1
|
Li J, Jiang Q, Jiang J, Jiang R. Mode of cell death in the penile cavernous tissue of type 1 diabetes mellitus rats. J Sex Med 2024; 21:652-662. [PMID: 38972660 DOI: 10.1093/jsxmed/qdae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Diabetes mellitus commonly causes endothelial cell and smooth muscle cell death in penile cavernous tissue. AIM The study sought to study the mode of cell death in the penile cavernous tissue in type 1 diabetic rats. METHODS A total of 36 Sprague Dawley rats 10 weeks of age were randomly divided into 2 groups: a normoglycemic group and type 1 diabetic group (intraperitoneal injection of Streptozotocin (STZ), 60 mg/kg). We randomly selected 6 rats from each group for tests at the end of 11, 14, and 18 weeks of age, respectively. All rats were able to eat and drink freely. The ratio of maximum intracavernous pressure to mean arterial pressure, concentration of serum testosterone, level of nitric oxide in the penile cavernosum, and expression of active caspase-1 (pyroptosis) and active caspase-3 (apoptosis) were determined. OUTCOMES At the end of weeks 4 and 8 of type 1 diabetes, the proportions of endothelial cells and smooth muscle cells undergoing apoptosis and pyroptosis in penile cavernous tissue are different. RESULTS The ratio of maximum intracavernous pressure to mean arterial pressure and nitric oxide levels were significantly lower in the 4- and 8-week diabetic groups than in the normoglycemic group (P < .01). Penile endothelial cell pyroptosis (5.67 ± 0.81%), smooth muscle cell apoptosis (23.72 ± 0.48%), total cell pyroptosis (9.67 ± 0.73%), and total apoptosis (10.52 ± 1.45%) were significantly greater in the 4-week diabetic group than in the normoglycemic group (P < .01). The proportion of endothelial cell pyroptosis (24.4 ± 3.69%), endothelial cell apoptosis (22.13 ± 2.43%), total cell pyroptosis (14.75 ± 0.93%), and total apoptosis (14.82 ± 1.08%) in the penile tissues of the 8-week diabetic group were significantly greater than those in the normoglycemic group (P < .01).The 8-week survival proportions of diabetic endothelial cells (38.86 ± 8.85%) and smooth muscle cells (44.46 ± 2.94%) was significantly lower than the 4-week survival proportions of endothelial cells (93.17 ± 8.07%) and smooth muscle cells (75.12 ± 4.76%) (P < .05). CLINICAL TRANSLATION Inhibition of cell death by different methods at different stages may be the key to the treatment of type 1 diabetes-induced erectile dysfunction. STRENGTHS AND LIMITATIONS The effect of type 1 diabetes on other types of cell death in penile cavernous tissue needs further study. CONCLUSION The mode of death of endothelial cells in the cavernous tissue of the penis in the early stage in diabetic rats is dominated by pyroptosis, and the death of smooth muscle cells is dominated by apoptosis. Endothelial cell and smooth muscle cell death are not consistent at different stages of diabetes progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Urology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qilan Jiang
- Department of Clinical Nutrition, Affiliated Hospital, Southwest medical University, Luzhou, Sichuan 646000, China
| | - Jun Jiang
- Department of Thyroid Surgery, Affiliated Hospital, Southwest medical University, Taiping Road, Luzhou, Sichuan 646000, China
| | - Rui Jiang
- Department of Urology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
2
|
ER-/PR+ breast cancer is controlled more effectively with an inflammatory inhibitor than hormonal inhibitor. Breast Cancer 2023; 30:436-452. [PMID: 36859733 DOI: 10.1007/s12282-023-01437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND The anti-estrogen tamoxifen is a highly effective hormonal therapy for hormonal-positive (HR+) breast cancer patients; however, the estrogen receptor-negative, progesterone receptor-positive (ER-/PR+) subtype does not give the benefits of tamoxifen. Therefore ER-/PR+ breast cancer has a poor clinical outcome, and novel drug therapy for ER-/PR+ breast cancer could benefit these patients. METHODS 53,805 gene expressions were characterized into HR+ BC and triple-negative breast cancer (TNBC) and analyzed through Breast Cancer Gene Expression Miner in 4319 breast cancer patient samples. The clinical outcomes including overall survival, distant metastasis-free survival, and relapse-free survival were obtained from the PrognoScan database containing 1190 human breast cancer patient samples. To determine the function of ERα and inflammation-related genes such as USP1, CDC20, and CASP1, we used the CRISPR-Cas9 system or gene knockdown (KD) system. To check tumor cell proliferation and migration of ERα KO breast cancer cell line, we used tamoxifen and the inflammation inhibitor Ac-YVAD-CHO. For further confirmation, cancer growth was checked with the inflammation inhibitor in ERα KO breast cancer cell line using a three-dimensional (3D) organoid tissue culture system (ex vivo). RESULTS We found that gene expression in ER-/PR+ hormonal-positive breast cancer is positively related to ER-/PR- very similar to TNBC, not other HR+ breast cancer using a 4319 breast cancer patient database. Especially, inflammation-related genes, USP1, CDC20, and CASP1, which are highly expressed in TNBC, are also upregulated in ER-/PR+ HR+ breast cancer. Suppression of USP1, CDC20, and CASP1 inhibited tumor cell growth and metastasis in ERα KO (ER-/PR +) cell lines. Interestingly, loss of ERα in HR+ cell lines is not responsive to tamoxifen, but highly sensitive to the inflammation inhibitor, Ac-YVAD-CHO. In in vitro and ex vivo (3D organoid) models, inflammation inhibitor-specific blocks ER-/PR+ tumor proliferation and migration. CONCLUSIONS These findings suggest that an inflammation inhibitor might be a potential option for therapy for ER-/PR+ HR breast cancer patients.
Collapse
|
3
|
Zhang W, Li Z, Yang H, Wang G, Liu G, Wang Y, Bello BK, Zhao P, Liang W, Dong J. Aeromonas sobria Induces Proinflammatory Cytokines Production in Mouse Macrophages via Activating NLRP3 Inflammasome Signaling Pathways. Front Cell Infect Microbiol 2021; 11:691445. [PMID: 34513725 PMCID: PMC8428973 DOI: 10.3389/fcimb.2021.691445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/03/2021] [Indexed: 12/25/2022] Open
Abstract
Aeromonas sobria, a common conditional pathogenic bacteria, is widely distributed in the environment and causes gastroenteritis in humans or septicemia in fish. Of all Aeromonas species, A. sobria is the most frequently isolated from human infections especially in immunocompromised subjects. Innate immunity is the first protection system of organism to resist non-specific pathogens invasion; however, the immune response process of hosts against A. sobria infection re\mains unexplored. The present study established an A. sobria infection model using primary mouse peritoneal macrophages (PMφs). The adherence and cytotoxicity of A. sobria on PMφs were determined by May-Grünwald Giemsa staining and LDH release measurement. Pro-inflammatory cytokine expression levels were measured using qPCR, western blotting, and ELISA methods. We also investigated the levels of ASC oligomerization and determined the roles of active caspase-1 in IL-1β secretion through inhibition assays and explored the activated pattern recognition receptors through immunofluorescence. We further elucidated the roles of activated inflammasome in regulating the host's inflammatory response through inhibition combined with ELISA assays. Our results showed that A. sobria induced lytic cell death and LDH release, whereas it had no adhesive properties on PMφs. A. sobria triggered various proinflammatory cytokine transcription level upregulation, and IL-1β occupied the highest levels. The pro-IL-1β protein expression levels increased in a dose-dependent manner with MOI ranging from 1 to 100. This process was regulated by ASC-dependent inflammasome, which cleavage pro-IL-1β into active IL-1β p17 with activated caspase-1 p20. Meanwhile, the expression levels of NLRP3 receptor significantly increased, location analysis revealed puncta-like surrounding nuclear, and inhibition of NLRP3 inflammasome downregulated caspase-1 activation and IL-1β secretion. Blocking of NLRP3 inflammasome activation through K+ efflux and cathepsin B or caspase approaches downregulated A. sobria-induced proinflammatory cytokine production. Overall, these data indicated that A. sobria induced proinflammatory cytokine production in PMφs through activating NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Zhixing Li
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Guanglu Wang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Gang Liu
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Yu Wang
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Babatunde Kazeem Bello
- State key laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Panpan Zhao
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Wei Liang
- Laboratory Department of Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Jingquan Dong
- Key Jiangsu Institute of Marine Resources Development, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
4
|
Lima LCF, Saliba SW, Andrade JMO, Cunha ML, Cassini-Vieira P, Feltenberger JD, Barcelos LS, Guimarães ALS, de-Paula AMB, de Oliveira ACP, Santos SHS. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice. Mol Neurobiol 2016; 54:3465-3475. [PMID: 27181590 DOI: 10.1007/s12035-016-9927-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 05/03/2016] [Indexed: 01/01/2023]
Abstract
Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.
Collapse
Affiliation(s)
- Leandro Ceotto Freitas Lima
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.,Department of Pharmacology and Department of Physiology - ICB, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Soraya Wilke Saliba
- Department of Pharmacology and Department of Physiology - ICB, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Maria Luisa Cunha
- Department of Pharmacology and Department of Physiology - ICB, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Puebla Cassini-Vieira
- Department of Pharmacology and Department of Physiology - ICB, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | - Lucíola Silva Barcelos
- Department of Pharmacology and Department of Physiology - ICB, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | - Antônio Carlos Pinheiro de Oliveira
- Department of Pharmacology and Department of Physiology - ICB, Universidade Federal de Minas Gerais (UFMG), Avenida Antonio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Sérgio Henrique Sousa Santos
- Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil. .,Health Science Post-graduate Program, UNIMONTES, Montes Claros, MG, Brazil.
| |
Collapse
|
5
|
García-Lara L, Pérez-Severiano F, González-Esquivel D, Elizondo G, Segovia J. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress. J Neurosci Res 2015; 93:1423-33. [DOI: 10.1002/jnr.23595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/27/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Lucia García-Lara
- Departamento de Fisiología; Biofísica; y Neurociencias; Centro de Investigación y de Estudios Avanzados del IPN; México D.F. México
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez; México D.F. México
| | - Dinora González-Esquivel
- Departamento de Neuroquímica; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez; México D.F. México
| | - Guillermo Elizondo
- Departamento de Biología Celular; Centro de Investigación y de Estudios Avanzados del IPN; México D.F. México
| | - José Segovia
- Departamento de Fisiología; Biofísica; y Neurociencias; Centro de Investigación y de Estudios Avanzados del IPN; México D.F. México
| |
Collapse
|
6
|
Datta-Mitra A, Kundu-Raychaudhuri S, Mitra A, Raychaudhuri SP. Cross talk between neuroregulatory molecule and monocyte: nerve growth factor activates the inflammasome. PLoS One 2015; 10:e0121626. [PMID: 25876154 PMCID: PMC4398317 DOI: 10.1371/journal.pone.0121626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 12/11/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Increasing evidence points to a role for the extra-neuronal nerve growth factor (NGF) in acquired immune responses. However, very little information is available about its role and underlying mechanism in innate immunity. The role of innate immunity in autoimmune diseases is becoming increasingly important. In this study, we explored the contribution of pleiotropic NGF in the innate immune response along with its underlying molecular mechanism with respect to IL-1β secretion. METHODS Human monocytes, null and NLRP3 deficient THP-1 cell lines were used for this purpose. We determined the effect of NGF on secretion of IL-1β at the protein and mRNA levels. To determine the underlying molecular mechanism, the effect of NGF on NLRP1/NLRP3 inflammasomes and its downstream key protein, activated caspase-1, were evaluated by ELISA, immunoflorescence, flow cytometry, and real-time PCR. RESULTS In human monocytes and null THP-1 cell line, NGF significantly upregulates IL-1β at protein and mRNA levels in a caspase-1 dependent manner through its receptor, TrkA. Furthermore, we observed that NGF induces caspase-1 activation through NLRP1/NLRP3 inflammasomes, and it is dependent on the master transcription factor, NF-κB. CONCLUSIONS To best of our knowledge, this is the first report shedding light on the mechanistic aspect of a neuroregulatory molecule, NGF, in innate immune response, and thus enriches our understanding regarding its pathogenic role in inflammation. These observations add further evidence in favor of anti-NGF therapy in autoimmune diseases and also unlock a new area of research about the role of NGF in IL-1β mediated diseases.
Collapse
Affiliation(s)
- Ananya Datta-Mitra
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, 95616, United States of America
- VA Medical Center Sacramento, Mather, CA, 95655, United States of America
| | - Smriti Kundu-Raychaudhuri
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, 95616, United States of America
- VA Medical Center Sacramento, Mather, CA, 95655, United States of America
| | - Anupam Mitra
- VA Medical Center Sacramento, Mather, CA, 95655, United States of America
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, CA, 95817, United States of America
| | - Siba P. Raychaudhuri
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, 95616, United States of America
- VA Medical Center Sacramento, Mather, CA, 95655, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mishra J, Kumar A. Improvement of Mitochondrial Function by Paliperidone Attenuates Quinolinic Acid-Induced Behavioural and Neurochemical Alterations in Rats: Implications in Huntington’s Disease. Neurotox Res 2014; 26:363-81. [DOI: 10.1007/s12640-014-9469-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
|
8
|
Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience 2013; 246:117-32. [PMID: 23644056 DOI: 10.1016/j.neuroscience.2013.04.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/19/2022]
Abstract
Propofol (2,6-diisopropylphenol) has been shown to attenuate neuronal injury under a number of experimental conditions; however, the mechanisms involved in its neuroprotective effects remain unclear. We therefore investigated whether inhibition of p53 induction by propofol contributes to the neuroprotection of cerebral ischemic cell death through both autophagic and apoptotic mechanisms. A transient global cerebral ischemia-reperfusion (I/R) model was produced with a 10-min, 2-vessel occlusion. The change in target genes including damage-regulated autophagy modulator (DRAM), microtubule-associated protein 1 light chain 3 (LC3), Beclin 1, cathepsin D, cathepsin B, p53-upregulated modulator of apoptosis (PUMA), Bax and Bcl-2 upon p53 inhibition was assessed with the co-administration of the intravenous anesthetic propofol and 3-methyladenine (3-MA), Pifithrin-alpha (PFT-α) or SN50. The I/R-induced increases of protein levels of p53 and LC3-II were significantly inhibited by treatment with propofol, 3-MA or PFT-α. The I/R-induced increases of protein levels of DRAM, Beclin 1, active cathepsin D and cathepsin B were significantly inhibited by treatment with propofol, PFT-α or SN50. The negative effects of the I/R-induced up-regulation of PUMA and Bax and the down-regulation of Bcl-2 in the rat hippocampus were all blocked by treatment with propofol, PFT-α or SN50. Our results suggest that cerebral I/R can induce nuclear factor-kappa B-dependent expression of p53. The autophagic and apoptotic mechanisms participate in programed cell death by regulating the p53-mediated pathway. Our results are the first to show that propofol, at clinically relevant concentrations, attenuated cell death through both autophagic and apoptotic mechanisms in the rat hippocampus after a cerebral I/R insult.
Collapse
Affiliation(s)
- D R Cui
- Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiaotong University, China
| | | | | | | | | | | |
Collapse
|
9
|
Dong XX, Wang YR, Qin S, Liang ZQ, Liu BH, Qin ZH, Wang Y. p53 mediates autophagy activation and mitochondria dysfunction in kainic acid-induced excitotoxicity in primary striatal neurons. Neuroscience 2012; 207:52-64. [PMID: 22330834 DOI: 10.1016/j.neuroscience.2012.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/03/2012] [Accepted: 01/11/2012] [Indexed: 12/24/2022]
Abstract
The present study sought to investigate if p53 mediates autophagy activation and mitochondria dysfunction in primary striatal neurons in kainic acid (KA)-induced excitotoxicity. The excitotoxic model of primary striatal neurons was established with KA. The levels of p53, microtubule-associated protein 1 light chain 3 (LC3), Beclin1, and p62 were examined by Western blot and immunostaining. Autophagy activation was also determined with electron microscope. To evaluate the contribution of p53 to autophagy activation and mitochondria dysfunction in KA-induced excitotoxicity, the protein levels of LC3, Beclin1, and p62, the mitochondrial transmembrane potential and the mitochondrial Reactive oxygen species (ROS) after pretreatment with the p53 inhibitor pifithrin-alpha (PFT-α) and the autophagy inhibitor 3-methyladenine (3-MA) were analyzed. Excitotoxic neuronal injury was induced after KA treatment as demonstrated by increases in lactate dehydrogenase (LDH) leakage and was significantly inhibited by PFT-α. Western blot and immunostaining showed that the induction of p53 protein occurred in the cytosol and the nucleus. Increases in autophagic proteins LC3 and Beclin1 were observed, whereas the protein levels of p62 decreased after KA treatment. Electron microscope analysis showed increased autophagosomes in the cytoplasm. The changes in LC3, Beclin1, and p62 levels were blocked by PFT-α, PFT-μ, 3-MA, and E64d but not Z-DEVD-FMK. JC-1 staining showed the depolarization of mitochondrial membrane potential after excitotoxic insult. Mito-tracker and RedoxSensor Red CC-1 staining showed an increased production of mitochondrial ROS after excitotoxic insult. These effects were significantly suppressed after pretreatment with PFT-α and 3-MA. This study suggests that p53 mediates KA-induced autophagy activation and mitochondrial dysfunction in striatal neurons.
Collapse
Affiliation(s)
- X X Dong
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University, School of Pharmaceutical Science, Wen Jing Road, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
p53 is a key modulator of cellular stress responses. It is activated in the ischemic areas of brain, and contributes to neuronal apoptosis. In various stroke models, p53 deficiency or applications of p53 inhibitors can significantly attenuate brain damage. p53-mediated neuronal apoptosis occurs through various molecular mechanisms. The transcriptional pathway is an important mechanism through which p53 induces neuronal apoptosis by up-regulating the expression of its target gene p21(WAF), Peg3/Pw1 or p53-up-regulated modulator of apoptosis (PUMA). In addition, p53 disrupts NF-kappaB binding to p300 and blocks NF-kappaB-mediated survival signaling. On the other hand, the transcription-independent pathway mechanism is also of great importance. In this pathway, p53 is translocated to mitochondrial and mediates the release of cytochrome c. In both pathways, p53 seems to play a key role in post-ischemic brain damage and has become a therapeutic target against stroke pathology.
Collapse
|
11
|
Cruz VPDL, Elinos-Calderón D, Carrillo-Mora P, Silva-Adaya D, Konigsberg M, Morán J, Ali SF, Chánez-Cárdenas ME, Pérez-De La Cruz G, Santamaría A. Time-course correlation of early toxic events in three models of striatal damage: Modulation by proteases inhibition. Neurochem Int 2010; 56:834-42. [DOI: 10.1016/j.neuint.2010.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/03/2010] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
|
12
|
Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, Gu ZL, Qin ZH. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci 2009; 30:2258-70. [PMID: 20092569 DOI: 10.1111/j.1460-9568.2009.07025.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study sought to investigate mechanisms by which p53 induction contributes to excitotoxic neuronal injury. Rats were intrastriatally administered the N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid (QA), the changes in the expression of p53 and its target genes involved in apoptosis and autophagy, including p53-upregulated modulator of apoptosis (PUMA), Bax, Bcl-2, damage-regulated autophagy modulator (DRAM) and other autophagic proteins including microtubule-associated protein 1 light chain 3 (LC3) and beclin 1 were assessed. The contribution of p53-mediated autophagy activation to apoptotic death of striatal neurons was assessed with co-administration of the nuclear factor-kappaB (NF-kappaB) inhibitor SN50, the p53 inhibitor Pifithrin-alpha (PFT-alpha) or the autophagy inhibitor 3-methyladenine (3-MA). The increased formation of autophagosomes and secondary lysosomes were observed with transmission electron microscope after excitotoxin exposure. QA induced increases in the expression of p53, PUMA, Bax and a decrease in Bcl-2. These changes were significantly attenuated by pre-treatment with SN50, PFT-alpha or 3-MA. SN50, PFT-alpha or 3-MA also reversed QA-induced upregulation of DRAM, the ratio of LC3-II/LC3-I and beclin 1 protein levels in the striatum. QA-induced internucleosomal DNA fragmentation and loss of striatal neurons were robustly inhibited by SN50, PFT-alpha or 3-MA. These results suggest that overstimulation of NMDA receptors can induce NF-kappaB-dependent expression of p53. p53 participates in excitotoxic neuronal death probably through both apoptotic and autophagic mechanisms.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol Sin 2007; 28:191-201. [PMID: 17241521 DOI: 10.1111/j.1745-7254.2007.00495.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the effects of epigallocatechin gallate (EGCG) on pressure overload and hydrogen peroxide (H2O2) induced cardiac myocyte apoptosis. METHODS Cardiac hypertrophy was established in rats by abdominal aortic constriction. EGCG 25, 50 and 100 mg/kg were administered intragastrically (ig). Cultured newborn rat cardiomyocytes were preincubated with EGCG, and oxidative stress injury was induced by H2O2. RESULTS In cardiac hypertrophy induced by AC in rats, relative to the model group, EGCG 25, 50 and 100 mg/kg ig for 6 weeks dose-dependently reduced systolic blood pressure (SBP) and heart weight indices, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, both in serum and in the myocardium. Also, treatment with EGCG 50 and 100 mg/kg markedly improved cardiac structure and inhibited fibrosis in HE and van Gieson (VG) stain, and reduced apoptotic myocytes in the hypertrophic myocardium detected by terminal transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. In the Western blot analysis, EGCG significantly inhibited pressure overload-induced p53 increase and bcl-2 decrease. In H2O2-induced cardiomyocyte injury, when preincubated with myocytes for 6-48 h, EGCG 12.5-200 mg/L increased cell viability determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. EGCG also attenuated H2O2-induced lactate dehydrogenase (LDH) release and MDA formation. Meanwhile, EGCG 50 and 100 mg/L significantly inhibited the cardiomyocyte apoptotic rate in flow cytometry. CONCLUSION EGCG inhibits cardiac myocyte apoptosis and oxidative stress in pressure overload induced cardiac hypertrophy. Also, EGCG prevented cardiomyocyte apoptosis from oxidative stress in vitro. The mechanism might be related to the inhibitory effects of EGCG on p53 induction and bcl-2 decrease.
Collapse
Affiliation(s)
- Rui Sheng
- Department of Pharmacology, Medical School of Soochow University, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
14
|
Wang Y, Gu ZL, Cao Y, Liang ZQ, Han R, Bennett MC, Qin ZH. Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum. Brain Res 2006; 1071:245-9. [PMID: 16409994 DOI: 10.1016/j.brainres.2005.10.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 10/16/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
The present study investigated the role of lysosomal enzymes in excitotoxic neuronal damage induced by excessive stimulation of non-NMDA glutamate receptors with kainic acid (KA). Internucleosomal DNA fragmentation was induced after intrastriatal administration of KA 1.25-5.0 nmol to rats. Increased expression of cathepsin B (P < 0.01, n = 6) but not cathepsin L in KA-injected striatum was observed 12 to 24 h after intrastriatal infusion of KA (2.5 nmol). Treatment with intrastriatal infusion of the cathepsin B inhibitor Z-FA-FMK (5-10 microg) 10 min prior to or 3 h after KA injection robustly attenuated KA-induced (2.5 nmol) DNA fragmentation. Z-FA-FMK (10 microg) also significantly reduced the size of striatal lesions induced by KA (P < 0.01, n = 6). These results suggest that lysosomal enzyme cathepsin B plays an important role in excitotoxic neuronal injury.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Soochow University School of Medicine, 708 Ren Min Road, Suzhou 215007, PR China
| | | | | | | | | | | | | |
Collapse
|