1
|
Çağlayan Arslan Z, Okan M, Külah H. Pre-enrichment-free detection of hepatocellular carcinoma-specific ctDNA via PDMS and MEMS-based microfluidic sensor. Mikrochim Acta 2024; 191:229. [PMID: 38565645 PMCID: PMC10987365 DOI: 10.1007/s00604-024-06315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The growing interest in microfluidic biosensors has led to improvements in the analytical performance of various sensing mechanisms. Although various sensors can be integrated with microfluidics, electrochemical ones have been most commonly employed due to their ease of miniaturization, integration ability, and low cost, making them an established point-of-care diagnostic method. This concept can be easily adapted to the detection of biomarkers specific to certain cancer types. Pathological profiling of hepatocellular carcinoma (HCC) is heterogeneous and rather complex, and biopsy samples contain limited information regarding the tumor and do not reflect its heterogeneity. Circulating tumor DNAs (ctDNAs), which can contain information regarding cancer characteristics, have been studied tremendously since liquid biopsy emerged as a new diagnostic method. Recent improvements in the accuracy and sensitivity of ctDNA determination also paved the way for genotyping of somatic genomic alterations. In this study, three-electrode (Au-Pt-Ag) glass chips were fabricated and combined with polydimethylsiloxane (PDMS) microchannels to establish an electrochemical microfluidic sensor for detecting c.747G > T hotspot mutations in the TP53 gene of ctDNAs from HCC. The preparation and analysis times of the constructed sensor were as short as 2 h in total, and a relatively high flow rate of 30 µl/min was used during immobilization and hybridization steps. To the best of our knowledge, this is the first time a PDMS-based microfluidic electrochemical sensor has been developed to target HCC ctDNAs. The system exhibited a limit of detection (LOD) of 24.1 fM within the tested range of 2-200 fM. The sensor demonstrated high specificity in tests conducted with fully noncomplementary and one-base mismatched target sequences. The developed platform is promising for detecting HCC-specific ctDNA at very low concentrations without requiring pre-enrichment steps.
Collapse
Affiliation(s)
- Zeynep Çağlayan Arslan
- Department of Electrical and Electronics Engineering, METU, Ankara, Turkey
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Meltem Okan
- Department of Micro and Nanotechnology, METU, Ankara, Turkey
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, METU, Ankara, Turkey.
- Department of Micro and Nanotechnology, METU, Ankara, Turkey.
- METU MEMS Research and Application Center, Ankara, Turkey.
| |
Collapse
|
2
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
3
|
Singh R, Dutt S, Sharma P, Sundramoorthy AK, Dubey A, Singh A, Arya S. Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200209. [PMID: 37020624 PMCID: PMC10069304 DOI: 10.1002/gch2.202200209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Over the course of the last several decades, nanotechnology has garnered a growing amount of attention as a potentially valuable technology that has significantly impacted the food industry. Nanotechnology helps in enhancing the properties of materials and structures that are used in various fields such as agriculture, food, pharmacy, and so on. Applications of nanotechnology in the food market have included the encapsulation and distribution of materials to specific locations, the improvement of flavor, the introduction of antibacterial nanoparticles into food, the betterment of prolonged storage, the detection of pollutants, enhanced storage facilities, locating, identifying, as well as consumer awareness. Labeling food goods with nano barcodes helps ensure their security and may also be used to track their distribution. This review article presents a discussion about current advances in nanotechnology along with its applications in the field of food-tech, food packaging, food security, enhancing life of food products, etc. A detailed description is provided about various synthesis routes of nanomaterials, that is, chemical, physical, and biological methods. Nanotechnology is a rapidly improving the field of food packaging and the future holds great opportunities for more enhancement via the development of new nanomaterials and nanosensors.
Collapse
Affiliation(s)
- Rajesh Singh
- Food Craft InstituteDepartment of Skill DevelopmentNagrotaJammuJammu and Kashmir181221India
| | - Shradha Dutt
- School of SciencesCluster University of JammuJammuJammu and Kashmir180001India
| | - Priyanka Sharma
- School of Hospitality and Tourism ManagementUniversity of JammuJammuJammu and Kashmir180006India
| | - Ashok K. Sundramoorthy
- Centre for Nano‐BiosensorsDepartment of ProsthodonticsSaveetha Dental College and HospitalsSaveetha Institute of Medical and Technical SciencesChennaiTamil Nadu600077India
| | - Aman Dubey
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Anoop Singh
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| | - Sandeep Arya
- Department of PhysicsUniversity of JammuJammuJammu and Kashmir180006India
| |
Collapse
|
4
|
Microfluidic-based blood immunoassays. J Pharm Biomed Anal 2023; 228:115313. [PMID: 36868029 DOI: 10.1016/j.jpba.2023.115313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023]
Abstract
Microfluidics enables the integration of whole protocols performed in a laboratory, including sample loading, reaction, extraction, and measurement steps on a single system, which offers significant advantages thanks to small-scale operation combined with precise fluid control. These include providing efficient transportation mechanisms and immobilization, reduced sample and reagent volumes, fast analysis and response times, lower power requirements, lower cost and disposability, improved portability and sensitivity, and greater integration and automation capability. Immunoassay is a specific bioanalytical method based on the interaction of antigens and antibodies, which is utilized to detect bacteria, viruses, proteins, and small molecules in several areas such as biopharmaceutical analysis, environmental analysis, food safety, and clinical diagnostics. Because of the advantages of both techniques, the combination of immunoassays and microfluidic technology is considered one of the most potential biosensor systems for blood samples. This review presents the current progress and important developments in microfluidic-based blood immunoassays. After providing several basic information about blood analysis, immunoassays, and microfluidics, the review points out in-depth information about microfluidic platforms, detection techniques, and commercial microfluidic blood immunoassay platforms. In conclusion, some thoughts and future perspectives are provided.
Collapse
|
5
|
Biswas P, Polash SA, Dey D, Kaium MA, Mahmud AR, Yasmin F, Baral SK, Islam MA, Rahaman TI, Abdullah A, Ema TI, Khan DA, Bibi S, Chopra H, Kamel M, Najda A, Fouda MMA, Rehan UM, Mheidat M, Alsaidalani R, Abdel-Daim MM, Hasan MN. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed Pharmacother 2023; 158:114172. [PMID: 36916399 DOI: 10.1016/j.biopha.2022.114172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanotechnology encompasses a wide range of devices derived from biology, engineering, chemistry, and physics, and this scientific field is composed of great collaboration among researchers from several fields. It has diverse implications notably smart sensing technologies, effective disease diagnosis, and sometimes used in treatment. In medical science, the implications of nanotechnology include the development of elements and devices that interact with the body at subcellular (i.e., molecular) levels exhibiting high sensitivity and specificity. There is a plethora of new chances for medical science and disease treatment to be discovered and exploited in the rapidly developing field of nanotechnology. In different sectors, nanomaterials are used just because of their special characteristics. Their large surface area of them enables higher reactivity with greater efficiency. Furthermore, special surface chemistry is displayed by nanomaterials which compare to conventional materials and facilitate the nanomaterials to decrease pollutants efficiently. Recently, nanomaterials are used in some countries to reduce the levels of contaminants in water, air, and soil. Moreover, nanomaterials are used in the cosmetics and medical industry, and it develops the drug discovery (DD) system. Among a huge number of nanomaterials, Cu, Ag, TiO2, ZnO, Fe3O4, and carbon nanotubes (CNTs) are extensively used in different industries for various purposes. This extensive review study has introduced the major scientific and technical features of nanotechnology, as well as some possible clinical applications and positive feedback in environmental waste management and drug delivery systems.
Collapse
Affiliation(s)
- Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Abu Kaium
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Tangail 1902, Bangladesh
| | - Farhana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumit Kumar Baral
- Microbiology department, Jagannath University, Dhaka 1100, Bangladesh
| | - Md Aminul Islam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asif Abdullah
- Department of Biomedical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanzila Ismail Ema
- North South University, Department of Biochemistry and Microbiology, Dhaka 1229, Bangladesh
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50 A Doświadczalna Street, 20-280 Lublin, Poland; Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - UmmeSalma M Rehan
- Department of Surgery, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mayyadah Mheidat
- Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Rawidh Alsaidalani
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
6
|
Sargazi S, Mukhtar M, Rahdar A, Bilal M, Barani M, Díez-Pascual AM, Behzadmehr R, Pandey S. Opportunities and challenges of using high-sensitivity nanobiosensors to detect long noncoding RNAs: A preliminary review. Int J Biol Macromol 2022; 205:304-315. [PMID: 35182562 DOI: 10.1016/j.ijbiomac.2022.02.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
The two types ofncRNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are responsible for several biological processes within cells, such as the immune responses, cell growth and invasion, and regulation of the cell cycle. Rapidly expanding class of ncRNAs, lncRNAsinteract with other molecules to form chromatin-remodeling complexes. These potential hallmarks of diseases contribute to transcriptional and post-transcriptional regulation of several genes, possibly via cross-talk with other RNAs. Aberrant expression of lncRNAshas drawn increasing attention to the pathophysiology of different diseases, includingcancer and cardiovasculardiseases. Unfortunately, circulating lncRNAs are presented in the bloodstream at very low levels, making sensitive detection difficult. Currently, there are few methods for detecting these ncRNAs from which quantitative real-time-polymerase chain reaction (qRT-PCR) is the most routinely used technique. These techniqueslack sensitivity for intracellular detection of lncRNAs. Moreover, they are tedious and require a large sample size. Currently, nanotechnology has taken over the diagnostic field because of the tunable properties and modification opportunities. Furthermore, these conventional techniques can be merged with nanotechnology to improve detection sensitivity.This review highlights some of the most recent findings on nanotechnology-based methods and possible obstacles intheir application for moreaccurate sensing of lncRNAs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvösutca 6, Szeged 6720, Hungary
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615 Zabol, Iran.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| | - Razieh Behzadmehr
- Department of Radiology, Zabol university of medical sciences, Zabol, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
7
|
|
8
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
9
|
Simulation of an electrically actuated cantilever as a novel biosensor. Sci Rep 2020; 10:3385. [PMID: 32099010 PMCID: PMC7042266 DOI: 10.1038/s41598-020-60296-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, detecting biological particles by analyzing their mechanical properties has attracted increasing attention. To detect and identify different bioparticles and estimate their dimensions, a mechanical nanosensor is introduced in this paper. To attract particles, numerous parts of the substrate are coated with different chemicals as probe detectors or receptors. The principal of cell recognition in this sensor is based on applying an electrical excitation and measuring the maximum deflection of the actuated cantilever electrode. Investigating the critical voltage that causes pull-in instability is also important in such highly-sensitive detectors. The governing equation of motion is derived from Hamilton’s principle. A Galerkin approximation is applied to discretize the nonlinear equation, which is solved numerically. Accuracy of the proposed model is validated by comparison studies with available experimental and theoretical data. The coupled effects of geometrical and mechanical properties are included in this model and studied in detail. Moreover, system identification is carried out to distinguish bioparticles by a stability analysis. Due to the absence of a similar concept and device, this research is expected to advance the state-of-the-art biosystems in identifying particles.
Collapse
|
10
|
Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02370-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Abstract
The current chapter summaries the world of Microbiology and boom of Nanotechnology and how both the exciting fields come together to help men kind with various new applications in water, food, medical biology and immunology. Furthermore synthesis of nano materials utilising the potential of microorganisms also opens a newer avenue for 'green' synthesis.
Collapse
Affiliation(s)
- Andrew S Ball
- School of Science, College of Science Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Sayali Patil
- Department of Environmental Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sarvesh Soni
- School of Science, College of Science Engineering and Health, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Mandal N, Bhattacharjee M, Chattopadhyay A, Bandyopadhyay D. Point-of-care-testing of α-amylase activity in human blood serum. Biosens Bioelectron 2019; 124-125:75-81. [DOI: 10.1016/j.bios.2018.09.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
|
13
|
Ma L, Le P, Kohli M, Smith AM. Nanomedicine in Cancer. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK. Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Anal 2018; 26:1201-1214. [PMID: 30249319 PMCID: PMC9298566 DOI: 10.1016/j.jfda.2018.06.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The rapid development of nanotechnology has transformed many domains of food science, especially those that involve the processing, packaging, storage, transportation, functionality, and other safety aspects of food. A wide range of nanostructured materials (NSMs), from inorganic metal, metal oxides, and their nanocomposites to nano-organic materials with bioactive agents, has been applied to the food industry. Despite the huge benefits nanotechnology has to offer, there are emerging concerns regarding the use of nanotechnology, as the accumulation of NSMs in human bodies and in the environment can cause several health and safety hazards. Therefore, safety and health concerns as well as regulatory policies must be considered while manufacturing, processing, intelligently and actively packaging, and consuming nano-processed food products. This review aims to provide a basic understanding regarding the applications of nanotechnology in the food packaging and processing industries and to identify the future prospects and potential risks associated with the use of NSMs.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea
| | - Dipendra Kumar Mahato
- Department of Agriculture and Food Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Pranjal Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, South Korea.
| |
Collapse
|
15
|
Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: current uses and future applications in the food industry. 3 Biotech 2018; 8:74. [PMID: 29354385 DOI: 10.1007/s13205-018-1104-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022] Open
Abstract
Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.
Collapse
|
16
|
Dasgupta N, Ranjan S. Nanotechnology in Food Packaging. AN INTRODUCTION TO FOOD GRADE NANOEMULSIONS 2018. [DOI: 10.1007/978-981-10-6986-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
El-Nour KMA, Salam ETA, Soliman HM, Orabi AS. Gold Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of Biogenic Amines. NANOSCALE RESEARCH LETTERS 2017; 12:231. [PMID: 28359140 PMCID: PMC5371533 DOI: 10.1186/s11671-017-2014-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 05/19/2023]
Abstract
A new optical sensor was developed for rapid screening with high sensitivity for the existence of biogenic amines (BAs) in poultry meat samples. Gold nanoparticles (GNPs) with particle size 11-19 nm function as a fast and sensitive biosensor for detection of histamine resulting from bacterial decarboxylation of histidine as a spoilage marker for stored poultry meat. Upon reaction with histamine, the red color of the GNPs converted into deep blue. The appearance of blue color favorably coincides with the concentration of BAs that can induce symptoms of poisoning. This biosensor enables a semi-quantitative detection of analyte in real samples by eye-vision. Quality evaluation is carried out by measuring histamine and histidine using different analytical techniques such as UV-vis, FTIR, and fluorescence spectroscopy as well as TEM. A rapid quantitative readout of samples by UV-vis and fluorescence methods with standard instrumentation were proposed in a short time unlike chromatographic and electrophoretic methods. Sensitivity and limit of detection (LOD) of 6.59 × 10-4 and 0.6 μM, respectively, are determined for histamine as a spoilage marker with a correlation coefficient (R 2) of 0.993.
Collapse
Affiliation(s)
- K. M. A. El-Nour
- Present Address: Department of Chemistry, College of Liberal Arts and Science, University of Florida, Gainesville, FL 32611-7200 USA
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| | - E. T. A. Salam
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| | - H. M. Soliman
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| | - A. S. Orabi
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522 Egypt
| |
Collapse
|
18
|
He H, Tao G, Wang Y, Cai R, Guo P, Chen L, Zuo H, Zhao P, Xia Q. In situ green synthesis and characterization of sericin-silver nanoparticle composite with effective antibacterial activity and good biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:509-516. [PMID: 28866194 DOI: 10.1016/j.msec.2017.06.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/24/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
Silver nanoparticle has been widely applied to a variety of fields for its outstanding antimicrobial activity. However, the stability of silver nanoparticle limits its application under certain conditions. Thus, improving the stability of silver nanoparticle via biosynthesis is a promising shortcut to expand its application. Sericin from silkworm cocoon has good hydrophilicity, reaction activity, biocompatibility and biodegradability. In this study, we developed a novel, simple, one-step biosynthesis method to prepare sericin-silver nanoparticle composite in situ in solution. Sericin served as the reductant of silver ion, the dispersant and stabilizer of the prepared sericin-silver nanoparticle composite. Natural light was the only power source used to catalyze the synthesis of silver nanoparticle in situ in solution. The novel sericin-silver nanoparticle composite was characterized by ultraviolet-visible and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy. The results showed silver nanoparticle could be synthesized through the reduction of AgNO3 by the phenolic hydroxyl group of tyrosine residues of sericin under the catalysis of natural light. The synthesized silver nanoparticle had good crystalline, size distribution and long-term stability at room temperature. Light irradiation was essential for the preparation of sericin-silver nanoparticle composite. The antibacterial activity assay showed 25mg/L and 100mg/L were the minimum concentrations of sericin-silver nanoparticle composite required to inhibit the growth of Staphylococcus aureus and kill this bacterium, respectively. The cytotoxicity assay showed cell viability and cell growth were almost not affected by sericin-silver nanoparticle composite under the concentration of 25mg/L. Our study suggested the preparation of sericin-silver nanoparticle composite was environmentally friendly and energy conservation, and the prepared sericin-silver nanoparticle composite had long-term stability, effective antibacterial activity and good biocompatibility. This novel sericin-silver nanoparticle composite has shown great potentials for biomedical application such as antibacterial agent and wound care.
Collapse
Affiliation(s)
- Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| | - Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Rui Cai
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Liqun Chen
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
19
|
Bueno J. Fungal Bionanotechnology, When Knowledge Merge into a New Discipline to Combat Antimicrobial Resistance. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Tripathi D, Yadav A, Bég OA. Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: Mathematical modeling. Math Biosci 2017; 283:155-168. [DOI: 10.1016/j.mbs.2016.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/13/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
|
21
|
Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365672. [PMID: 26613082 PMCID: PMC4646997 DOI: 10.1155/2015/365672] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/30/2015] [Indexed: 12/29/2022]
Abstract
Nanotechnology has proven its competence in almost all possible fields we are aware of. However, today nanotechnology has evolved in true sense by contributing to a very large extent to the food industry. With the growing number of mouths to feed, production of food is not adequate. It has to be preserved in order to reach to the masses on a global scale. Nanotechnology made the idea a reality by increasing the shelf life of different kinds of food materials. It is not an entirely full-proof measure; however it has brought down the extent of wastage of food due to microbial infestation. Not only fresh food but also healthier food is being designed with the help of nano-delivery systems which act as a carrier for the food supplements. There are regulations to follow however as several of them pose serious threats to the wellbeing of the population. In coming days, newer modes of safeguarding food are going to be developed with the help of nanotechnology. In this paper, an overview has been given of the different methods of food processing, packaging, and preservation techniques and the role nanotechnology plays in the food processing, packaging, and preservation industry.
Collapse
Affiliation(s)
- Neha Pradhan
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Surjit Singh
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Nupur Ojha
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Anamika Shrivastava
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Anil Barla
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Vivek Rai
- Institute of Life Sciences (An Autonomous Institute of the Department of Biotechnology), Nalco Square, Bhubaneswar, Odisha 751 023, India
| | - Sutapa Bose
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| |
Collapse
|
22
|
Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays. BIOMED RESEARCH INTERNATIONAL 2015; 2015:182107. [PMID: 26436087 PMCID: PMC4576000 DOI: 10.1155/2015/182107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes.
Collapse
|
23
|
Farhoodi M. Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9114-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Characterization of Plant Growth-Promoting Rhizobacteria (PGPR): A Perspective of Conventional Versus Recent Techniques. SOIL BIOLOGY 2015. [DOI: 10.1007/978-3-319-14526-6_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA. Plant pathogen nanodiagnostic techniques: forthcoming changes? BIOTECHNOL BIOTEC EQ 2014; 28:775-785. [PMID: 26740775 PMCID: PMC4684063 DOI: 10.1080/13102818.2014.960739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/09/2014] [Indexed: 01/17/2023] Open
Abstract
Plant diseases are among the major factors limiting crop productivity. A first step towards managing a plant disease under greenhouse and field conditions is to correctly identify the pathogen. Current technologies, such as quantitative polymerase chain reaction (Q-PCR), require a relatively large amount of target tissue and rely on multiple assays to accurately identify distinct plant pathogens. The common disadvantage of the traditional diagnostic methods is that they are time consuming and lack high sensitivity. Consequently, developing low-cost methods to improve the accuracy and rapidity of plant pathogens diagnosis is needed. Nanotechnology, nano particles and quantum dots (QDs) have emerged as essential tools for fast detection of a particular biological marker with extreme accuracy. Biosensor, QDs, nanostructured platforms, nanoimaging and nanopore DNA sequencing tools have the potential to raise sensitivity, specificity and speed of the pathogen detection, facilitate high-throughput analysis, and to be used for high-quality monitoring and crop protection. Furthermore, nanodiagnostic kit equipment can easily and quickly detect potential serious plant pathogens, allowing experts to help farmers in the prevention of epidemic diseases. The current review deals with the application of nanotechnology for quicker, more cost-effective and precise diagnostic procedures of plant diseases. Such an accurate technology may help to design a proper integrated disease management system which may modify crop environments to adversely affect crop pathogens.
Collapse
Affiliation(s)
- Mohammad A Khiyami
- King Abdulaziz City for Science and Technology (KACST) , Riyadh , Saudi Arabia
| | - Hassan Almoammar
- King Abdulaziz City for Science and Technology (KACST) , Riyadh , Saudi Arabia
| | - Yasser M Awad
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University , Ismailia , Egypt
| | - Mousa A Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University , Alquwayiyah , Saudi Arabia
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt; Unit of Excellence in Nano-Molecular Plant Pathology Research (ARC), Giza, Egypt
| |
Collapse
|
26
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
27
|
Kalpana Sastry R, Anshul S, Rao NH. Nanotechnology in food processing sector-An assessment of emerging trends. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2013; 50:831-41. [PMID: 24425990 PMCID: PMC3722391 DOI: 10.1007/s13197-012-0873-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2012] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
Abstract
Use of nanoscience based technology in the food industry is fast emerging as new area for research and development. Several research groups including private companies in the industry have initiated research programmes for exploring the wide scope of nanotechnology into the value chain of food processing and manufacturing. This paper discusses the current focus of research in this area and assesses its potential impacts. Using the developed relational database framework with R&D indicators like literature and patent documents for assessment of the potential of nanotechnology in food sector, a model to organize and map nanoresearch areas to the food processing sector was developed. The study indicates that the about five basic categories of nanotechnology applications and functionalities currently in the development of food sector, include food processing, packaging, nutraceuticals delivery, food safety and functional foods.
Collapse
Affiliation(s)
- R. Kalpana Sastry
- RSM Division, National Academy of Agricultural Research Management, Rajendranagar, Hyderabad, 500 030 India
| | - Shrivastava Anshul
- RSM Division, National Academy of Agricultural Research Management, Rajendranagar, Hyderabad, 500 030 India
| | - N. H. Rao
- RSM Division, National Academy of Agricultural Research Management, Rajendranagar, Hyderabad, 500 030 India
| |
Collapse
|
28
|
Sen M, Ino K, Shiku H, Matsue T. Accumulation and detection of secreted proteins from single cells for reporter gene assays using a local redox cycling-based electrochemical (LRC-EC) chip device. LAB ON A CHIP 2012; 12:4328-4335. [PMID: 22941152 DOI: 10.1039/c2lc40674h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A lab-on-a-chip device is described for the electrochemical detection of alkaline phosphatase (ALP) secreted by transformed single HeLa cells. Detection on the chip device is based on local redox cycling at 256 individually addressable sensor points. Ring-disk electrodes (generator/collector) are arranged at individual sensor points to amplify the signal due to redox-cycling with only 32 connector pads. The surface of each sensor point is modified with antibodies for secreted alkaline phosphatase (SEAP) immobilization, which facilitates separation and detection of SEAP. Separation of SEAP from HeLa cells enables elimination of endogenous ALP and prevents HeLa cells from damage due to exposure to high level pH used during electrochemical detection. The large number of sensor points enables the simultaneous analysis of a large amount of single cells using the chip. The system is useful for gene reporter assays and for the detection of several types of secreted proteins.
Collapse
Affiliation(s)
- Mustafa Sen
- Graduate School for Environmental Studies, Tohoku University, 6-6-11, Aramaki, Aoba, Sendai 980-8579, Japan
| | | | | | | |
Collapse
|
29
|
Pereira de Abreu DA, Cruz JM, Paseiro Losada P. Active and Intelligent Packaging for the Food Industry. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.595022] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Abstract
The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips.
Collapse
Affiliation(s)
- Tal Elad
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
31
|
Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 2010; 8:511-22. [DOI: 10.1038/nrmicro2392] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Ravichandran R. Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/19430871003684440] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Elad T, Lee JH, Gu MB, Belkin S. Microbial cell arrays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 117:85-108. [PMID: 20625955 DOI: 10.1007/10_2009_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The coming of age of whole-cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines - the whole cell array. In the present chapter, we highlight the state-of-the-art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals, and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high-performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis, and - most importantly - enhanced long term maintenance of viability and activity on the fabricated biochips.
Collapse
Affiliation(s)
- Tal Elad
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | |
Collapse
|
34
|
Nanotechnology and its applications in the food sector. Trends Biotechnol 2009; 27:82-9. [DOI: 10.1016/j.tibtech.2008.10.010] [Citation(s) in RCA: 564] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/14/2008] [Accepted: 10/20/2008] [Indexed: 11/18/2022]
|
35
|
Augustin MA, Sanguansri P. Nanostructured materials in the food industry. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 58:183-213. [PMID: 19878860 DOI: 10.1016/s1043-4526(09)58005-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology involves the application, production, and processing of materials at the nanometer scale. Biological- and physical-inspired approaches, using both conventional and innovative food processing technologies to manipulate matter at this scale, provide the food industry with materials with new functionalities. Understanding the assembly behavior of native and modified food components is essential in developing nanostructured materials. Functionalized nanostructured materials are finding applications in many sectors of the food industry, including novel nanosensors, new packaging materials with improved mechanical and barrier properties, and efficient and targeted nutrient delivery systems. An improved understanding of the benefits and the risks of the technology based on sound scientific data will help gain the acceptance of nanotechnology by the food industry. New horizons for nanotechnology in food science may be achieved by further research on nanoscale structures and methods to control interactions between single molecules.
Collapse
Affiliation(s)
- Mary Ann Augustin
- CSIRO Preventative Health National Flagship, Adelaide, South Australia 5000, Australia
| | | |
Collapse
|
36
|
Weigl B, Domingo G, Labarre P, Gerlach J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. LAB ON A CHIP 2008; 8:1999-2014. [PMID: 19023463 PMCID: PMC2776042 DOI: 10.1039/b811314a] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements--including mixers, separators, and detectors--as well as complete microfluidic devices that function entirely without any moving parts and external power sources.
Collapse
Affiliation(s)
- Bernhard Weigl
- Diagnostic Development Group, PATH, 1455 NW Leary Way, Seattle, WA 98107, USA.
| | | | | | | |
Collapse
|
37
|
Chung AJ, Kim D, Erickson D. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. LAB ON A CHIP 2008; 8:330-8. [PMID: 18231674 DOI: 10.1039/b713325a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, a low power and robust electroactive microwell-based implantable drug delivery system, intended for use with autonomous microsystems, is presented. The device comprises of an upper silicon based structure in which the drug storage sites are defined and a lower electrically functionalized PDMS (polydimethylsiloxane) backing. The drug ejection mechanism developed here exploits localized electrokinetic effects to control both the release time and release rate of chemicals stored in independent well sites. It is shown how this can reduce the dosage time from hours to seconds over previous diffusion based approaches, using as little as 20 mJ of energy per dose. This paper focuses on presenting the design and characterizing the electrokinetic transport mechanics which govern the release time and dispersal pattern of the well contents using a series of experimental and numerical techniques.
Collapse
Affiliation(s)
- Aram J Chung
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|