indexed: 05/05/2023]
Abstract
The objective of this study was to investigate the screw configuration allowing oil extraction from sunflower seeds with a twin-screw extruder. Experiments were conducted using a co-rotating twin-screw extruder. Five screw profiles were examined to define the best performance (oil extraction yield, specific mechanical energy and oil quality) by studying the influence of operating conditions, barrel temperature, screw speed and feed rate. Generally, the position and spacing between two reversed screw elements affected oil extraction yield. An increase of oil extraction yield was observed as the reversed screw elements were moved with increased spacing between two elements and with smaller pitch elements. In addition, oil extraction yield increased as barrel temperature, screw speed and feed rate were decreased. Highest oil extraction yield (85%) with best cake meal quality (residual oil content lower than 13%) was obtained under operating conditions of 120 degrees C, 75 rpm and 19 kg/h. Furthermore, the operating parameters influenced energy input. A decrease in barrel temperature and feed rate followed by an increase in screw speed increased energy input, particularly specific mechanical energy input. Effect of the operating parameters on oil quality was less important. In all experiments tested, the oil quality was very good. The acid value was below 2 mg of KOH/g of oil and total phosphorus content was low, below 100 mg/kg.
Collapse
Affiliation(s)
- I Amalia Kartika
- Department of Agroindustrial Technology FATETA-IPB, Darmaga Campus, Bogor, Indonesia
| | | | | |
Collapse
|
18
|
Choudhury GS, Gautam A. Screw Configuration Effects on Macroscopic Characteristics of Extradates Produced by Twin-screw Extrusion of Rice Flour. J Food Sci 1999. [DOI: 10.1111/j.1365-2621.1999.tb15067.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|