1
|
Ferreira AF, Santiago J, Silva JV, Oliveira PF, Fardilha M. PP1, PP2A and PP2B Interplay in the Regulation of Sperm Motility: Lessons from Protein Phosphatase Inhibitors. Int J Mol Sci 2022; 23:ijms232315235. [PMID: 36499559 PMCID: PMC9737803 DOI: 10.3390/ijms232315235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Male fertility relies on the ability of spermatozoa to fertilize the egg in the female reproductive tract (FRT). Spermatozoa acquire activated motility during epididymal maturation; however, to be capable of fertilization, they must achieve hyperactivated motility in the FRT. Extensive research found that three protein phosphatases (PPs) are crucial to sperm motility regulation, the sperm-specific protein phosphatase type 1 (PP1) isoform gamma 2 (PP1γ2), protein phosphatase type 2A (PP2A) and protein phosphatase type 2B (PP2B). Studies have reported that PP activity decreases during epididymal maturation, whereas protein kinase activity increases, which appears to be a requirement for motility acquisition. An interplay between these PPs has been extensively investigated; however, many specific interactions and some inconsistencies remain to be elucidated. The study of PPs significantly advanced following the identification of naturally occurring toxins, including calyculin A, okadaic acid, cyclosporin, endothall and deltamethrin, which are powerful and specific PP inhibitors. This review aims to overview the protein phosphorylation-dependent biochemical pathways underlying sperm motility acquisition and hyperactivation, followed by a discussion of the PP inhibitors that allowed advances in the current knowledge of these pathways. Since male infertility cases still attain alarming numbers, additional research on the topic is required, particularly using other PP inhibitors.
Collapse
Affiliation(s)
- Ana F. Ferreira
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana V. Silva
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F. Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: ; Tel.: +351-918-143-947
| |
Collapse
|
2
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
3
|
Taraschi A, Cimini C, Colosimo A, Ramal-Sanchez M, Valbonetti L, Bernabò N, Barboni B. An interactive analysis of the mouse oviductal miRNA profiles. Front Cell Dev Biol 2022; 10:1015360. [PMID: 36340025 PMCID: PMC9627480 DOI: 10.3389/fcell.2022.1015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022] Open
Abstract
MicroRNAs are small non-coding molecules that control several cellular functions and act as negative post-transcriptional regulators of the mRNA. While their implication in several biological functions is already known, an important role as regulators of different physiological and pathological processes in fertilization and embryo development is currently emerging. Indeed, miRNAs have been found in the oviductal fluid packaged within the extracellular vesicles, which might act as natural nanoshuttles by transporting lipids, proteins, RNA molecules and miRNAs from the oviduct to the gametes or embryos. Here, an exhaustive bibliography search was carried out, followed by the construction of a computational model based on the networks theory in an attempt to recreate and elucidate the pathways potentially activated by the oviductal miRNA. The omics data published to date were gathered to create the Oviductal MiRNome, in which the miRNA target genes and their interactions are represented by using stringApp and the Network analyzer from Cytoscape 3.7.2. Then, the hyperlinked nodes were identified to investigate the pathways in which they are involved using the gene ontology enrichment analysis. To study the phenotypical effects after the removal of key genes on the reproductive system and embryo, knockout mouse lines for every protein-coding gene were investigated by using the International Mouse Phenotyping Consortium database. The creation of the Oviductal MiRNome revealed the presence of important genes and their interactions within the network. The functional enrichment analysis revealed that the hyperlinked nodes are involved in fundamental cellular functions, both structural and regulatory/signaling, suggesting their implication in fertilization and early embryo development. This fact was as well evidenced by the effects of the gene deletion in KO mice on the reproductive system and embryo development. The present study highlights the importance of studying the miRNA profiles and their enormous potential as tools to improve the assisted reproductive techniques currently used in human and animal reproduction.
Collapse
Affiliation(s)
- Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Istituto Zooprofilattico Sperimentale Dell’Abruzzo e Del Molise “G. Caporale”, Teramo, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
- *Correspondence: Nicola Bernabò,
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Banerjee RP, Srayko M. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development 2022; 149:275553. [DOI: 10.1242/dev.200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.
Collapse
Affiliation(s)
| | - Martin Srayko
- University of Alberta Department of Biological Sciences , , Edmonton, AB T6G 2E9 , Canada
| |
Collapse
|
5
|
Sperm Phosphoproteome: Unraveling Male Infertility. BIOLOGY 2022; 11:biology11050659. [PMID: 35625387 PMCID: PMC9137924 DOI: 10.3390/biology11050659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Infertility affects approximately 15% of couples worldwide of childbearing age, and in many cases the etiology of male infertility is unknown. The current standard evaluation of semen is insufficient to establish an accurate diagnosis. Proteomics techniques, such as phosphoproteomics, applied in this field are a powerful tool to understand the mechanisms that regulate sperm functions such as motility, which is essential for successful fertilization. Among the post-translational modifications of sperm proteins, this review summarizes, from a proteomic perspective, the updated knowledge of protein phosphorylation, in human spermatozoa, as a relevant molecular mechanism involved in the regulation of sperm physiology. Specifically, the role of sperm protein phosphorylation in motility and, consequently, in sperm quality is highlighted. Additionally, through the analysis of published comparative phosphoproteomic studies, some candidate human sperm phosphoproteins associated with low sperm motility are proposed. Despite the remarkable advances in phosphoproteomics technologies, the relatively low number of studies performed in human spermatozoa suggests that phosphoproteomics has not been applied to its full potential in studying male infertility yet. Therefore, further studies will improve the application of this procedure and overcome the limitations, increasing the understanding of regulatory mechanisms underlying protein phosphorylation in sperm motility and, consequently, in male fertility.
Collapse
|
6
|
Xiao Q, Hou X, Kang C, Xiagedeer B, Hu H, Meng Q, Jiang J, Hao W. Effects of prenatal chlorocholine chloride exposure on pubertal development and reproduction of male offspring in rats. Toxicol Lett 2021; 351:28-36. [PMID: 34411681 DOI: 10.1016/j.toxlet.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/31/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Chlorocholine chloride (CCC) promote plant growth as a regulator. Emerging evidence by our group showed that CCC might restrain the puberty onset and impair the reproductive functions in male rats through HPT axis. In this study, we further investigated the effects of prenatal CCC exposure on pubertal development, reproduction of male offspring in rats and explored the underlying mechanisms. The results showed that CCC of 137.5 and 200 mg/kg bw/day delayed the age of preputial separation (PPS), decreased the sperm motility of male offspring. PP1γ2 which is an essential protein in spermatogenesis reduced in 137.5 and 200 mg/kg bw/day groups. Crucial hormones involved in hypothalamic-puititary-testicular (HPT) axis decreased at postnatal day (PND) 30. It was indicated that CCC exposure in pregnancy might disturb the pubertal development, reproductive functions of male offspring through HPT axis and disturb the sperm motility through PP1γ2.
Collapse
Affiliation(s)
- Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Bayindala Xiagedeer
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
7
|
Basak M, Mitra S, Agnihotri SK, Jain A, Vyas A, Bhatt MLB, Sachan R, Sachdev M, Nemade HB, Bandyopadhyay D. Noninvasive Point-of-Care Nanobiosensing of Cervical Cancer as an Auxiliary to Pap-Smear Test. ACS APPLIED BIO MATERIALS 2021; 4:5378-5390. [PMID: 35007017 DOI: 10.1021/acsabm.1c00470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A potential cancer antigen (Ag), protein-phosphatase-1-gamma-2 (PP1γ2), with a restricted expression in testis and sperms has been identified as a biomarker specific to cervical cancer (CaCx). Detection of this cancer biomarker antigen (NCB-Ag) in human urine opens up the possibility of noninvasive detection of CaCx to supplement the dreaded and invasive Pap-smear test. A colorimetric response of an assembly of gold nanoparticles (Au NPs) has been employed for the quantitative, noninvasive, and point-of-care-testing of CaCx in the urine. In order to fabricate the immunosensor, Au NPs of sizes ∼5-20 nm have been chemically modified with a linker, 3,3'-di-thio-di-propionic-acid-di(n-hydroxy-succinimide-ester) (DTSP) to attach the antibody (Ab) specific to the NCB-Ag. Interestingly, the addition of Ag to the composite of Ab-DTSP-Au NPs leads to a significant hypsochromic shift due to a localized surface plasmon resonance phenomenon, which originates from the specific epitope-paratope interaction between the NCB-Ag and Ab-DTSP-Au NPs. The variations in the absorbance and wavelength shift during such attachments of different concentrations of NCB-Ag on the Ab-DTSP-Au NPs composite have been employed as a calibration to identify NCB-Ag in human urine. An in-house prototype has been assembled by integrating a light-emitting diode of a narrow range wavelength in one side of a cuvette in which the reaction has been performed while a sensitive photodetector to the other side to transduce the transmitted signal associated with the loading of NCB-Ag in the Ab-DTSP-Au NPs composite. The proposed immunosensing platform has been tested against other standard proteins to ensure noninterference alongside proving the proof-for-specificity of the NCB detection.
Collapse
Affiliation(s)
- Mitali Basak
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Saurabh Kumar Agnihotri
- Endocrinology, Division, CSIR-Central Drug Research Institute Lucknow, Lucknow, Uttar Pradesh 226 031, India
| | - Ankita Jain
- Endocrinology, Division, CSIR-Central Drug Research Institute Lucknow, Lucknow, Uttar Pradesh 226 031, India
| | - Akanksha Vyas
- Endocrinology, Division, CSIR-Central Drug Research Institute Lucknow, Lucknow, Uttar Pradesh 226 031, India
| | | | - Rekha Sachan
- King George's Medical University, Lucknow, Uttar Pradesh 226 003, India
| | - Monika Sachdev
- Endocrinology, Division, CSIR-Central Drug Research Institute Lucknow, Lucknow, Uttar Pradesh 226 031, India
| | - Harshal B Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Dey S, Brothag C, Vijayaraghavan S. Signaling Enzymes Required for Sperm Maturation and Fertilization in Mammals. Front Cell Dev Biol 2019; 7:341. [PMID: 31921853 PMCID: PMC6930163 DOI: 10.3389/fcell.2019.00341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
In mammals, motility and fertilizing ability of spermatozoa develop during their passage through the epididymis. After ejaculation, sperm undergo capacitation and hyperactivation in the female reproductive tract - a motility transition that is required for sperm penetration of the egg. Both epididymal initiation of sperm motility and hyperactivation are essential for male fertility. Motility initiation in the epididymis and sperm hyperactivation involve changes in metabolism, cAMP (cyclic adenosine mono-phosphate), calcium and pH acting through protein kinases and phosphatases. Despite this knowledge, we still do not understand, in biochemical terms, how sperm acquire motility in the epididymis and how motility is altered in the female reproductive tract. Recent data show that the sperm specific protein phosphatase PP1γ2, glycogen synthase kinase 3 (GSK3), and the calcium regulated phosphatase calcineurin (PP2B), are involved in epididymal sperm maturation. The protein phosphatase PP1γ2 is present only in testis and sperm in mammals. PP1γ2 has a isoform-specific requirement for normal function of mammalian sperm. Sperm PP1γ2 is regulated by three proteins - inhibitor 2, inhibitor 3 and SDS22. Changes in phosphorylation of these three inhibitors and their binding to PP1γ2 are involved in initiation and activation of sperm motility. The inhibitors are phosphorylated by protein kinases, one of which is GSK3. The isoform GSK3α is essential for epididymal sperm maturation and fertility. Calcium levels dramatically decrease during sperm maturation and initiation of motility suggesting that the calcium activated sperm phosphatase (PP2B) activity also decreases. Loss of PP2B results in male infertility due to impaired sperm maturation in the epididymis. Thus the three signaling enzymes PP1γ2, GSK3, and PP2B along with the documented PKA (protein kinase A) have key roles in sperm maturation and hyperactivation. Significantly, all these four signaling enzymes are present as specific isoforms only in placental mammals, a testimony to their essential roles in the unique aspects of sperm function in mammals. These findings should lead to a better biochemical understanding of the basis of male infertility and should lead to novel approaches to a male contraception and managed reproduction.
Collapse
|
9
|
Cruz DF, Farinha CM, Swiatecka-Urban A. Unraveling the Function of Lemur Tyrosine Kinase 2 Network. Front Pharmacol 2019; 10:24. [PMID: 30761001 PMCID: PMC6361741 DOI: 10.3389/fphar.2019.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Lemur Tyrosine Kinase 2 (LMTK2) is a recently cloned transmembrane protein, actually a serine/threonine kinase named after the Madagascar primate lemur due to the long intracellular C-terminal tail. LMTK2 is relatively little known, compared to other kinases but its role has been increasingly recognized. Published data show that LMTK2 regulates key cellular events, including endocytic trafficking, nerve growth factor signaling, apoptosis, and Cl- transport. Abnormalities in the expression and function of LMTK2 are associated with human disease, such as neurodegeneration, cancer and infertility. We summarized the current state of knowledge on LMTK2 structure, regulation, interactome, intracellular localization, and tissue expression and point out future research directions to better understand the role of LMTK2.
Collapse
Affiliation(s)
- Daniel F. Cruz
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Portugal
- Department of Nephrology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos M. Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Portugal
| | | |
Collapse
|
10
|
Swingle MR, Honkanen RE. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development. Curr Med Chem 2019; 26:2634-2660. [PMID: 29737249 PMCID: PMC10013172 DOI: 10.2174/0929867325666180508095242] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reversible phosphorylation of proteins regulates many key functions in eukaryotic cells. Phosphorylation is catalyzed by protein kinases, with the majority of phosphorylation occurring on side chains of serine and threonine residues. The phosphomonoesters generated by protein kinases are hydrolyzed by protein phosphatases. In the absence of a phosphatase, the half-time for the hydrolysis of alkyl phosphate dianions at 25º C is over 1 trillion years; knon ~2 x 10-20 sec-1. Therefore, ser/thr phosphatases are critical for processes controlled by reversible phosphorylation. METHODS This review is based on the literature searched in available databases. We compare the catalytic mechanism of PPP-family phosphatases (PPPases) and the interactions of inhibitors that target these enzymes. RESULTS PPPases are metal-dependent hydrolases that enhance the rate of hydrolysis ([kcat/kM]/knon ) by a factor of ~1021, placing them among the most powerful known catalysts on earth. Biochemical and structural studies indicate that the remarkable catalytic proficiencies of PPPases are achieved by 10 conserved amino acids, DXH(X)~26DXXDR(X)~20- 26NH(X)~50H(X)~25-45R(X)~30-40H. Six act as metal-coordinating residues. Four position and orient the substrate phosphate. Together, two metal ions and the 10 catalytic residues position the phosphoryl group and an activated bridging water/hydroxide nucleophile for an inline attack upon the substrate phosphorous atom. The PPPases are conserved among species, and many structurally diverse natural toxins co-evolved to target these enzymes. CONCLUSION Although the catalytic site is conserved, opportunities for the development of selective inhibitors of this important group of metalloenzymes exist.
Collapse
Affiliation(s)
- Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| | - Richard E Honkanen
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile AL 36688, United States
| |
Collapse
|
11
|
Lin CH, Shen YR, Wang HY, Chiang CW, Wang CY, Kuo PL. Regulation of septin phosphorylation: SEPT12 phosphorylation in sperm septin assembly. Cytoskeleton (Hoboken) 2018; 76:137-142. [PMID: 30160375 DOI: 10.1002/cm.21491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
The sperm annulus, a septin-based ring structure, is important for reproductive physiology. It is composed of SEPT12-based septin core complex followed by assembling as octameric filament. In clinical examinations, mutations of Septin12 result in male infertility, immotile sperm, as well as sperm with defective annuli. The dynamic assembly of septin filaments is regulated by several post-translational modifications, including sumoylation, acetylation, and phosphorylation. Here, we briefly review the biological significance and the regulation of SEPT12 phosphorylation in the mammalian sperm physiology. During mammalian spermiogenesis, the phosphorylation of SEPT12 on Ser198 residue is important in regulating mammalian annulus architectures. SEPT12 phosphomimetic knock-in mice displayed poor male fertility due to weak sperm motility and loss of the sperm annulus. SEPT12 is phosphorylated via Protein kinase A (PKA), and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Taken together, the phosphorylation status of SEPT12 is crucial for its function in regulating the mammalian sperm physiology.
Collapse
Affiliation(s)
- Chun-Hsiang Lin
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yu Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Obstetrics and Gynecology, National Cheng-Kung University Hospital, Tainan, Taiwan
| |
Collapse
|
12
|
Differences in sperm protein abundance and carbonylation level in bull ejaculates of low and high quality. PLoS One 2018; 13:e0206150. [PMID: 30427859 PMCID: PMC6241115 DOI: 10.1371/journal.pone.0206150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 11/19/2022] Open
Abstract
In breeding and insemination centres, significant variation in bull ejaculate quality is often observed between individuals and also within the same individual. Low-quality semen does not qualify for cryopreservation and is rejected, generating economic loss. The mechanisms underlying the formation of low-quality ejaculates are poorly understood; therefore, the aim of the present study was to investigate the proteomic differences and oxidative modifications (measured as changes in protein carbonylation level) of bull ejaculates of low and high quality. Flow cytometry and computer-assisted sperm analysis were used to assess differences in viability, reactive oxygen species (ROS) level, and sperm motility. To analyse changes in protein abundance, two-dimensional difference gel electrophoresis (2D-DIGE) was performed. Western blotting in conjunction with two-dimensional electrophoresis (2D-oxyblot) was used to quantitate carbonylated sperm proteins. Proteins were identified using matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight spectrometry. High quality ejaculates were characterised by higher sperm motility, viability, concentration, and a lower number of ROS-positive cells (ROS+). We found significant differences in the protein profile between high- and low-quality ejaculates, and identified 14 protein spots corresponding to 10 proteins with differences in abundance. The identified sperm proteins were mainly associated with energetic metabolism, capacitation, fertilisation, motility, and cellular detoxification. High-quality ejaculates were characterised by a high abundance of extracellular sperm surface proteins, likely due to more efficient secretion from accessory sex glands and/or epididymis, and a low abundance of intracellular proteins. Our results show that sperm proteins in low-quality ejaculates are characterised by a high carbonylation level. Moreover, we identified, for the first time, 14 protein spots corresponding to 12 proteins with differences in carbonylation level between low- and high-quality ejaculates. The carbonylated proteins were localised mainly in mitochondria or their immediate surroundings. Oxidative damage to proteins in low-quality semen may be associated with phosphorylation/dephosphorylation disturbances, mitochondrial dysfunction, and motility apparatus disorders. Our results contribute to research regarding the mechanism by which low- and high-quality ejaculates are formed and to the identification of sperm proteins that are particularly sensitive to oxidative damage.
Collapse
|
13
|
Goswami S, Korrodi-Gregório L, Sinha N, Bhutada S, Bhattacharjee R, Kline D, Vijayaraghavan S. Regulators of the protein phosphatase PP1γ2, PPP1R2, PPP1R7, and PPP1R11 are involved in epididymal sperm maturation. J Cell Physiol 2018; 234:3105-3118. [PMID: 30144392 DOI: 10.1002/jcp.27130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
The serine/threonine protein phosphatase 1 (PP1) inhibitors PPP1R2, PPP1R7, and PPP1R11 are evolutionarily ancient and highly conserved proteins. Four PP1 isoforms, PP1α, PP1β, PP1γ1, and PP1γ2, exist; three of them except PP1γ2 are ubiquitous. The fact that PP1γ2 isoform is present only in mammalian testis and sperm led to the notion that isoform-specific regulators for PP1γ2 in sperm may be responsible for its function. In this report, we studied these inhibitors, PPP1R2, R7, and R11, to determine their spatial and temporal expression in testis and their regulatory functions in sperm. We show that, similar to PP1γ2, the three inhibitors are expressed at high levels in developing spermatogenic cells. However, the transcripts for the regulators are expressed as unique sizes in testis compared with somatic tissues. The three regulators share localization with PP1γ2 in the head and the principal piece of sperm. We show that the association of inhibitors to PP1γ2 changes during epididymal sperm maturation. In immotile caput epididymal sperm, PPP1R2 and PPP1R7 are not bound to PP1γ2, whereas in motile caudal sperm, all three inhibitors are bound as heterodimers or heterotrimers. In caudal sperm from male mice lacking sAC and glycogen synthase kinase 3, where motility and fertility are impaired, the association of PP1γ2 to the inhibitors resembles immature caput sperm. Changes in the association of the regulators with PP1γ2, due to their phosphorylation, are part of biochemical mechanisms responsible for the development of motility and fertilizing ability of sperm during their passage through the epididymis.
Collapse
Affiliation(s)
- Suranjana Goswami
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Luís Korrodi-Gregório
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Sumit Bhutada
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | - Douglas Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | |
Collapse
|
14
|
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017; 5:204-218. [PMID: 28297559 DOI: 10.1111/andr.12320] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
After leaving the testis, spermatozoa have not yet acquired the ability to move progressively and are unable to fertilize oocytes. To become fertilization competent, they must go through an epididymal maturation process in the male, and capacitation in the female tract. Epididymal maturation can be defined as those changes occurring to spermatozoa in the epididymis that render the spermatozoa the ability to capacitate in the female tract. As part of this process, sperm cells undergo a series of biochemical and physiological changes that require incorporation of new molecules derived from the epididymal epithelium, as well as post-translational modifications of endogenous proteins synthesized during spermiogenesis in the testis. This review will focus on epididymal maturation events, with emphasis in recent advances in the understanding of the molecular basis of this process.
Collapse
Affiliation(s)
- M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
15
|
The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis. Sci Rep 2017; 7:13364. [PMID: 29042623 PMCID: PMC5645368 DOI: 10.1038/s41598-017-13809-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
NIPP1 is one of the major nuclear interactors of protein phosphatase PP1. The deletion of NIPP1 in mice is early embryonic lethal, which has precluded functional studies in adult tissues. Hence, we have generated an inducible NIPP1 knockout model using a tamoxifen-inducible Cre recombinase transgene. The inactivation of the NIPP1 encoding alleles (Ppp1r8) in adult mice occurred very efficiently in testis and resulted in a gradual loss of germ cells, culminating in a Sertoli-cell only phenotype. Before the overt development of this phenotype Ppp1r8−/− testis showed a decreased proliferation and survival capacity of cells of the spermatogenic lineage. A reduced proliferation was also detected after the tamoxifen-induced removal of NIPP1 from cultured testis slices and isolated germ cells enriched for undifferentiated spermatogonia, hinting at a testis-intrinsic defect. Consistent with the observed phenotype, RNA sequencing identified changes in the transcript levels of cell-cycle and apoptosis regulating genes in NIPP1-depleted testis. We conclude that NIPP1 is essential for mammalian spermatogenesis because it is indispensable for the proliferation and survival of progenitor germ cells, including (un)differentiated spermatogonia.
Collapse
|
16
|
Huang Z, Danshina PV, Mohr K, Qu W, Goodson SG, O’Connell TM, O’Brien DA. Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes†. Biol Reprod 2017; 97:586-597. [DOI: 10.1093/biolre/iox103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
|
17
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
18
|
Genome-wide association study reveals sex-specific selection signals against autosomal nucleotide variants. J Hum Genet 2016; 61:423-6. [PMID: 26763874 DOI: 10.1038/jhg.2015.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/27/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
A genome-wide association study (GWAS) was conducted to examine genetic associations of common autosomal nucleotide variants with sex in a Korean population with 4183 males and 4659 females. Nine genetic association signals were identified in four intragenic and five intergenic regions (P<5 × 10(-8)). Further analysis with an independent data set confirmed two intragenic association signals in the genes encoding protein phosphatase 1, regulatory subunit 12B (PPP1R12B, intron 12, rs1819043) and dynein, axonemal, heavy chain 11 (DNAH11, intron 61, rs10255013), which are directly involved in the reproductive system. This study revealed autosomal genetic variants associated with sex ratio by GWAS for the first time. This implies that genetic variants in proximity to the association signals may influence sex-specific selection and contribute to sex ratio variation. Further studies are required to reveal the mechanisms underlying sex-specific selection.
Collapse
|
19
|
Silva JV, Korrodi-Gregório L, Luers G, Cardoso MJ, Patrício A, Maia N, da Cruz e Silva EF, Fardilha M. Characterisation of several ankyrin repeat protein variant 2, a phosphoprotein phosphatase 1-interacting protein, in testis and spermatozoa. Reprod Fertil Dev 2016; 28:1009-1019. [DOI: 10.1071/rd14303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/16/2014] [Indexed: 12/26/2022] Open
Abstract
Phosphoprotein phosphatase 1 (PPP1) catalytic subunit gamma 2 (PPP1CC2), a PPP1 isoform, is largely restricted to testicular germ cells and spermatozoa. The key to understanding PPP1 regulation in male germ cells lies in the identification and characterisation of its interacting partners. This study was undertaken to determine the expression patterns of the several ankyrin repeat protein variant 2 (SARP2), a PPP1-interacting protein, in testis and spermatozoa. SARP2 was found to be highly expressed in testis and spermatozoa, and its interaction with human spermatozoa endogenous PPP1CC2 was confirmed by immunoprecipitation. Expression analysis by RT-qPCR revealed that SARP2 and PPP1CC2 mRNA levels were significantly higher in the spermatocyte fraction. However, microscopy revealed that SARP2 protein was only present in the nucleus of elongating and mature spermatids and in spermatozoa. In spermatozoa, SARP2 was prominently expressed in the connecting piece and flagellum, as well as, to a lesser extent, in the acrosome. A yeast two-hybrid approach was used to detect SARP2-interacting proteins and a relevant interaction with a novel sperm-associated antigen 9 (SPAG9) variant, a testis and spermatozoa-specific c-Jun N-terminal kinase-binding protein, was validated in human spermatozoa. Given the expression pattern of SARP2 and its association with PPP1CC2 and SPAG9, it may play a role in spermiogenesis and sperm function, namely in sperm motility and the acrosome reaction.
Collapse
|
20
|
Liao RJ, Tong LJ, Huang C, Cao WW, Wang YZ, Wang J, Chen XF, Zhu WZ, Zhang W. Rescue of cardiac failing and remodelling by inhibition of protein phosphatase 1γ is associated with suppression of the alternative splicing factor-mediated splicing of Ca2+/calmodulin-dependent protein kinase δ. Clin Exp Pharmacol Physiol 2015; 41:976-85. [PMID: 25224648 DOI: 10.1111/1440-1681.12308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/24/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022]
Abstract
Our previous studies showed that protein phosphatase 1γ (PP1γ) exacerbates cardiomyocyte apoptosis through promotion of Ca(2+)/calmodulin-dependent protein kinase δ (CaMKIIδ) splicing. Here we determine the role of PP1γ in abdominal aorta constriction-induced hypertrophy and remodelling in rat hearts. Systolic blood pressure and echocardiographic measurements were used to evaluate the model of cardiac hypertrophy. Sirius red staining and invasive haemodynamic/cardiac index measurements were used to evaluate the effects of PP1γ or inhibitor 1 of PP1 transfection. Western blot, reverse transcription polymerase chain reaction and co-immunoprecipitation were applied to investigate the molecular mechanisms. Transfection of PP1γ increased the value of the heart mass index, left ventricular mass index and cardiac fibrosis, and simultaneously decreased the value of maximal left ventricular pressure increase and decline rate, ejection fraction, fractional shortening, and left ventricular end-diastolic pressure, as well as left ventricular systolic pressure. Transfection of inhibitor 1 of PP1, however, showed opposite effects on the aforementioned indexes. Overexpression of PP1γ potentiated CaMKIIδC production and decreased CaMKIIδB production in the hypertrophic heart. In contrast, inhibition of PP1γ re-balanced the CaMKIIδ splicing. Furthermore, CaMKII activity was found to be augmented or attenuated by PP1γ overexpression or inhibition, respectively. Further mechanistic studies showed that abdominal aorta constriction stress specifically increased the association of alternative splicing factor with PP1γ, but not with PP1β. Overexpression of PP1γ, but not inhibitor 1 of PP1, further potentiated this association. These results suggest that PP1γ alters the cardiac hypertrophy and remodelling likely through promotion of the alternative splicing factor-mediated splicing of CaMKIIδ.
Collapse
Affiliation(s)
- Ru-Jia Liao
- Department of Pharmacology, School of Medicine, Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Korrodi-Gregório L, Esteves SLC, Fardilha M. Protein phosphatase 1 catalytic isoforms: specificity toward interacting proteins. Transl Res 2014; 164:366-91. [PMID: 25090308 DOI: 10.1016/j.trsl.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 01/21/2023]
Abstract
The coordinated and reciprocal action of serine-threonine protein kinases and protein phosphatases produces transitory phosphorylation, a fundamental regulatory mechanism for many biological processes. Phosphoprotein phosphatase 1 (PPP1), a major serine-threonine phosphatase, in particular, is ubiquitously distributed and regulates a broad range of cellular functions, including glycogen metabolism, cell cycle progression, and muscle relaxation. PPP1 has evolved effective catalytic machinery but in vitro lacks substrate specificity. In vivo, its specificity is achieved not only by the existence of different PPP1 catalytic isoforms, but also by binding of the catalytic moiety to a large number of regulatory or targeting subunits. Here, we will address exhaustively the existence of diverse PPP1 catalytic isoforms and the relevance of their specific partners and consequent functions.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Sara L C Esteves
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Laboratório de Transdução de Sinais, Departamento de Biologia, Secção Autónoma de Ciências de Saúde, Centro de Biologia Celular, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
22
|
Krapf D, O'Brien E, Maidagán PM, Morales ES, Visconti PE, Arranz SE. Calcineurin Regulates Progressive Motility Activation ofRhinella(Bufo)arenarumSperm Through Dephosphorylation of PKC Substrates. J Cell Physiol 2014; 229:1378-86. [DOI: 10.1002/jcp.24571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biología; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Emma O'Brien
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biología; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Paula M. Maidagán
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biología; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Enrique S. Morales
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biología; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario (UNR); Rosario Argentina
| | - Pablo E. Visconti
- Department of Veterinary and Animal Sciences; University of Massachusetts; Amherst Massachusetts
| | - Silvia E. Arranz
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biología; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario (UNR); Rosario Argentina
| |
Collapse
|
23
|
Rotfeld H, Hillman P, Ickowicz D, Breitbart H. PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade. Reproduction 2014; 147:347-56. [DOI: 10.1530/rep-13-0560] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To enable fertilization, spermatozoa must undergo several biochemical processes in the female reproductive tract, collectively called capacitation. These processes involve protein kinase A (PKA)-dependent protein tyrosine phosphorylation including phosphatidylinositol-3-kinase (PI3K). It is not known how PKA, a serine/threonine (S/T) kinase, mediates tyrosine phosphorylation of proteins. We recently showed that inhibition of S/T phosphatase 1 (PP1) causes a significant increase in phospho-PI3K. In this study, we propose a mechanism by which PKA and PP1 mediate an increase in PI3K tyrosine phosphorylation and implicate calmodulin-dependent kinase II (CaMKII) in this process. Inhibition of sperm PP1 or PKC, stimulated CaMKII phosphorylation/activation, and inhibition of PKC enhanced PP1 phosphorylation/inactivation. Inhibition of CaMKII, using KN-93, caused significant reduction in phospho-PP1, indicating its activation. Moreover, KN-93 prevented the dephosphorylation/inactivation of PKC. We therefore suggest that CaMKII inhibits PKC, leading to PP1 inhibition and the reciprocal auto-activation of CaMKII. Thus, CaMKII can regulate its own activation by inhibiting the PKC/PP1 cascade. Inhibition of Src family kinases (SFK) caused significant inhibition of CaMKII and PP1 phosphorylation, suggesting that SFK activity results in PP1 inhibition and CaMKII activation. Activation of sperm PKA by 8Br-cAMP revealed an increase in phospho-CaMKII, which was inhibited by PKA inhibitor. Tyrosine phosphorylation of PI3K was stimulated by 8Br-cAMP and by PKC or PP1 inhibition and was abrogated by CaMKII inhibition. Furthermore, phosphorylation/activation of the tyrosine kinase Pyk2 was enhanced by PP1 inhibition, and this activation is blocked by CaMKII inhibition. Thus, PKA activates Src, which inhibits PP1, leading to CaMKII and Pyk2 activation, resulting in PI3K tyrosine phosphorylation/activation.
Collapse
|
24
|
Sinha N, Puri P, Nairn AC, Vijayaraghavan S. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice. Biol Reprod 2013; 89:128. [PMID: 24089200 DOI: 10.1095/biolreprod.113.110239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.
Collapse
Affiliation(s)
- Nilam Sinha
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | | | | | | |
Collapse
|
25
|
Korrodi-Gregório L, Abrantes J, Muller T, Melo-Ferreira J, Marcus K, da Cruz e Silva OAB, Fardilha M, Esteves PJ. Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evol Biol 2013; 13:242. [PMID: 24195737 PMCID: PMC3840573 DOI: 10.1186/1471-2148-13-242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/29/2013] [Indexed: 01/23/2023] Open
Abstract
Background Pseudogenes are traditionally considered “dead” genes, therefore lacking biological functions. This view has however been challenged during the last decade. This is the case of the Protein phosphatase 1 regulatory subunit 2 (PPP1R2) or inhibitor-2 gene family, for which several incomplete copies exist scattered throughout the genome. Results In this study, the pseudogenization process of PPP1R2 was analyzed. Ten PPP1R2-related pseudogenes (PPP1R2P1-P10), highly similar to PPP1R2, were retrieved from the human genome assembly present in the databases. The phylogenetic analysis of mammalian PPP1R2 and related pseudogenes suggested that PPP1R2P7 and PPP1R2P9 retroposons appeared before the great mammalian radiation, while the remaining pseudogenes are primate-specific and retroposed at different times during Primate evolution. Although considered inactive, four of these pseudogenes seem to be transcribed and possibly possess biological functions. Given the role of PPP1R2 in sperm motility, the presence of these proteins was assessed in human sperm, and two PPP1R2-related proteins were detected, PPP1R2P3 and PPP1R2P9. Signatures of negative and positive selection were also detected in PPP1R2P9, further suggesting a role as a functional protein. Conclusions The results show that contrary to initial observations PPP1R2-related pseudogenes are not simple bystanders of the evolutionary process but may rather be at the origin of genes with novel functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal.
| |
Collapse
|
26
|
Fardilha M, Ferreira M, Pelech S, Vieira S, Rebelo S, Korrodi-Gregorio L, Sousa M, Barros A, Silva V, da Cruz e Silva OAB, da Cruz e Silva EF. "Omics" of human sperm: profiling protein phosphatases. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:460-72. [PMID: 23895272 DOI: 10.1089/omi.2012.0119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation is a major regulatory mechanism in eukaryotic cells performed by the concerted actions of kinases and phosphatases (PPs). Protein phosphorylation has long been relevant to sperm physiology, from acquisition of motility in the epididymis to capacitation in the female reproductive tract. While the precise kinases involved in the regulation of sperm phosphorylation have been studied for decades, the PPs have only recently received research interest. Tyrosine phosphorylation was first implicated in the regulation of several sperm-related functions, from capacitation to oocyte binding. Only afterwards, in 1996, the inhibition of the serine/threonine-PP phosphoprotein phosphatase 1 (PPP1) by okadaic acid and calyculin-A was shown to initiate motility in caput epididymal sperm. Today, the current mechanisms of sperm motility acquisition based on PPP1 and its regulators are still far from being fully understood. PPP1CC2, specifically expressed in mammalian sperm, has been considered to be the only sperm-specific serine/threonine-PP, while other PPP1 isoforms were thought to be absent from sperm. This article examines the "Omics" of human sperm, and reports, for the first time, the identification of three new serine/threonine-protein PPs, PPP1CB, PPP4C, and PPP6C, in human sperm, together with two tyrosine-PPs, MKP1 and PTP1C. We specifically localized in sperm PPP1CB and PPP1CC2 from the PPP1 subfamily, and PPP2CA, PPP4C, and PPP6C from the PPP2 subfamily of the serine/threonine-PPs. A semi-quantitative analysis was performed to determine the various PPs' differential expression in sperm head and tail. These findings contribute to a comprehensive understanding of human sperm PPs, and warrant further research for their clinical and therapeutic significance.
Collapse
Affiliation(s)
- Margarida Fardilha
- Centro de Biologia Celular, Secção Autónoma de Ciências da Saúde, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Korrodi-Gregório L, Ferreira M, Vintém AP, Wu W, Muller T, Marcus K, Vijayaraghavan S, Brautigan DL, da Cruz E Silva OAB, Fardilha M, da Cruz E Silva EF. Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa. BMC Cell Biol 2013; 14:15. [PMID: 23506001 PMCID: PMC3606321 DOI: 10.1186/1471-2121-14-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 03/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of PPP1C that is highly enriched in testis and selectively expressed in sperm. Addition of the phosphatase inhibitor toxins okadaic acid or calyculin A to caput and caudal sperm triggers and stimulates motility, respectively. Thus, the endogenous mechanisms of phosphatase inhibition are fundamental for controlling sperm function and should be characterized. Preliminary results have shown a protein phosphatase inhibitor activity resembling PPP1R2 in bovine and primate spermatozoa. Results Here we show conclusively, for the first time, that PPP1R2 is present in sperm. In addition, we have also identified a novel protein, PPP1R2P3. The latter was previously thought to be an intron-less pseudogene. We show that the protein corresponding to the pseudogene is expressed. It has PPP1 inhibitory potency similar to PPP1R2. The potential phosphosites in PPP1R2 are substituted by non-phosphorylable residues, T73P and S87R, in PPP1R2P3. We also confirm that PPP1R2/PPP1R2P3 are phosphorylated at Ser121 and Ser122, and report a novel phosphorylation site, Ser127. Subfractionation of sperm structures show that PPP1CC2, PPP1R2/PPP1R2P3 are located in the head and tail structures. Conclusions The conclusive identification and localization of sperm PPP1R2 and PPP1R2P3 lays the basis for future studies on their roles in acrosome reaction, sperm motility and hyperactivation. An intriguing possibility is that a switch in PPP1CC2 inhibitory subunits could be the trigger for sperm motility in the epididymis and/or sperm hyperactivation in the female reproductive tract.
Collapse
Affiliation(s)
- Luis Korrodi-Gregório
- Laboratory of Signal Transduction, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Baker MA, Hetherington L, Weinberg A, Naumovski N, Velkov T, Pelzing M, Dolman S, Condina MR, Aitken RJ. Analysis of phosphopeptide changes as spermatozoa acquire functional competence in the epididymis demonstrates changes in the post-translational modification of Izumo1. J Proteome Res 2012; 11:5252-64. [PMID: 22954305 DOI: 10.1021/pr300468m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spermatozoa are functionally inert when they emerge from the testes. Functional competence is conferred upon these cells during a post-testicular phase of sperm maturation in the epididymis. Remarkably, this functional transformation of epididymal spermatozoa occurs in the absence of nuclear gene transcription or protein translation. To understand the cellular mechanisms underpinning epididymal maturation, we have performed a label-free, MS-based, comparative quantification of peptides from caput, corpus and caudal epididymal spermatozoa. In total, 68 phosphopeptide changes could be detected during epididymal maturation corresponding to the identification of 22 modified proteins. Included in this list are the sodium-bicarbonate cotransporter, the sperm specific serine kinase 1, AKAP4 and protein kinase A regulatory subunit. Furthermore, four phosphopeptide changes came from Izumo1, the sperm-egg fusion protein, in the cytoplasmic segment of the protein. 2D-PAGE confirmed that Izumo1 is post-translationally modified during epididymal transit. Interestingly, phosphorylation on Izumo1 was detected on residue S339 in the caput and corpus but not caudal cells. Furthermore, Izumo1 exhibited four phosphorylated residues when spermatozoa reached the cauda, which were absent from caput cells. A model is advanced suggesting that these phospho-regulations are likely to act as a scaffold for the association of adaptor proteins with Izumo1 as these cells prepare for fertilization.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res 2012; 349:765-82. [DOI: 10.1007/s00441-012-1370-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
|
31
|
Miyata H, Thaler CD, Haimo LT, Cardullo RA. Protease activation and the signal transduction pathway regulating motility in sperm from the water strider Aquarius remigis. Cytoskeleton (Hoboken) 2012; 69:207-20. [DOI: 10.1002/cm.21012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 11/12/2022]
|
32
|
Wang R, Sperry AO. PP1 forms an active complex with TLRR (lrrc67), a putative PP1 regulatory subunit, during the early stages of spermiogenesis in mice. PLoS One 2011; 6:e21767. [PMID: 21738792 PMCID: PMC3128092 DOI: 10.1371/journal.pone.0021767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/06/2011] [Indexed: 12/29/2022] Open
Abstract
Mammalian spermatogenesis is a highly regulated developmental pathway that demands dramatic rearrangement of the cytoskeleton of the male germ cell. We have described previously a leucine rich repeat protein, TLRR (also known as lrrc67), which is associated with the spermatid cytoskeleton in mouse testis and is a binding partner of protein phosphatase-1 (PP1), an extremely well conserved signaling molecule. The activity of PP1 is modulated by numerous specific regulators of which TLRR is a candidate. In this study we measured the phosphatase activity of the TLRR-PP1 complex in the adult and the developing mouse testis, which contains varying populations of developing germ cell types, in order to determine whether TLRR acts as an activator or an inhibitor of PP1 and whether the phosphatase activity of this complex is developmentally regulated during spermatogenesis. Additionally, we assayed the ability of bacterially expressed TLRR to affect the enzymatic activity of PP1. Furthermore, we examined phosphorylation of TLRR, and elements of the spermatid cytoskeleton during the first wave of spermatogenesis in the developing testis. We demonstrate here that the TLRR complex is associated with a phosphatase activity in adult mouse testis. The relative phosphatase activity of this complex appears to reach a peak at about 21 days after birth, when pachytene spermatocytes and round spermatids are abundant in the seminiferous epithelium of the mouse testis. TLRR, in addition to tubulin and kinesin-1B, is phosphorylated during the first wave of spermatogenesis. These findings indicate that the TLRR-PP1 complex is active prior to translocation of TLRR toward the sperm flagella and that TLRR, and constituents of the spermatid cytoskeleton, may be subject to regulation by reversible phosphorylation during spermatogenesis in murine testis.
Collapse
Affiliation(s)
- Rong Wang
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Ann O. Sperry
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ruan Y, Cheng M, Ou Y, Oko R, van der Hoorn FA. Ornithine decarboxylase antizyme Oaz3 modulates protein phosphatase activity. J Biol Chem 2011; 286:29417-29427. [PMID: 21712390 DOI: 10.1074/jbc.m111.274647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ornithine decarboxylase antizyme 3 (Oaz3) is expressed in spermatids, makes up the antizyme family of Oaz genes with Oaz1 and Oaz2, and was proposed to encode a 22 kDa antizyme protein involved in polyamine regulation similar to the 22 kDa OAZ1 and OAZ2 proteins. Here we demonstrate however that the major product encoded by Oaz3 is a 12 kDa protein, p12, which lacks the antizyme domain that interacts with ornithine decarboxylase. We show that p12 does not affect ornithine decarboxylase levels, providing an explanation for the surprising observation made in Oaz3 knock-out male mice, which do not display altered testis polyamine metabolism. This suggested a novel activity for Oaz3 p12. Using immuno-electron microscopy we localized p12 to two structures in the mammalian sperm tail, viz. the outer dense fibers and fibrous sheath, as well as to the connecting piece linking head and tail. We identified myosin phosphatase targeting subunit 3 (MYPT3), a regulator of protein phosphatase PP1β, as a major p12-interacting protein, and show that MYPT3 is present in sperm tails and that its ankyrin repeat binds p12. We show that MYPT3 can also bind protein phosphatase PP1γ2, the only protein phosphatase present in sperm tails, and that p12- MYPT3 interaction modulates the activity of both PP1β and PP1γ2. This is, to our knowledge, the first demonstration of a novel activity for an Oaz-encoded protein.
Collapse
Affiliation(s)
- Yibing Ruan
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and
| | - Min Cheng
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and
| | - Young Ou
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and
| | - Richard Oko
- Department of Anatomy & Cell Biology, Queens University, Kingston K7L 3N6, Canada
| | - Frans A van der Hoorn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada and.
| |
Collapse
|
34
|
Baker MA, Smith ND, Hetherington L, Pelzing M, Condina MR, Aitken RJ. Use of Titanium Dioxide To Find Phosphopeptide and Total Protein Changes During Epididymal Sperm Maturation. J Proteome Res 2011; 10:1004-17. [DOI: 10.1021/pr1007224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | | | - Matthias Pelzing
- Bruker Biosciences, PTY LTD, 28 Albert St, Preston, VIC 3072, Australia
| | - Mark R. Condina
- Bruker Biosciences, PTY LTD, 28 Albert St, Preston, VIC 3072, Australia
| | | |
Collapse
|
35
|
Deng L, Zhang D, Richards E, Tang X, Fang J, Long F, Wang Y. Constructing an initial map of transmission distortion based on high density HapMap SNPs across the human autosomes. J Genet Genomics 2010; 36:703-9. [PMID: 20129397 DOI: 10.1016/s1673-8527(08)60163-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 11/12/2009] [Accepted: 11/24/2009] [Indexed: 11/19/2022]
Abstract
Transmission distortion (TD) is a significant departure from Mendelian predictions of genes or chromosomes to offspring. While many biological processes have been implicated, there is still much to be understood about TD in humans. Here we present our findings from a genome-wide scan for evidence of TD using haplotype data of 60 trio families from the International HapMap Project. Fisher's exact test was applied to assess the extent of TD in 629,958 SNPs across the autosomes. Based on the empirical distribution of P(Fisher) and further permutation tests, we identified 1,205 outlier loci and 224 candidate genes with TD. Using the PANTHER gene ontology database, we found 19 categories of biological processes with an enrichment of candidate genes. In particular, the "protein phosphorylation" category contained the largest number of candidates in both HapMap samples. Further analysis uncovered an intriguing non-synonymous change in PPP1R12B, a gene related to protein phosphorylation, which appears to influence the allele transmission from male parents in the YRI (Yoruba from Ibadan, Nigeria) population. Our findings also indicate an ethnicity-related property of TD signatures in HapMap samples and provide new clues for our understanding of TD in humans.
Collapse
|
36
|
Suzuki T, Fujinoki M, Shibahara H, Suzuki M. Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 2010; 139:847-56. [PMID: 20185533 DOI: 10.1530/rep-08-0366] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been widely accepted that serine/threonine protein phosphatases (PPPs) are associated with the regulation of sperm hyperactivation. In the present study, we examined the types of PPPs associated with the regulation of hamster sperm hyperactivation. Protein phosphatases PPP1CA, PPP1CC, PPP2, and PPP3 are present in hamster sperm. In the experiments using several inhibitors, sperm hyperactivation was enhanced when PPP2 was inhibited at least, although inhibition of PPP1 also enhanced sperm hyperactivation. Interestingly, sperm were hyperactivated after PPP2 became an inactive form. And then, PPP1CA became an active form after sperm were hyperactivated. It has also been widely accepted that tyrosine phosphorylation is closely associated with the regulation of sperm hyperactivation. When PPP2 was inhibited, tyrosine phosphorylation was not enhanced at all. On the other hand, inhibition of PPP1 enhanced tyrosine phosphorylation. From the results, it is likely that PPP2 is closely associated with the regulation of sperm hyperactivation, although it is not associated with the regulation of tyrosine phosphorylation.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan.
| | | | | | | |
Collapse
|
37
|
Shi Z, Zhang H, Ding L, Feng Y, Wang J, Dai J. Proteomic analysis for testis of rats chronically exposed to perfluorododecanoic acid. Toxicol Lett 2010; 192:179-88. [DOI: 10.1016/j.toxlet.2009.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 01/01/2023]
|
38
|
|
39
|
Soler DC, Kadunganattil S, Ramdas S, Myers K, Roca J, Slaughter T, Pilder SH, Vijayaraghavan S. Expression of transgenic PPP1CC2 in the testis of Ppp1cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility. Biol Reprod 2009; 81:343-52. [PMID: 19420386 DOI: 10.1095/biolreprod.109.076398] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Two isoforms of phosphoprotein phosphatase 1, PPP1CC1 and PPP1CC2, are translated from alternatively spliced transcripts of a single gene, Ppp1cc, and differ only at their extreme C-termini. While PPP1CC1 expression is almost ubiquitous, PPP1CC2 is largely restricted to testicular germ cells and mature spermatozoa. Targeted deletion of Ppp1cc leads to sterility of -/- males due to a combination of gross structural defects in developing spermatids resulting in apoptosis and faulty spermiation. Because PPP1CC2 is the only PP1 isoform that demonstrates high-level expression in wild-type meiotic and postmeiotic male germ cells, we have tested whether its loss in Ppp1cc-/- males is largely responsible for manifestation of this phenotype by expressing PPP1CC2 transgenically in the testis of Ppp1cc-/- mice (rescue mice). Herein, we demonstrate that PPP1CC2 expression in the Ppp1cc-/- testis is antiapoptotic, thus reestablishing spermatid development and spermiation. However, because aberrant flagellar morphogenesis is incompletely ameliorated, rescue males remain infertile. Because these results suggest that expression of PPP1CC2 in developing germ cells is essential but insufficient for normal spermatogenesis to occur, appropriate spatial and temporal expression of both PPP1CC isoforms in the testis during spermatogenesis appears to be necessary to produce structurally normal fertility-competent spermatozoa.
Collapse
Affiliation(s)
- David C Soler
- Biological Sciences, Kent State University, Kent, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cheng L, Pilder S, Nairn AC, Ramdas S, Vijayaraghavan S. PP1gamma2 and PPP1R11 are parts of a multimeric complex in developing testicular germ cells in which their steady state levels are reciprocally related. PLoS One 2009; 4:e4861. [PMID: 19300506 PMCID: PMC2654099 DOI: 10.1371/journal.pone.0004861] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/06/2009] [Indexed: 01/10/2023] Open
Abstract
Mice lacking the protein phosphatase 1 gamma isoforms, PP1gamma1 and PP1gamma2, are male-sterile due to defective germ cell morphogenesis and apoptosis. However, this deficiency causes no obvious abnormality in other tissues. A biochemical approach was employed to learn how expression versus deficiency of PP1gamma2, the predominant PP1 isoform in male germ cells, affects spermatogenesis. Methods used in this study include column chromatography, western blot and northern blot analyses, GST pull-down assays, immunoprecipitation, non-denaturing gel electrophoresis, phosphatase enzyme assays, protein sequencing, and immunohistochemistry. We report for the first time that in wild-type testis, PP1gamma2 forms an inactive complex with actin, protein phosphatase 1 regulatory subunit 7 (PPP1R7), and protein phosphatase 1 regulatory subunit 11 (PPP1R11), the latter, a potent PP1 inhibitor. Interestingly, PPP1R11 protein, but not its mRNA level, falls significantly in PP1gamma-null testis where mature sperm are virtually absent. Conversely, both mature sperm numbers and the PPP1R11 level increase substantially in PP1gamma-null testis expressing transgenic PP1gamma2. PPP1R11 also appears to be ubiquitinated in PP1gamma-null testis. The levels of PP1gamma2 and PPP1R11 were increased in phenotypically normal PP1alpha-null testis. However, in PP1alpha-null spleen, where PP1gamma2 normally is not expressed, PPP1R11 levels remained unchanged. Our data clearly show a direct reciprocal relationship between the levels of the protein phosphatase isoform PP1gamma2 and its regulator PPP1R11, and suggest that complex formation between these polypeptides in testis may prevent proteolysis of PPP1R11 and thus, germ cell apoptosis.
Collapse
Affiliation(s)
- Lina Cheng
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Stephen Pilder
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Angus C. Nairn
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States of America
| | - Shandilya Ramdas
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Srinivasan Vijayaraghavan
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wu TF, Chu DS. Sperm chromatin: fertile grounds for proteomic discovery of clinical tools. Mol Cell Proteomics 2008; 7:1876-86. [PMID: 18504257 PMCID: PMC2559940 DOI: 10.1074/mcp.r800005-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 01/22/2023] Open
Abstract
Sperm are remarkably complex cells with a singularly important mission: to deliver paternal DNA and its associated factors to the oocyte to start a new life. The integrity of sperm DNA is a keystone of reproductive success, which includes fertilization and embryonic development. In addition, the significance in these processes of proteins that associate with sperm DNA is increasingly being appreciated. In this review, we highlight proteomic studies that have identified sperm chromatin proteins with fertility roles that have been validated by molecular studies in model organisms or correlations in the clinic. Up to 50% of male-factor infertility cases in the clinic have no known cause and therefore no direct treatment. In-depth study of the molecular basis of infertility has great potential to inform the development of sensitive diagnostic tools and effective therapies that will address this incongruity. Because sperm rely on testis-specific protein isoforms and post-translational modifications for their development and function, sperm-specific processes are ideal for proteomic explorations that can bridge the research lab and fertility clinic.
Collapse
Affiliation(s)
- Tammy F Wu
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | |
Collapse
|
42
|
Wang ZJ, Zhang W, Feng NH, Song NH, Wu HF, Sui YG. Molecular mechanism of epididymal protease inhibitor modulating the liquefaction of human semen. Asian J Androl 2008; 10:770-5. [PMID: 18645681 DOI: 10.1111/j.1745-7262.2008.00393.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AIM To study the molecular mechanism of epididymal protease inhibitor (Eppin) modulating the process of prostate specific antigen (PSA) digesting semenogelin (Sg). METHODS Human Sg cDNA (nucleotides 82-849) and Eppin cDNA (nucleotides 70-723) were generated by polymerase chain reaction (PCR) and cloned into pET-100D/TOPO. Recombinant Eppin and Sg (rEppin and rSg) were produced by BL21 (DE3). The association of Eppin with Sg was studied by far-western immunoblot and radioautography. In vitro the digestion of rSg by PSA in the presence or absence of rEppin was studied. The effect of anti-Q20E (N-terminal) and C-terminal of Eppin on Eppin-Sg binding was monitored. RESULTS Eppin binds Sg on the surface of human spermatozoa with the C-terminal of Eppin (amino acids 75-133). rSg was digested with PSA and many low molecular weight fragments were produced. When rEppin is bound to rSg, then digested by PSA, incomplete digestion and a 15-kDa fragment results. Antibody binding to the N-terminal of rEppin did not affect rSg digestion. Addition of antibodies to the C-terminal of rEppin inhibited the modulating effect of rEppin. CONCLUSION Eppin protects a 15-kDa fragment of rSg from hydrolysis by PSA.
Collapse
Affiliation(s)
- Zeng-Jun Wang
- Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | |
Collapse
|